
MATLAB® Coder™
User's Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ User's Guide
© COPYRIGHT 2011–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0 (Release 2018a)
September 2018 Online only Revised for Version 4.1 (Release 2018b)
March 2019 Online only Revised for Version 4.2 (Release 2019a)
September 2019 Online only Revised for Version 4.3 (Release 2019b)
March 2020 Online only Revised for Version 5.0 (Release 2020a)
September 2020 Online only Revised for Version 5.1 (Release 2020b)
March 2021 Online only Revised for Version 5.2 (Release 2021a)
September 2021 Online only Revised for Version 5.3 (Release 2021b)
March 2022 Online only Revised for Version 5.4 (Release R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

About MATLAB Coder
1

MATLAB Coder Product Description . 1-2

Product Overview . 1-3
When to Use MATLAB Coder . 1-3
Code Generation for Embedded Software Applications 1-3
Code Generation for Fixed-Point Algorithms . 1-3

Design Considerations for C/C++ Code Generation
2

When to Generate Code from MATLAB Algorithms 2-2
When Not to Generate Code from MATLAB Algorithms 2-2

Which Code Generation Feature to Use . 2-3

Prerequisites for C/C++ Code Generation from MATLAB 2-4

MATLAB Code Design Considerations for Code Generation 2-5
See Also . 2-5

Differences Between Generated Code and MATLAB Code 2-6
Functions that have Multiple Possible Outputs . 2-6
Writing to ans Variable . 2-7
Logical Short-Circuiting . 2-7
Loop Index Overflow . 2-8
Indexing for Loops by Using Single Precision Operands 2-9
Index of an Unentered for Loop . 2-10
Character Size . 2-10
Order of Evaluation in Expressions . 2-10
Name Resolution While Constructing Function Handles 2-11
Termination Behavior . 2-13
Size of Variable-Size N-D Arrays . 2-13
Size of Empty Arrays . 2-13
Size of Empty Array That Results from Deleting Elements of an Array . . . 2-13
Binary Element-Wise Operations with Single and Double Operands 2-14
Floating-Point Numerical Results . 2-15
NaN and Infinity . 2-15
Negative Zero . 2-15
Code Generation Target . 2-16
MATLAB Class Property Initialization . 2-16

v

Contents

MATLAB Classes in Nested Property Assignments That Have Set Methods
. 2-16

MATLAB Handle Class Destructors . 2-16
Variable-Size Data . 2-17
Complex Numbers . 2-17
Converting Strings with Consecutive Unary Operators to double 2-17

Potential Differences Reporting . 2-18
Addressing Potential Differences Messages . 2-18
Disabling and Enabling Potential Differences Reporting 2-18

Potential Differences Messages . 2-20
Automatic Dimension Incompatibility . 2-20
mtimes No Dynamic Scalar Expansion . 2-20
Matrix-Matrix Indexing . 2-21
Vector-Vector Indexing . 2-21
Loop Index Overflow . 2-22

MATLAB Language Features Supported for C/C++ Code Generation . . . 2-24
MATLAB Features That Code Generation Supports 2-24
MATLAB Language Features That Code Generation Does Not Support . . 2-25

Functions, Classes, and System Objects Supported for Code
Generation

3
Functions and Objects Supported for C/C++ Code Generation 3-2

Defining MATLAB Variables for C/C++ Code Generation
4

Variables Definition for Code Generation . 4-2

Best Practices for Defining Variables for C/C++ Code Generation 4-3
Define Variables By Assignment Before Using Them 4-3
Use Caution When Reassigning Variables . 4-5
Use Type Cast Operators in Variable Definitions . 4-5
Define Matrices Before Assigning Indexed Variables 4-5
Index Arrays by Using Constant Value Vectors . 4-5

Eliminate Redundant Copies of Variables in Generated Code 4-7
When Redundant Copies Occur . 4-7
How to Eliminate Redundant Copies by Defining Uninitialized Variables

. 4-7
Defining Uninitialized Variables . 4-7

Reassignment of Variable Properties . 4-9

vi Contents

Reuse the Same Variable with Different Properties 4-10
When You Can Reuse the Same Variable with Different Properties 4-10
When You Cannot Reuse Variables . 4-10
Limitations of Variable Reuse . 4-11

Supported Variable Types . 4-13

Edit and Represent Coder Type Objects and Properties 4-14
Object Properties . 4-14
Legacy Representation of Coder Type Objects . 4-15

Defining Data for Code Generation
5

Data Definition Considerations for Code Generation 5-2

Code Generation for Complex Data . 5-8
Restrictions When Defining Complex Variables . 5-8
Code Generation for Complex Data with Zero-Valued Imaginary Parts 5-8
Results of Expressions That Have Complex Operands 5-11
Results of Complex Multiplication with Nonfinite Values 5-11

Encoding of Characters in Code Generation . 5-12

Array Size Restrictions for Code Generation . 5-13

Code Generation for Constants in Structures and Arrays 5-14

Code Generation for Strings . 5-16
Limitations . 5-16
Differences Between Generated Code and MATLAB Code 5-16

Define String Scalar Inputs . 5-17
Define String Scalar Types at the Command Line 5-17
Define String Scalar Inputs in the MATLAB Coder App 5-18

Code Generation for Sparse Matrices . 5-19
Sparse Data Types in Generated Code . 5-19
Input Definition . 5-19
Code Generation Guidelines . 5-20
Code Generation Limitations . 5-21

Specify Array Layout in Functions and Classes . 5-22
Specify Array Layout in a Function . 5-22
Query Array Layout of a Function . 5-23
Specify Array Layout in a Class . 5-23

Code Design for Row-Major Array Layout . 5-26
Understand Potential Inefficiencies Caused by Array Layout 5-26
Linear Indexing Uses Column-Major Array Layout 5-28

vii

Code Generation for Variable-Size Data
6

Code Generation for Variable-Size Arrays . 6-2
Memory Allocation for Variable-Size Arrays . 6-2
Enabling and Disabling Support for Variable-Size Arrays 6-3
Variable-Size Arrays in a Code Generation Report 6-3

Control Memory Allocation for Variable-Size Arrays 6-4
Provide Upper Bounds for Variable-Size Arrays . 6-4
Disable Dynamic Memory Allocation . 6-4
Configure Code Generator to Use Dynamic Memory Allocation for Arrays

Bigger Than a Threshold . 6-4

Specify Upper Bounds for Variable-Size Arrays . 6-6
Specify Upper Bounds for Variable-Size Inputs . 6-6
Specify Upper Bounds for Local Variables . 6-6

Define Variable-Size Data for Code Generation . 6-8
Use a Matrix Constructor with Nonconstant Dimensions 6-8
Assign Multiple Sizes to the Same Variable . 6-8
Define Variable-Size Data Explicitly by Using coder.varsize 6-9

Diagnose and Fix Variable-Size Data Errors . 6-12
Diagnosing and Fixing Size Mismatch Errors . 6-12
Diagnosing and Fixing Errors in Detecting Upper Bounds 6-14

Incompatibilities with MATLAB in Variable-Size Support for Code
Generation . 6-15

Incompatibility with MATLAB for Scalar Expansion 6-15
Incompatibility with MATLAB in Determining Size of Variable-Size N-D

Arrays . 6-16
Incompatibility with MATLAB in Determining Size of Empty Arrays 6-17
Incompatibility with MATLAB in Determining Class of Empty Arrays 6-18
Incompatibility with MATLAB in Matrix-Matrix Indexing 6-18
Incompatibility with MATLAB in Vector-Vector Indexing 6-19
Incompatibility with MATLAB in Matrix Indexing Operations for Code

Generation . 6-19
Incompatibility with MATLAB in Concatenating Variable-Size Matrices . . 6-20
Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside

Concatenation Returns No Elements . 6-20

Variable-Sizing Restrictions for Code Generation of Toolbox Functions
. 6-22

Common Restrictions . 6-22
Toolbox Functions with Restrictions for Variable-Size Data 6-23

Generate Code With Implicit Expansion Enabled 6-27
Output Size . 6-27
Additional Code Generation . 6-27
Performance Variation . 6-29

viii Contents

Optimize Implicit Expansion in Generated Code 6-30
Disable Implicit Expansion in Specified Function by Using

coder.noImplicitExpansionInFunction . 6-31
Disable Implicit Expansion for Specific Binary Operation by Using

coder.sameSizeBinaryOp . 6-32
Disable Implicit Expansion in your Project . 6-33

Representation of Arrays in Generated Code . 6-34
Customize Interface Generation . 6-36

Control Memory Allocation for Fixed-Size Arrays 6-38
Enable Dynamic Memory Allocation for All Fixed-Size Arrays 6-38
Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold

. 6-38

Code Generation for MATLAB Structures
7

Structure Definition for Code Generation . 7-2

Structure Operations Allowed for Code Generation 7-3

Define Scalar Structures for Code Generation . 7-4
Restrictions When Defining Scalar Structures by Assignment 7-4
Adding Fields in Consistent Order on Each Control Flow Path 7-4
Restriction on Adding New Fields After First Use 7-4

Define Arrays of Structures for Code Generation . 7-6
Ensuring Consistency of Fields . 7-6
Using repmat to Define an Array of Structures with Consistent Field

Properties . 7-6
Defining an Array of Structures by Using struct . 7-6
Defining an Array of Structures Using Concatenation 7-7

Index Substructures and Fields . 7-8

Assign Values to Structures and Fields . 7-10

Code Generation for Categorical Arrays
8

Code Generation for Categorical Arrays . 8-2
Define Categorical Arrays for Code Generation . 8-2
Allowed Operations on Categorical Arrays . 8-2
MATLAB Toolbox Functions That Support Categorical Arrays 8-3

Define Categorical Array Inputs . 8-6
Define Categorical Array Inputs at the Command Line 8-6
Define Categorical Array Inputs in the MATLAB Coder App 8-6

ix

Representation of Categorical Arrays . 8-7

Categorical Array Limitations for Code Generation 8-9

Code Generation for Cell Arrays
9

Code Generation for Cell Arrays . 9-2
Homogeneous vs. Heterogeneous Cell Arrays . 9-2
Controlling Whether a Cell Array Is Homogeneous or Heterogeneous 9-2
Naming the Structure Type That Represents a Heterogeneous Cell Array in

the Generated Code . 9-3
Cell Arrays in Reports . 9-3

Control Whether a Cell Array Is Variable-Size . 9-5

Define Cell Array Inputs . 9-7

Cell Array Limitations for Code Generation . 9-8
Cell Array Element Assignment . 9-8
Variable-Size Cell Arrays . 9-9
Definition of Variable-Size Cell Array by Using cell 9-9
Cell Array Indexing . 9-12
Growing a Cell Array by Using {end + 1} . 9-13
Cell Array Contents . 9-13
Passing Cell Arrays to External C/C++ Functions 9-14

Code Generation for Datetime Arrays
10

Code Generation for Datetime Arrays . 10-2
Define Datetime Arrays for Code Generation . 10-2
Allowed Operations on Datetime Arrays . 10-2
MATLAB Toolbox Functions That Support Datetime Arrays 10-3

Define Datetime Array Inputs . 10-5
Define Datetime Array Inputs at the Command Line 10-5
Define Datetime Array Inputs in the MATLAB Coder App 10-5
Representation of Datetime Arrays . 10-6

Datetime Array Limitations for Code Generation 10-7

x Contents

Code Generation for Duration Arrays
11

Code Generation for Duration Arrays . 11-2
Define Duration Arrays for Code Generation . 11-2
Allowed Operations on Duration Arrays . 11-2
MATLAB Toolbox Functions That Support Duration Arrays 11-3

Define Duration Array Inputs . 11-6
Define Duration Array Inputs at the Command Line 11-6
Define Duration Array Inputs in the MATLAB Coder App 11-6
Representation of Duration Arrays . 11-7

Duration Array Limitations for Code Generation 11-8

Code Generation for Tables
12

Code Generation for Tables . 12-2
Define Tables for Code Generation . 12-2
Allowed Operations on Tables . 12-2
MATLAB Toolbox Functions That Support Tables 12-3

Define Table Inputs . 12-5
Define Table Inputs at the Command Line . 12-5
Define Table Inputs in the MATLAB Coder App . 12-5
Representation of Tables . 12-6

Table Limitations for Code Generation . 12-8
Creating Tables Limitations . 12-8
Modifying Tables Limitations . 12-8
Using Table Functions Limitations . 12-10

Code Generation for Timetables
13

Code Generation for Timetables . 13-2
Define Timetables for Code Generation . 13-2
Allowed Operations on Timetables . 13-2
MATLAB Toolbox Functions That Support Timetables 13-3

Define Timetable Inputs . 13-6
Define Timetable Inputs at the Command Line . 13-6
Define Timetable Inputs in the MATLAB Coder App 13-6
Representation of Timetables . 13-7

Timetable Limitations for Code Generation . 13-9
Creating Timetables Limitations . 13-9

xi

Modifying Timetables Limitations . 13-10
Using Timetable Functions Limitations . 13-12

Code Generation for Enumerated Data
14

Code Generation for Enumerations . 14-2
Define Enumerations for Code Generation . 14-2
Allowed Operations on Enumerations . 14-4
MATLAB Toolbox Functions That Support Enumerations 14-5

Customize Enumerated Types in Generated Code 14-7
Specify a Default Enumeration Value . 14-8
Specify a Header File . 14-8
Include Class Name Prefix in Generated Enumerated Type Value Names

. 14-9
Generate C++11 Code Containing Ordinary C Enumeration 14-10

Code Generation for MATLAB Classes
15

MATLAB Classes Definition for Code Generation 15-2
Language Limitations . 15-2
Code Generation Features Not Compatible with Classes 15-3
Defining Class Properties for Code Generation . 15-3
Inheritance from Built-In MATLAB Classes Not Supported 15-6

Classes That Support Code Generation . 15-7

Generate Code for MATLAB Value Classes . 15-8

Generate Code for MATLAB Handle Classes and System Objects 15-12

Code Generation for Handle Class Destructors 15-15
Guidelines and Restrictions . 15-15
Behavioral Differences of Objects in Generated Code and in MATLAB . . 15-16

Class Does Not Have Property . 15-18
Solution . 15-18

Passing By Reference Not Supported for Some Properties 15-20

Handle Object Limitations for Code Generation 15-21
A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside

a Loop . 15-21
A Handle Object That a Persistent Variable Refers To Must Be a Singleton

Object . 15-22
References to Handle Objects Can Appear Undefined 15-23

xii Contents

System Objects in MATLAB Code Generation . 15-24
Usage Rules and Limitations for System Objects for Generating Code . . 15-24
System Objects in codegen . 15-26
System Objects in the MATLAB Function Block 15-26
System Objects in the MATLAB System Block . 15-26
System Objects and MATLAB Compiler Software 15-26

Specify Objects as Inputs at the Command Line 15-27
Consistency Between coder.ClassType Object and Class Definition File

. 15-28
Limitations for Using Objects as Entry-Point Function Inputs 15-28

Specify Objects as Inputs in the MATLAB Coder App 15-30
Automatically Define an Object Input Type . 15-30
Provide an Example . 15-30
Consistency Between the Type Definition and Class Definition File 15-31
Limitations for Using Objects as Entry-Point Function Inputs 15-31

Work Around Language Limitation: Code Generation Does Not Support
Object Arrays . 15-33

Issue . 15-33
Possible Solutions . 15-33

Generating C++ Classes
16

Generate C++ Classes for MATLAB Classes . 16-2
Example: Generate Code for a Handle Class That Has Private and Public

Members . 16-2
Additional Usage Notes and Limitations . 16-5

Code Generation for Function Handles
17

Function Handle Limitations for Code Generation 17-2

Code Generation for Deep Learning Arrays
18

Code Generation for dlarray . 18-2
Define dlarray for Code Generation . 18-2
dlarray Object Functions with Code Generation Support 18-3
Deep Learning Toolbox Functions with dlarray Code Generation Support

. 18-4
MATLAB Functions with dlarray Code Generation Support 18-4

xiii

dlarray Limitations for Code Generation . 18-12
Recommended Usage . 18-12
Limitations . 18-12

Defining Functions for Code Generation
19

Code Generation for Variable Length Argument Lists 19-2

Specify Number of Entry-Point Function Input or Output Arguments to
Generate . 19-3

Control Number of Input Arguments . 19-3
Control the Number of Output Arguments . 19-4

Code Generation for Anonymous Functions . 19-6
Anonymous Function Limitations for Code Generation 19-6

Code Generation for Nested Functions . 19-7
Nested Function Limitations for Code Generation 19-7

Calling Functions for Code Generation
20

Resolution of Function Calls for Code Generation 20-2
Key Points About Resolving Function Calls . 20-4
Compile Path Search Order . 20-4
When to Use the Code Generation Path . 20-4

Resolution of File Types on Code Generation Path 20-5

Compilation Directive %#codegen . 20-7

Use MATLAB Engine to Execute a Function Call in Generated Code . . . 20-8
When To Declare a Function as Extrinsic . 20-8
Use the coder.extrinsic Construct . 20-9
Call MATLAB Functions Using feval . 20-11
Working with mxArrays . 20-11
Restrictions on Using Extrinsic Functions . 20-13

Code Generation for Recursive Functions . 20-14
Compile-Time Recursion . 20-14
Run-Time Recursion . 20-15
Disallow Recursion . 20-15
Disable Run-Time Recursion . 20-15
Recursive Function Limitations for Code Generation 20-16

Force Code Generator to Use Run-Time Recursion 20-17
Treat the Input to the Recursive Function as a Nonconstant 20-17
Make the Input to the Recursive Function Variable-Size 20-18

xiv Contents

Assign Output Variable Before the Recursive Call 20-19

Avoid Duplicate Functions in Generated Code . 20-20
Issue . 20-20
Cause . 20-20
Solution . 20-20

Fixed-Point Conversion
21

Detect Unexecuted and Constant-Folded Code . 21-2
What Is Unexecuted Code? . 21-2
Detect Unexecuted Code . 21-2
Fix Unexecuted Code . 21-3

Convert MATLAB Code to Fixed-Point C Code . 21-5

Propose Fixed-Point Data Types Based on Simulation Ranges 21-6

Propose Fixed-Point Data Types Based on Derived Ranges 21-17

Specify Type Proposal Options . 21-29

Detect Overflows . 21-32

Replace the exp Function with a Lookup Table . 21-40

Replace a Custom Function with a Lookup Table 21-47

Enable Plotting Using the Simulation Data Inspector 21-53

Visualize Differences Between Floating-Point and Fixed-Point Results
. 21-54

View and Modify Variable Information . 21-64
View Variable Information . 21-64
Modify Variable Information . 21-64
Revert Changes . 21-65
Promote Sim Min and Sim Max Values . 21-65

Automated Fixed-Point Conversion . 21-67
Automated Fixed-Point Conversion Capabilities 21-67
Code Coverage . 21-67
Proposing Data Types . 21-70
Locking Proposed Data Types . 21-73
Viewing Functions . 21-73
Viewing Variables . 21-80
Log Data for Histogram . 21-82
Function Replacements . 21-84
Validating Types . 21-84
Testing Numerics . 21-85
Detecting Overflows . 21-85

xv

Convert Fixed-Point Conversion Project to MATLAB Scripts 21-86

Generated Fixed-Point Code . 21-88
Location of Generated Fixed-Point Files . 21-88
Minimizing fi-casts to Improve Code Readability 21-88
Avoiding Overflows in the Generated Fixed-Point Code 21-89
Controlling Bit Growth . 21-89
Avoiding Loss of Range or Precision . 21-90
Handling Non-Constant mpower Exponents . 21-91

Fixed-Point Code for MATLAB Classes . 21-93
Automated Conversion Support for MATLAB Classes 21-93
Unsupported Constructs . 21-93
Coding Style Best Practices . 21-93

Automated Fixed-Point Conversion Best Practices 21-95
Create a Test File . 21-95
Prepare Your Algorithm for Code Acceleration or Code Generation 21-96
Check for Fixed-Point Support for Functions Used in Your Algorithm . . 21-96
Manage Data Types and Control Bit Growth . 21-97
Convert to Fixed Point . 21-97
Use the Histogram to Fine-Tune Data Type Settings 21-98
Optimize Your Algorithm . 21-98
Avoid Explicit Double and Single Casts . 21-100

Replacing Functions Using Lookup Table Approximations 21-101

MATLAB Language Features Supported for Automated Fixed-Point
Conversion . 21-102

MATLAB Language Features Supported for Automated Fixed-Point
Conversion . 21-102

MATLAB Language Features Not Supported for Automated Fixed-Point
Conversion . 21-103

Inspecting Data Using the Simulation Data Inspector 21-104
What Is the Simulation Data Inspector? . 21-104
Import Logged Data . 21-104
Export Logged Data . 21-104
Group Signals . 21-104
Run Options . 21-104
Create Report . 21-105
Comparison Options . 21-105
Enabling Plotting Using the Simulation Data Inspector 21-105
Save and Load Simulation Data Inspector Sessions 21-105

Custom Plot Functions . 21-106

Data Type Issues in Generated Code . 21-107
Enable the Highlight Option in the MATLAB Coder App 21-107
Enable the Highlight Option at the Command Line 21-107
Stowaway Doubles . 21-107
Stowaway Singles . 21-107
Expensive Fixed-Point Operations . 21-107

xvi Contents

Automated Fixed-Point Conversion Using Programmatic
Workflow

22
Convert MATLAB Code to Fixed-Point C Code . 22-2

Propose Fixed-Point Data Types Based on Simulation Ranges 22-4

Propose Fixed-Point Data Types Based on Derived Ranges 22-9

Detect Overflows . 22-16

Replace the exp Function with a Lookup Table . 22-19

Replace a Custom Function with a Lookup Table 22-21

Enable Plotting Using the Simulation Data Inspector 22-23

Visualize Differences Between Floating-Point and Fixed-Point Results
. 22-24

Single-Precision Conversion
23

Generate Single-Precision C Code at the Command Line 23-2
Prerequisites . 23-2
Create a Folder and Copy Relevant Files . 23-2
Determine the Type of the Input Argument . 23-4
Generate and Run Single-Precision MEX to Verify Numerical Behavior

. 23-4
Generate Single-Precision C Code . 23-4
View the Generated Single-Precision C Code . 23-4
View Potential Data Type Issues . 23-5

Generate Single-Precision C Code Using the MATLAB Coder App 23-6
Prerequisites . 23-6
Create a Folder and Copy Relevant Files . 23-6
Open the MATLAB Coder App . 23-8
Select the Source Files . 23-8
Enable Single-Precision Conversion . 23-8
Define Input Types . 23-9
Check for Run-Time Issues . 23-9
Generate Single-Precision C Code . 23-10
View the Generated C Code . 23-10
View Potential Data Type Issues . 23-10

Generate Single-Precision MATLAB Code . 23-11
Prerequisites . 23-11
Create a Folder and Copy Relevant Files . 23-11
Set Up the Single-Precision Configuration Object 23-12
Generate Single-Precision MATLAB Code . 23-13

xvii

View the Type Proposal Report . 23-13
View Generated Single-Precision MATLAB Code 23-14
View Potential Data Type Issues . 23-14
Compare the Double-Precision and Single-Precision Variables 23-15
Optionally Generate Single-Precision C Code . 23-16

Choose a Single-Precision Conversion Workflow 23-18

Single-Precision Conversion Best Practices . 23-19
Use Integers for Index Variables . 23-19
Limit Use of assert Statements . 23-19
Initialize MATLAB Class Properties in Constructor 23-19
Provide a Test File That Calls Your MATLAB Function 23-19
Prepare Your Code for Code Generation . 23-20
Verify Double-Precision Code Before Single-Precision Conversion 23-20
Best Practices for Generation of Single-Precision C/C++ Code 23-20
Best Practices for Generation of Single-Precision MATLAB Code 23-21

Warnings from Conversion to Single-Precision C/C++ Code 23-22
Function Uses Double-Precision in the C89/C90 Standard 23-22
Built-In Function Is Implemented in Double-Precision 23-22
Built-In Function Returns Double-Precision . 23-23

Combining Integers and Double-Precision Numbers 23-24

MATLAB Language Features Supported for Single-Precision Conversion
. 23-25

MATLAB Language Features Supported for Single-Precision Conversion
. 23-25

MATLAB Language Features Not Supported for Single-Precision Conversion
. 23-26

Setting Up a MATLAB Coder Project
24

Set Up a MATLAB Coder Project . 24-2
Create a Project . 24-2
Open an Existing Project . 24-2

Specify Properties of Entry-Point Function Inputs Using the App 24-3
Why Specify Input Properties? . 24-3
Specify an Input Definition Using the App . 24-3

Automatically Define Input Types by Using the App 24-4

Make Dimensions Variable-Size When They Meet Size Threshold 24-5

Define Input Parameter by Example by Using the App 24-6
Define an Input Parameter by Example . 24-6
Specify Input Parameters by Example . 24-7
Specify a String Scalar Input Parameter by Example 24-8
Specify a Structure Type Input Parameter by Example 24-8

xviii Contents

Specify a Cell Array Type Input Parameter by Example 24-9
Specify an Enumerated Type Input Parameter by Example 24-10
Specify an Object Input Type Parameter by Example 24-11
Specify a Fixed-Point Input Parameter by Example 24-12
Specify an Input from an Entry-Point Function Output Type 24-13

Define or Edit Input Parameter Type by Using the App 24-14
Define or Edit an Input Parameter Type . 24-14
Specify a String Scalar Input Parameter . 24-15
Specify an Enumerated Type Input Parameter 24-15
Specify a Fixed-Point Input Parameter . 24-16
Specify a Structure Input Parameter . 24-16
Specify a Cell Array Input Parameter . 24-18

Define Constant Input Parameters Using the App 24-23

Define Inputs Programmatically in the MATLAB File 24-24

Add Global Variables by Using the App . 24-25

Specify Global Variable Type and Initial Value Using the App 24-26
Why Specify a Type Definition for Global Variables? 24-26
Specify a Global Variable Type . 24-26
Define a Global Variable by Example . 24-26
Define or Edit Global Variable Type . 24-27
Define Global Variable Initial Value . 24-27
Define Global Variable Constant Value . 24-28
Remove Global Variables . 24-28

Undo and Redo Changes to Type Definitions in the App 24-29

Code Generation Readiness Screening in the MATLAB Coder App 24-30

Slow Operations in MATLAB Coder App . 24-31

Unable to Open a MATLAB Coder Project . 24-32

Preparing MATLAB Code for C/C++ Code Generation
25

Workflow for Preparing MATLAB Code for Code Generation 25-2
See Also . 25-2

Fixing Errors Detected at Design Time . 25-3
See Also . 25-3

Using the Code Analyzer . 25-4

Check Code with the Code Analyzer . 25-5

Check Code by Using the Code Generation Readiness Tool 25-7
Run Code Generation Readiness Tool at the Command Line 25-7

xix

Run Code Generation Readiness Tool from the Current Folder Browser
. 25-7

Run the Code Generation Readiness Tool Using the MATLAB Coder App
. 25-7

Code Generation Readiness Tool . 25-8
Issues Tab . 25-8
Files Tab . 25-9

Unable to Determine Code Generation Readiness 25-11

Generate MEX Functions by Using the MATLAB Coder App 25-12
Workflow for Generating MEX Functions Using the MATLAB Coder App

. 25-12
Generate a MEX Function Using the MATLAB Coder App 25-12
Configure Project Settings . 25-14
Build a MATLAB Coder Project . 25-14
See Also . 25-15

Generate MEX Functions at the Command Line 25-16
Command-line Workflow for Generating MEX Functions 25-16
Generate a MEX Function at the Command Line 25-16

Fix Errors Detected at Code Generation Time . 25-17
See Also . 25-17

Running and Debugging MEX Functions . 25-18
Debug MEX Functions . 25-18
Debug MEX Functions by Using a C/C++ Debugger 25-18

Debugging Strategies . 25-19

Collect and View Line Execution Counts for Your MATLAB Code 25-20

Resolve Error: Function Is Not Supported for Code Generation 25-23
Issue . 25-23
Possible Solutions . 25-23

Debug Generated C/C++ Code . 25-24

Testing MEX Functions in MATLAB
26

Why Test MEX Functions in MATLAB? . 26-2

Workflow for Testing MEX Functions in MATLAB 26-3
See Also . 26-3

Running MEX Functions . 26-4
Debug MEX Functions . 26-4
Debug MEX Functions by Using a C/C++ Debugger 26-4

xx Contents

Check for Run-Time Issues by Using the App . 26-5
Collect MATLAB Line Execution Counts . 26-5
Disable JIT Compilation for Parallel Loops . 26-5

Verify MEX Functions in the MATLAB Coder App 26-7

Verify MEX Functions at the Command Line . 26-8

Debug Run-Time Errors . 26-9
Viewing Errors in the Run-Time Stack . 26-9
Handling Run-Time Errors . 26-10

Using MEX Functions That MATLAB Coder Generates 26-11

Generating C/C++ Code from MATLAB Code
27

Code Generation Workflow . 27-3
See Also . 27-3

Generating Standalone C/C++ Executables from MATLAB Code 27-4
Generate a C Executable Using the MATLAB Coder App 27-4
Generate a C Executable at the Command Line 27-10
Specifying main Functions for C/C++ Executables 27-11
Specify main Functions . 27-11

Configure Build Settings . 27-13
Specify Build Type . 27-13
Specify a Language for Code Generation . 27-15
Specify Output File Name . 27-16
Specify Output File Locations . 27-16
Parameter Specification Methods . 27-17
Specify Build Configuration Parameters . 27-17

Specify Configuration Parameters in Command-Line Workflow
Interactively . 27-22

Create and Modify Configuration Objects by Using the Dialog Box 27-22
Additional Functionalities in the Dialog Box . 27-22

Specify Data Types Used in Generated Code . 27-24
Specify Data Type Using the MATLAB Coder App 27-24
Specify Data Type at the Command Line . 27-24

Use Generated Initialize and Terminate Functions 27-25
Initialize Function . 27-25
Terminate Function . 27-27

Change the Language Standard . 27-29

Convert codegen Command to Equivalent MATLAB Coder Project 27-30
Example: Convert a Complete codegen Command to a Project File 27-30

xxi

Example: Convert an Incomplete codegen Command to a Template Project
File . 27-31

Limitations . 27-31

Share Build Configuration Settings . 27-33
Export Settings . 27-33
Import Settings . 27-34

Convert MATLAB Coder Project to MATLAB Script 27-35
Convert a Project Using the MATLAB Coder App 27-35
Convert a Project Using the Command-Line Interface 27-35
Run the Script . 27-35
Special Cases That Generate Additional MAT-File 27-36

Preserve Variable Names in Generated Code . 27-38

Reserved Keywords . 27-39
C Reserved Keywords . 27-39
C++ Reserved Keywords . 27-39
Keywords Reserved for Code Generation . 27-40
Reserved Prefixes . 27-41
MATLAB Coder Code Replacement Library Keywords 27-41

Specify Properties of Entry-Point Function Inputs 27-43
Why You Must Specify Input Properties . 27-43
Properties to Specify . 27-43
Rules for Specifying Properties of Primary Inputs 27-46
Methods for Defining Properties of Primary Inputs 27-46
Define Input Properties by Example at the Command Line 27-47
Specify Constant Inputs at the Command Line 27-49
Specify Variable-Size Inputs at the Command Line 27-50

Specify Cell Array Inputs at the Command Line 27-52
Specify Cell Array Inputs by Example . 27-52
Specify the Type of the Cell Array Input . 27-53
Make a Homogeneous Copy of a Type . 27-53
Make a Heterogeneous Copy of a Type . 27-54
Specify Variable-Size Cell Array Inputs . 27-55
Specify Type Name for Heterogeneous Cell Array Inputs 27-56
Specify Constant Cell Array Inputs . 27-56

Constant Input Checking in MEX Functions . 27-57
Control Whether a MEX Function Checks the Value of a Constant Input

. 27-58

Define Input Properties Programmatically in the MATLAB File 27-60
How to Use assert with MATLAB Coder . 27-60
Rules for Using assert Function . 27-64
Specifying General Properties of Primary Inputs 27-65
Specifying Properties of Primary Fixed-Point Inputs 27-66
Specifying Properties of Cell Arrays . 27-66
Specifying Class and Size of Scalar Structure . 27-67
Specifying Class and Size of Structure Array . 27-68

xxii Contents

Create and Edit Input Types by Using the Coder Type Editor 27-69
Open the Coder Type Editor . 27-69
Common Editor Actions . 27-69
Type Browser Pane . 27-70
Type Properties Pane . 27-71
MATLAB Code Pane . 27-72

Speed Up Compilation by Generating Only Code 27-74

Disable Creation of the Code Generation Report 27-75

Paths and File Infrastructure Setup . 27-76
Compile Path Search Order . 27-76
Specify Folders to Search for Custom Code . 27-76
Naming Conventions . 27-76

Generate Code for Multiple Entry-Point Functions 27-78
Generating Code for Multiple Entry-Point Functions 27-78
Call a Single Entry-Point Function from a MEX Function 27-79
Generate Code for More Than One Entry-Point Function Using the MATLAB

Coder App . 27-79

Generate One MEX Function for Multiple Signatures 27-82
Generate Multisignature MEX Function for a Single Entry-Point Function

. 27-82
Generate Multisignature MEX Function for Multiple Entry-Point Functions

. 27-83

Pass an Entry-Point Function Output as an Input 27-85
Pass an Entry-Point Function Output as an Input to Another Entry-Point

Function . 27-85
Use coder.OutputType to Facilitate Code Componentization 27-86

Generate Code for Global Data . 27-88
Workflow . 27-88
Declare Global Variables . 27-88
Define Global Data . 27-88
Synchronizing Global Data with MATLAB . 27-90
Define Constant Global Data . 27-92
Global Data Limitations for Generated Code . 27-94

Specify Global Cell Arrays at the Command Line 27-96

Generate Code for Enumerations . 27-97

Generate Code for Variable-Size Data . 27-98
Disable Support for Variable-Size Data . 27-98
Control Dynamic Memory Allocation . 27-98
Generating Code for MATLAB Functions with Variable-Size Data 27-100
Generate Code for a MATLAB Function That Expands a Vector in a Loop

. 27-101

How MATLAB Coder Partitions Generated Code 27-106
Partitioning Generated Files . 27-106
How to Select the File Partitioning Method . 27-106

xxiii

Partitioning Generated Files with One C/C++ File Per MATLAB File . . 27-106
Generated Files and Locations . 27-110
File Partitioning and Inlining . 27-112

Requirements for Signed Integer Representation 27-115

Build Process Customization . 27-116
RTW.BuildInfo Methods . 27-116
coder.updateBuildInfo Function . 27-117
coder.ExternalDependency Class . 27-117
Post-Code-Generation Command . 27-117

Run-time Stack Overflow . 27-119

Compiler and Linker Errors . 27-120
Failure to Specify a Main Function . 27-120
Failure to Specify External Code Files . 27-120
Errors Caused by External Code . 27-121

Pass Structure Arguments by Reference or by Value in Generated Code
. 27-122

Name the C Structure Type to Use With a Global Structure Variable 27-129

Generate Code for an LED Control Function That Uses Enumerated Types
. 27-131

Generate Code That Uses N-Dimensional Indexing 27-134
Improve Readability with N-Dimensional Indexing and Row-Major Layout

. 27-134
Column-Major Layout and N-Dimensional Indexing 27-135
Other Code Generation Considerations . 27-136

Install OpenMP Library on macOS Platform . 27-138

Generate Code to Detect Edges on Images . 27-139

C Code Generation for a MATLAB Kalman Filtering Algorithm 27-145

Generate Code to Optimize Portfolio by Using Black Litterman Approach
. 27-154

Generate Code for Persistent Variables . 27-162

Generate Code for Structure Arrays . 27-166

Add Custom Toolchains to MATLAB® Coder™ Build Process 27-168

Generate Code for Sobel Edge Detection That Uses Half-Precision Data
Type . 27-177

Build Process Support for Folder Names . 28-25
Folder Names with Spaces . 28-25
Troubleshooting Errors When Folder Names Have Spaces 28-26

xxiv Contents

Folder Names with Special Characters . 28-28
Very Long Folder Paths . 28-28

Generate Code That Reads Data from a File . 28-29

Verify Generated C/C++ Code
29

Tracing Generated C/C++ Code to MATLAB Source Code 29-2
Generate Traceability Tags . 29-2
Format of Traceability Tags . 29-2
Location of Comments in Generated Code . 29-2
Traceability Tag Limitations . 29-6

Code Generation Reports . 29-7
Report Generation . 29-7
Report Location . 29-8
Errors and Warnings . 29-8
Files and Functions . 29-8
MATLAB Source . 29-9
MATLAB Variables . 29-10
Tracing Code . 29-11
Code Insights . 29-11
Additional Reports . 29-12
Report Limitations . 29-12

Access Code Generation Report Information Programmatically 29-13
Create Report Information Object . 29-13
Example: Create Report Information Object for Successful Code Generation

. 29-13
Example: Create Report Information Object for Successful Code Generation

That Checks Out Toolbox Licenses . 29-16
Example: Create Report Information Object for Failed Code Generation

. 29-17
Inspect Code Manually . 29-18
Transferring Code Configuration Objects to a New MATLAB Session . . 29-19

Generate Standalone C/C++ Code That Detects and Reports Run-Time
Errors . 29-20

Generated C Code vs. Generated C++ Code . 29-20
Example: Compare Generated C and C++ Code That Include Run-Time

Checks . 29-20
Limitations . 29-23

Example: Generate Standalone C Code That Detects and Reports Run-
Time Errors . 29-24

Testing Code Generated from MATLAB Code . 29-26

Unit Test Generated Code with MATLAB Coder 29-27

Unit Test External C Code with MATLAB Coder 29-33

xxv

Calculate Number of Lines of Code by Using Report Information Object
. 29-43

Code Replacement for MATLAB Code
30

What Is Code Replacement? . 30-2
Code Replacement Libraries . 30-2
Code Replacement Terminology . 30-4
Code Replacement Limitations . 30-5

Choose a Code Replacement Library . 30-6
About Choosing a Code Replacement Library . 30-6
Explore Available Code Replacement Libraries . 30-6
Explore Code Replacement Library Contents . 30-6

Replace Code Generated from MATLAB Code . 30-8

Generate SIMD Code for MATLAB Functions . 30-10
MATLAB Functions That Support SIMD Code . 30-10
Generate SIMD Code Versus Plain C Code . 30-12
Limitations . 30-14

Custom Toolchain Registration
31

Custom Toolchain Registration . 31-2
What Is a Custom Toolchain? . 31-2
What Is a Factory Toolchain? . 31-2
What is a Toolchain Definition? . 31-2
Key Terms . 31-3
Typical Workflow . 31-3

About coder.make.ToolchainInfo . 31-5

Create and Edit Toolchain Definition File . 31-7

Toolchain Definition File with Commentary . 31-8
Steps Involved in Writing a Toolchain Definition File 31-8
Write a Function That Creates a ToolchainInfo Object 31-8
Setup . 31-9
Macros . 31-9
C Compiler . 31-9
C++ Compiler . 31-10
Linker . 31-10
Archiver . 31-11
Builder . 31-11
Build Configurations . 31-11

xxvi Contents

Create and Validate ToolchainInfo Object . 31-13

Register the Custom Toolchain . 31-14

Use the Custom Toolchain . 31-16

Troubleshooting Custom Toolchain Validation . 31-17
Build Tool Command Path Incorrect . 31-17
Build Tool Not in System Path . 31-17
Tool Path Does Not Exist . 31-18
Path Incompatible with Builder or Build Tool . 31-18
Unsupported Platform . 31-18
Toolchain is Not installed . 31-18
Project or Configuration Is Using the Template Makefile 31-19

Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers
. 31-20

Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain
. 31-21

Deploying Generated Code
32

C Compiler Considerations for Signed Integer Overflows 32-2

Use C Arrays in the Generated Function Interfaces 32-3
Implementation of Arrays in the Generated C/C++ Code 32-3
The emxArray Dynamic Data Structure Definition 32-4
Utility Functions for Interacting with emxArray Data 32-5
Examples . 32-6

Use Dynamically Allocated C++ Arrays in Generated Function Interfaces
. 32-15

Using the coder::array Class Template . 32-15
Examples . 32-16
Change Interface Generation . 32-19

Use a Dynamic Library in a Microsoft Visual Studio Project 32-20

Incorporate Generated Code Using an Example Main Function 32-23
Workflow for Using an Example Main Function 32-23
Control Example Main Generation Using the MATLAB Coder App 32-23
Control Example Main Generation Using the Command-Line Interface

. 32-24

Use an Example C Main in an Application . 32-25
Prerequisites . 32-25
Create a Folder and Copy Relevant Files . 32-25
Run the Sobel Filter on the Image . 32-27
Generate and Test a MEX Function . 32-29
Generate an Example Main Function for sobel.m 32-29

xxvii

Copy the Example Main Files . 32-32
Modify the Generated Example Main Function 32-32
Generate the Sobel Filter Application . 32-40
Run the Sobel Filter Application . 32-41
Display the Resulting Image . 32-41

Package Code for Other Development Environments 32-42
When to Package Code . 32-42
Package Generated Code Using the MATLAB Coder App 32-42
Package Generated Code at the Command Line 32-43
Specify packNGo Options . 32-44

Structure of Generated Example C/C++ Main Function 32-46
Contents of the File main.c or main.cpp . 32-46
Contents of the File main.h . 32-48

Troubleshoot Failures in Deployed Code . 32-50

Using Dynamic Memory Allocation for an Atoms Simulation 32-51

Register New Hardware Devices . 32-56
Specify Hardware Implementation for New Device 32-56
Specify Hardware Implementation That Persists Over MATLAB Sessions

. 32-57
Create Hardware Implementation by Modifying Existing Implementation

. 32-57
Create Hardware Implementation by Reusing Existing Implementation

. 32-57
Validate Hardware Device Data . 32-58
Export Hardware Device Data . 32-59
Create Alternative Identifier for Target Object 32-59
Upgrade Data Definitions for Hardware Devices 32-60

Deploy Generated C Code to External Hardware: Raspberry Pi Examples
. 32-62

Prerequisites . 32-62
Hardware Implementation Parameters . 32-63
Hello World Example . 32-64
Spring Mass Damper System Example . 32-65

Deploy Generated Code . 32-69
Main Function . 32-69
Generated Function Interfaces . 32-69
Executable Applications . 32-70
Static and Dynamic Libraries . 32-71
Generated File Structure . 32-71
Code Verification . 32-72
Custom Hardware Considerations . 32-72
Other Deployment Strategies . 32-72

Approaches for Building Code Generated from MATLAB Code 32-73

xxviii Contents

Accelerating MATLAB Algorithms
33

Workflow for Accelerating MATLAB Algorithms . 33-2
See Also . 33-2

Best Practices for Using MEX Functions to Accelerate MATLAB
Algorithms . 33-3

Accelerate Code That Dominates Execution Time 33-3
Include Loops Inside MEX Function . 33-3
Avoid Generating MEX Functions from Unsupported Functions 33-4
Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate

Run Time . 33-4
Minimize MEX Function Calls . 33-4

Accelerate MATLAB Algorithms . 33-6

Modifying MATLAB Code for Acceleration . 33-7
How to Modify Your MATLAB Code for Acceleration 33-7

Profile MEX Functions by Using MATLAB Profiler 33-8
MEX Profile Generation . 33-8
Example . 33-8
Effect of Folding Expressions on MEX Code Coverage 33-11

Control Run-Time Checks . 33-12
Types of Run-Time Checks . 33-12
When to Disable Run-Time Checks . 33-12
How to Disable Run-Time Checks . 33-13

Algorithm Acceleration Using Parallel for-Loops (parfor) 33-14
Parallel for-Loops (parfor) in Generated Code . 33-14
How parfor-Loops Improve Execution Speed . 33-14
When to Use parfor-Loops . 33-15
When Not to Use parfor-Loops . 33-15
parfor-Loop Syntax . 33-15
parfor Restrictions . 33-16

Control Compilation of parfor-Loops . 33-18
When to Disable parfor . 33-18

Reduction Assignments in parfor-Loops . 33-19
What are Reduction Assignments? . 33-19
Multiple Reductions in a parfor-Loop . 33-19

Classification of Variables in parfor-Loops . 33-20
Overview . 33-20
Sliced Variables . 33-20
Broadcast Variables . 33-22
Reduction Variables . 33-22
Temporary Variables . 33-27

Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)
. 33-29

xxix

Specify Maximum Number of Threads in parfor-Loops 33-30

Troubleshooting parfor-Loops . 33-31
Global or Persistent Declarations in parfor-Loop 33-31
Compiler Does Not Support OpenMP . 33-31

Generate MEX Code to Accelerate Simulation of Bouncing Balls 33-32

Generate MEX Code to Calculate Geodesics in Curved Space-Time . . . 33-36

Generate Accelerated MEX Code for Reverberation Using MATLAB
Classes . 33-40

Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm
. 33-42

Use Generated Code to Accelerate an Application Deployed with MATLAB
Compiler . 33-51

External Code Integration
34

Call Custom C/C++ Code from the Generated Code 34-2
Call C Code . 34-2
Return Multiple Values from a C Function . 34-3
Pass Data by Reference . 34-4
Integrate External Code that Uses Custom Data Types 34-5
Integrate External Code that Uses Pointers, Structures, and Arrays 34-6

Configure Build for External C/C++ Code . 34-9
Provide External Files for Code Generation . 34-9
Configure Build from Within a Function . 34-9
Configure Build by Using the Configuration Object 34-10
Configure Build by Using the MATLAB Coder App 34-11

Develop Interface for External C/C++ Code . 34-12
Create a class from coder.ExternalDependency 34-12
Best Practices for Using coder.ExternalDependency 34-13

Mapping MATLAB Types to Types in Generated Code 34-15
Complex Types . 34-16
Structure Types . 34-16
Fixed-Point Types . 34-16
Character Vectors . 34-17
Multiword Types . 34-17

Generate Code to Read a Text File . 34-19

Generate C/C++ Strings from MATLAB Strings and Character Row
Vectors . 34-27

Add New Line to Strings in Generated Code . 34-27
Limitations . 34-28

xxx Contents

Generate Efficient and Reusable Code
35

Optimization Strategies . 35-3

Modularize MATLAB Code . 35-5

Avoid Data Copies of Function Inputs in Generated Code 35-6

Inline Code . 35-8

Control Inlining to Fine-Tune Performance and Readability of Generated
Code . 35-9

Control Inlining of a Specific MATLAB Function 35-9
Control Inlining by Using Code Generation Settings 35-9
Interaction Between Different Inlining Controls 35-11
Example: Control Inlining at the Boundary Between Your Functions and

MathWorks® Functions . 35-11

Fold Function Calls into Constants . 35-14

Control Stack Space Usage . 35-15

Stack Allocation and Performance . 35-18
Allocate Heap Space from Command Line . 35-18
Allocate Heap Space Using the MATLAB Coder App 35-18

Dynamic Memory Allocation and Performance . 35-19
When Dynamic Memory Allocation Occurs . 35-19

Minimize Dynamic Memory Allocation . 35-20

Provide Maximum Size for Variable-Size Arrays 35-21

Disable Dynamic Memory Allocation During Code Generation 35-25

Set Dynamic Memory Allocation Threshold . 35-26
Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App

. 35-26
Set Dynamic Memory Allocation Threshold at the Command Line 35-26

Optimize Dynamic Array Access . 35-28
Disable Cache Dynamic Array Data Pointer Property 35-28
Compare Generated C Code . 35-28

Excluding Unused Paths from Generated Code 35-30

Prevent Code Generation for Unused Execution Paths 35-31
Prevent Code Generation When Local Variable Controls Flow 35-31
Prevent Code Generation When Input Variable Controls Flow 35-31

Generate Code with Parallel for-Loops (parfor) 35-33

Minimize Redundant Operations in Loops . 35-34

xxxi

Unroll for-Loops and parfor-Loops . 35-35
Force for-Loop Unrolling by Using coder.unroll 35-35
Set Loop Unrolling Threshold for All for-Loops and parfor-Loops in the

MATLAB Code . 35-36

Disable Support for Integer Overflow or Nonfinites 35-40
Disable Support for Integer Overflow . 35-40
Disable Support for Nonfinite Numbers . 35-40

Integrate External/Custom Code . 35-42

MATLAB Coder Optimizations in Generated Code 35-46
Constant Folding . 35-46
Loop Fusion . 35-47
Successive Matrix Operations Combined . 35-47
Unreachable Code Elimination . 35-47
memcpy Calls . 35-48
memset Calls . 35-48

Use coder.const with Extrinsic Function Calls . 35-49
Reduce Code Generation Time by Using coder.const with feval 35-49
Force Constant-Folding by Using coder.const with feval 35-49

memcpy Optimization . 35-51

memset Optimization . 35-52

Reuse Large Arrays and Structures . 35-53

LAPACK Calls in Generated Code . 35-54

Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK
Calls . 35-55

Specify LAPACK Library . 35-55
Write LAPACK Callback Class . 35-55
Generate LAPACK Calls by Specifying a LAPACK Callback Class 35-56
Locate LAPACK Library in Execution Environment 35-57

BLAS Calls in Generated Code . 35-58

Speed Up Matrix Operations in Generated Standalone Code by Using
BLAS Calls . 35-59

Specify BLAS Library . 35-59
Write BLAS Callback Class . 35-59
Generate BLAS Calls by Specifying a BLAS Callback Class 35-61
Locate BLAS Library in Execution Environment 35-61
Usage Notes and Limitations for OpenBLAS Library 35-61

Speed Up Fast Fourier Transforms in Generated Standalone Code by
Using FFTW Library Calls . 35-63

FFTW Planning Considerations . 35-63
Install FFTW Library . 35-63
Write an FFT Callback Class . 35-64
Generate FFTW Library Calls by Specifying an FFT Library Callback Class

. 35-65

xxxii Contents

Synchronize Multithreaded Access to FFTW Planning in Generated
Standalone Code . 35-67

Prerequisites . 35-67
Create a MATLAB Function . 35-67
Write Supporting C Code . 35-68
Write an FFT Library Callback Class . 35-68
Generate a Dynamically Linked Library . 35-69
Specify Configuration Parameters in the MATLAB Coder App 35-70

Speed Up MEX Generation by Using JIT Compilation 35-71
Specify Use of JIT Compilation in the MATLAB Coder App 35-71
Specify Use of JIT Compilation at the Command Line 35-71
JIT Compilation Incompatibilities . 35-71

Automatically Parallelize for Loops in Generated Code 35-73
Parallelize for Loops by Using MATLAB Coder App 35-73
Parallelize for Loops at Command Line . 35-73
Inspect Generated Code and Code Insights . 35-74
Disable Automatic Parallelization of a for Loop 35-75
Parallelize Implicit for Loops . 35-75
Parallelize for Loops Performing Reduction Operations 35-76
Usage Notes and Limitations . 35-77

Specify Maximum Number of Threads to Run Parallel for-Loops in the
Generated Code . 35-79

Specify Number of Threads by Using MATLAB Coder App 35-79
Specify Number of Threads at the Command Line 35-80
Create Custom Hardware Processor . 35-81

Optimize Generated Code for Fast Fourier Transform Functions 35-83
Intel Target Support . 35-83
ARM Target Support . 35-84
MEX Target Support . 35-85

Generating Reentrant C Code from MATLAB Code
36

Generate Reentrant C Code from MATLAB Code 36-2
About This Tutorial . 36-2
Copying Files Locally . 36-3
About the Example . 36-3
Providing a C main Function . 36-4
Configuring Build Parameters . 36-6
Generating the C Code . 36-6
Viewing the Generated C Code . 36-6
Running the Code . 36-7
Key Points to Remember . 36-7
Learn More . 36-8

Reentrant Code . 36-9

xxxiii

Specify Generation of Reentrant Code . 36-11
Specify Generation of Reentrant Code Using the MATLAB Coder App . . 36-11
Specify Generation of Reentrant Code Using the Command-Line Interface

. 36-11

API for Generated Reusable Code . 36-12

Call Reentrant Code in a Single-Threaded Environment 36-13

Call Reentrant Code in a Multithreaded Environment 36-14
Multithreaded Examples . 36-14

Call Reentrant Code with No Persistent or Global Data (UNIX Only) . . 36-15
Provide a Main Function . 36-15
Generate Reentrant C Code . 36-17
Examine the Generated Code . 36-17
Run the Code . 36-18

Call Reentrant Code — Multithreaded with Persistent Data (Windows
Only) . 36-19

MATLAB Code for This Example . 36-19
Provide a Main Function . 36-19
Generate Reentrant C Code . 36-22
Examine the Generated Code . 36-22
Run the Code . 36-23

Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)
. 36-24

MATLAB Code for This Example . 36-24
Provide a Main Function . 36-24
Generate Reentrant C Code . 36-27
Examine the Generated Code . 36-28
Run the Code . 36-28

Troubleshooting Code Generation Problems
37

JIT MEX Incompatibility Warning . 37-2
Issue . 37-2
Cause . 37-2
Solution . 37-2

JIT Compilation Does Not Support OpenMP . 37-3
Issue . 37-3
Cause . 37-3
Solution . 37-3

Output Variable Must Be Assigned Before Run-Time Recursive Call . . . 37-4
Issue . 37-4
Cause . 37-4
Solution . 37-4

xxxiv Contents

Compile-Time Recursion Limit Reached . 37-7
Issue . 37-7
Cause . 37-7
Solutions . 37-7
Force Run-Time Recursion . 37-7
Increase the Compile-Time Recursion Limit . 37-9

Unable to Determine That Every Element of Cell Array Is Assigned . . 37-10
Issue . 37-10
Cause . 37-10
Solution . 37-11

Nonconstant Index into varargin or varargout in a for-Loop 37-14
Issue . 37-14
Cause . 37-14
Solution . 37-14

Unknown Output Type for coder.ceval . 37-16
Issue . 37-16
Cause . 37-16
Solution . 37-16

MEX Generated on macOS Platform Stays Loaded in Memory 37-18
Issue . 37-18
Cause . 37-18
Solution . 37-18

Resolve Error: Code Generator Failed to Produce C++ Destructor for
MATLAB Class . 37-19

Issue . 37-19
Possible Solutions . 37-19

Row-Major Array Layout
38

Row-Major and Column-Major Array Layouts . 38-2
Array Storage in Computer Memory . 38-2
Conversions Between Different Array Layouts . 38-2

Generate Code That Uses Row-Major Array Layout 38-4
Specify Row-Major Layout . 38-4
Array Layout and Algorithmic Efficiency . 38-5
Row-Major Layout for N-Dimensional Arrays . 38-6
Specify Array Layout in External Function Calls 38-7

xxxv

Deep Learning with MATLAB Coder
39

Prerequisites for Deep Learning with MATLAB Coder 39-2
MathWorks Products . 39-2
Third-Party Hardware and Software . 39-2
Environment Variables . 39-4

Workflow for Deep Learning Code Generation with MATLAB Coder 39-7

Networks and Layers Supported for Code Generation 39-8
Supported Pretrained Networks . 39-8
Supported Layers . 39-9
Supported Classes . 39-20
Code Generation for Quantized Networks . 39-28

Load Pretrained Networks for Code Generation 39-30
Load a Network by Using coder.loadDeepLearningNetwork 39-30
Specify a Network Object for Code Generation 39-30
Specify a dlnetwork Object for Code Generation 39-31

Generate Generic C/C++ Code for Deep Learning Networks 39-33
Requirements . 39-33
Code Generation by Using codegen . 39-33
Code Generation by Using the MATLAB Coder App 39-34

Code Generation for Deep Learning Networks with MKL-DNN 39-36
Requirements . 39-36
Code Generation by Using codegen . 39-36
Code Generation by Using the MATLAB Coder App 39-37

Code Generation for Deep Learning Networks with ARM Compute Library
. 39-39

Requirements . 39-39
Code Generation by Using codegen . 39-39
Code Generation by Using the MATLAB Coder App 39-42

Cross-Compile Deep Learning Code That Uses ARM Compute Library
. 39-44

Prerequisites . 39-44
Generate and Deploy Deep Learning Code . 39-45

Code Generation for Quantized Deep Learning Networks 39-47
ARM Cortex-A Processors . 39-47
ARM Cortex-M Processors . 39-48

Update Network Parameters After Code Generation 39-50
Create an Entry-Point Function . 39-50
Create a Network . 39-50
Code Generation by Using codegen . 39-51
Run the Generated MEX . 39-51
Update Network with Different Learnable Parameters 39-52
Run the Generated MEX with Updated Learnables 39-52
Limitations . 39-53

xxxvi Contents

Deep Learning Code Generation on Intel Targets for Different Batch Sizes
. 39-54

Deep Learning Prediction with ARM Compute Using codegen 39-63

Code Generation for Deep Learning on ARM Targets 39-68

Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-
DNN . 39-73

Code Generation and Deployment of MobileNet-v2 Network to Raspberry
Pi . 39-76

Code Generation for Semantic Segmentation Application on Intel CPUs
That Uses U-Net . 39-80

Code Generation for Semantic Segmentation Application on ARM Neon
Targets That Uses U-Net . 39-89

Code Generation for LSTM Network on Raspberry Pi 39-98

Code Generation for LSTM Network That Uses Intel MKL-DNN 39-105

Code Generation for Convolutional LSTM Network That Uses Intel MKL-
DNN . 39-109

Cross Compile Deep Learning Code for ARM Neon Targets 39-113

Code Generation for Quantized Deep Learning Network on Raspberry Pi
. 39-119

Generate Code for Quantized LSTM Network and Deploy on Cortex-M
Target . 39-127

Generate Generic C/C++ Code for Sequence-to-Sequence Regression That
Uses Deep Learning . 39-130

Generate Digit Images Using Variational Autoencoder on Intel CPUs
. 39-139

Post-Code-Generation Update of Deep Learning Network Parameters
. 39-145

Generate Code for LSTM Network and Deploy on Cortex-M Target . . 39-154

Prune Filters in a Detection Network Using Taylor Scores 39-161

xxxvii

Generating Code for C++
40

C++ Code Generation . 40-2
Generate C++ Code . 40-2
C++ Language Features Supported in Generated Code 40-2
Additional Differences Between Generated C Code and C++ Code 40-3

Generate C++ Code with Class Interface . 40-4
Generate C++ Code with a Class Interface . 40-4
Globals and Persistents in a Generated C++ Class 40-6
Put Multiple Entry-Point Functions in the Same Class 40-7

Organize Generated C++ Code into Namespaces 40-9
Settings That Control Namespace Structure . 40-9
Example: Generate C++ Code with Namespaces 40-10

Integrate Multiple Generated C++ Code Projects 40-14

Generate C++ Classes for MATLAB Classes That Model Simple and
Damped Oscillators . 40-18

Simulation Data Inspector
41

View Data in the Simulation Data Inspector . 41-2
View Logged Data . 41-2
Import Data from the Workspace or a File . 41-3
View Complex Data . 41-5
View String Data . 41-6
View Frame-Based Data . 41-9
View Event-Based Data . 41-9

Import Data from a CSV File into the Simulation Data Inspector 41-11
Basic File Format . 41-11
Multiple Time Vectors . 41-11
Signal Metadata . 41-12
Import Data from a CSV File . 41-13

Microsoft Excel Import, Export, and Logging Format 41-16
Basic File Format . 41-16
Multiple Time Vectors . 41-16
Signal Metadata . 41-17
User-Defined Data Types . 41-19
Complex, Multidimensional, and Bus Signals . 41-21
Function-Call Signals . 41-21
Simulation Parameters . 41-22
Multiple Runs . 41-22

Configure the Simulation Data Inspector . 41-24
Logged Data Size and Location . 41-24

xxxviii Contents

Archive Behavior and Run Limit . 41-25
Incoming Run Names and Location . 41-26
Signal Metadata to Display . 41-27
Signal Selection on the Inspect Pane . 41-27
How Signals Are Aligned for Comparison . 41-28
Colors Used to Display Comparison Results . 41-28
Signal Grouping . 41-29
Data to Stream from Parallel Simulations . 41-29
Options for Saving and Loading Session Files . 41-30
Signal Display Units . 41-30

How the Simulation Data Inspector Compares Data 41-32
Signal Alignment . 41-32
Synchronization . 41-33
Interpolation . 41-34
Tolerance Specification . 41-34
Limitations . 41-36

Save and Share Simulation Data Inspector Data and Views 41-37
Save and Load Simulation Data Inspector Sessions 41-37
Share Simulation Data Inspector Views . 41-38
Share Simulation Data Inspector Plots . 41-38
Create a Simulation Data Inspector Report . 41-39
Export Data to the Workspace or a File . 41-40
Export Video Signal to an MP4 File . 41-41

Inspect and Compare Data Programmatically . 41-43
Create a Run and View the Data . 41-43
Compare Two Signals in the Same Run . 41-44
Compare Runs with Global Tolerance . 41-45
Analyze Simulation Data Using Signal Tolerances 41-46

Limit the Size of Logged Data . 41-48
Limit the Number of Runs Retained in the Simulation Data Inspector

Archive . 41-48
Specify a Minimum Disk Space Requirement or Maximum Size for Logged

Data . 41-48
View Data Only During Simulation . 41-49
Reduce the Number of Data Points Logged from Simulation 41-49

xxxix

About MATLAB Coder

• “MATLAB Coder Product Description” on page 1-2
• “Product Overview” on page 1-3

1

MATLAB Coder Product Description
Generate C and C++ code from MATLAB code

MATLAB Coder generates C and C++ code from MATLAB code for a variety of hardware platforms,
from desktop systems to embedded hardware. It supports most of the MATLAB language and a wide
range of toolboxes. You can integrate the generated code into your projects as source code, static
libraries, or dynamic libraries. The generated code is readable and portable. You can combine it with
key parts of your existing C and C++ code and libraries. You can also package the generated code as
a MEX-function for use in MATLAB.

When used with Embedded Coder®, MATLAB Coder provides code customizations, target-specific
optimizations, code traceability, and software-in-the-loop (SIL) and processor-in-the-loop (PIL)
verification.

To deploy MATLAB programs as standalone applications, use MATLAB Compiler™. To generate
software components for integration with other programming languages, use MATLAB Compiler
SDK™.

1 About MATLAB Coder

1-2

Product Overview
In this section...
“When to Use MATLAB Coder” on page 1-3
“Code Generation for Embedded Software Applications” on page 1-3
“Code Generation for Fixed-Point Algorithms” on page 1-3

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.
• Generate MEX functions from MATLAB code to:

• Accelerate your MATLAB algorithms.
• Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software Applications
The Embedded Coder product extends the MATLAB Coder product with features that are important
for embedded software development. Using the Embedded Coder add-on product, you can generate
code that has the clarity and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time simulators, on-target rapid
prototyping boards, microprocessors used in mass production, and embedded systems.

• Customize the appearance of the generated code.
• Optimize the generated code for a specific target environment.
• Enable tracing options that help you to verify the generated code.
• Generate reusable, reentrant code.

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Designer™ product, you can generate:

• MEX functions to accelerate fixed-point algorithms.
• Fixed-point code that provides a bit-wise match to MEX function results.

 Product Overview

1-3

Design Considerations for C/C++ Code
Generation

• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Which Code Generation Feature to Use” on page 2-3
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-4
• “MATLAB Code Design Considerations for Code Generation” on page 2-5
• “Differences Between Generated Code and MATLAB Code” on page 2-6
• “Potential Differences Reporting” on page 2-18
• “Potential Differences Messages” on page 2-20
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-24

2

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded systems allows you to perform
your software design, implementation, and testing completely within the MATLAB workspace. You
can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates the need to

manually translate your MATLAB algorithms and minimizes the risk of introducing errors in the
code.

• Modify your design in MATLAB code to take into account the specific requirements of desktop and
embedded applications, such as data type management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are functionally equivalent
to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications. Use the recommended
MathWorks® product instead.

To: Use:
Deploy an application that uses handle graphics MATLAB Compiler
Use Java® MATLAB Compiler SDK
Use toolbox functions that do not support code
generation

Toolbox functions that you rewrite for desktop and
embedded applications

Deploy MATLAB based GUI applications on a
supported MATLAB host

MATLAB Compiler

Deploy web-based or Windows® applications MATLAB Compiler SDK
Interface C code with MATLAB MATLAB mex function

2 Design Considerations for C/C++ Code Generation

2-2

Which Code Generation Feature to Use
To... Use... Required Product To Explore Further...
Generate MEX functions
for verifying generated
code

codegen function MATLAB Coder Try this in “Accelerate
MATLAB Algorithm by
Generating MEX
Function”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for deployment
to desktop and embedded
systems.

MATLAB Coder app MATLAB Coder Try this in “Generate C
Code by Using the
MATLAB Coder App”.

codegen function MATLAB Coder Try this in “Generate C
Code at the Command
Line”.

Generate MEX functions to
accelerate MATLAB
algorithms

MATLAB Coder app MATLAB Coder See “Accelerate MATLAB
Algorithms” on page 33-
6.

codegen function MATLAB Coder

Integrate MATLAB code
into Simulink®

MATLAB Function block Simulink Try this in “Call MATLAB
Function Files in MATLAB
Function Blocks”
(Simulink).

Speed up fixed point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and Code
Generation from MATLAB”
(Fixed-Point Designer).

Integrate custom C code
into MATLAB and generate
efficient, readable code

codegen function MATLAB Coder Learn more in “Call
Custom C/C++ Code from
the Generated Code” on
page 34-2.

Integrate custom C code
into code generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function block Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/slhdlcoder.

 Which Code Generation Feature to Use

2-3

https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install the following software:

• MATLAB Coder product
• C/C++ compiler

2 Design Considerations for C/C++ Code Generation

2-4

MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient, standalone C/C++ code, you must
consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use, MATLAB Coder
requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define inputs,
outputs, and local variables in MATLAB functions to represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of time to
manage the memory. With static memory, you get better speed, but with higher memory usage.
Most MATLAB code takes advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing MATLAB code without
modifying it much. Dynamic memory allocation also allows some programs to compile even when
upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is suitable for
applications where there is a limited amount of available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough to meet the
required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that MathWorks supplies
with MATLAB for Windows 64-bit platforms.

• Consider disabling run-time checks.

By default, for safety, the code generated for your MATLAB code contains memory integrity
checks and responsiveness checks. Generally, these checks result in more generated code and
slower simulation. Disabling run-time checks usually results in streamlined generated code and
faster simulation. Disable these checks only if you have verified that array bounds and
dimension checking is unnecessary.

See Also
• “Data Definition”
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Control Run-Time Checks” on page 33-12

 MATLAB Code Design Considerations for Code Generation

2-5

Differences Between Generated Code and MATLAB Code
To convert MATLAB code to efficient C/C++ code, the code generator introduces optimizations that
intentionally cause the generated code to behave differently, and sometimes produce different results,
than the original source code.

Here are some of the differences:

• “Functions that have Multiple Possible Outputs” on page 2-6
• “Writing to ans Variable” on page 2-7
• “Logical Short-Circuiting” on page 2-7
• “Loop Index Overflow” on page 2-8
• “Indexing for Loops by Using Single Precision Operands” on page 2-9
• “Index of an Unentered for Loop” on page 2-10
• “Character Size” on page 2-10
• “Order of Evaluation in Expressions” on page 2-10
• “Name Resolution While Constructing Function Handles” on page 2-11
• “Termination Behavior” on page 2-13
• “Size of Variable-Size N-D Arrays” on page 2-13
• “Size of Empty Arrays” on page 2-13
• “Size of Empty Array That Results from Deleting Elements of an Array” on page 2-13
• “Binary Element-Wise Operations with Single and Double Operands” on page 2-14
• “Floating-Point Numerical Results” on page 2-15
• “NaN and Infinity” on page 2-15
• “Negative Zero” on page 2-15
• “Code Generation Target” on page 2-16
• “MATLAB Class Property Initialization” on page 2-16
• “MATLAB Classes in Nested Property Assignments That Have Set Methods” on page 2-16
• “MATLAB Handle Class Destructors” on page 2-16
• “Variable-Size Data” on page 2-17
• “Complex Numbers” on page 2-17
• “Converting Strings with Consecutive Unary Operators to double” on page 2-17

When you run your program, run-time error checks can detect some of these differences. By default,
run-time error checks are enabled for MEX code and disabled for standalone C/C++ code. To help
you identify and address differences before you deploy code, the code generator reports a subset of
the differences as potential differences on page 2-18.

Functions that have Multiple Possible Outputs
Certain mathematical operations, such as singular value decomposition and eigenvalue
decomposition of a matrix, can have multiple answers. Two different algorithms implementing such
an operation can return different outputs for identical input values. Two different implementations of
the same algorithm can also exhibit the same behavior.

2 Design Considerations for C/C++ Code Generation

2-6

For such mathematical operations, the corresponding functions in the generated code and MATLAB
might return different outputs for identical input values. To see if a function has this behavior, in the
corresponding function reference page, see the C/C++ Code Generation section under Extended
Capabilities. Examples of such functions include svd and eig.

Writing to ans Variable
When you run MATLAB code that returns an output without specifying an output argument, MATLAB
implicitly writes the output to the ans variable. If the variable ans already exists in the workspace,
MATLAB updates its value to the output returned.

The code generated from such MATLAB code does not implicitly write the output to an ans variable.

For example, define the MATLAB function foo that explicitly creates an ans variable in the first line.
The function then implicitly updates the value of ans when the second line executes.

function foo %#codegen
ans = 1;
2;
disp(ans);
end

Run foo at the command line. The final value of ans, which is 2, is displayed at the command line.

foo

2

Generate a MEX function from foo.

codegen foo

Run the generated MEX function foo_mex. This function explicitly creates the ans variable and
assigns the value 1 to it. But foo_mex does not implicitly update the value of ans to 2.

foo_mex

1

Logical Short-Circuiting
Suppose that your MATLAB code has the logical operators & and | placed inside square brackets
([and]). For such code patterns, the generated code does not employ short-circuiting behavior for
these logical operators, but MATLAB execution might employ short-circuiting behavior. See “Logical
Short-Circuiting”.

For example, define the MATLAB function foo that uses the & operator inside square brackets in the
conditional expression of an if...end block.

function foo
if [returnsFalse() & hasSideEffects()]
end
end

function out = returnsFalse
out = false;

 Differences Between Generated Code and MATLAB Code

2-7

end

function out = hasSideEffects
out = true;
disp('This is my string');
end

The first argument of the & operator is always false and determines the value of the conditional
expression. So, in MATLAB execution, short-circuiting is employed and the second argument is not
evaluated. So, foo does not call the hasSideEffects function during execution and does not
display anything at the command line.

Generate a MEX function for foo. Call the generated MEX function foo_mex.

foo_mex

This is my string

In the generated code, short-circuiting is not employed. So, the hasSideEffects function is called
and the string is displayed at the command line.

Loop Index Overflow
Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” on page 26-2 and “Generate
Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20.

To avoid a loop index overflow, use the workarounds in this table.

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments by 1.
• The end value equals the maximum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

2 Design Considerations for C/C++ Code Generation

2-8

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index decrements by 1.
• The end value equals the minimum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

• The loop index increments or decrements by
1.

• The start value equals the minimum or
maximum value of the integer type.

• The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
 % Loop body
end

as:

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
 % Loop body
end

• The loop index increments or decrements by a
value not equal to 1.

• On the last loop iteration, the loop index is not
equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

Indexing for Loops by Using Single Precision Operands
Suppose in your MATLAB code, you are indexing a for loop that has a colon operator, where at least
one of the colon operands is a single type operand and the number of iterations is greater than
flintmax('single') = 16777216. When all these conditions are true, code generation might
generate run-time or compile-time errors because the generated code calculates different values for
the loop index variable than the values that MATLAB calculates.

For example, consider this MATLAB code:

function j = singlePIndex
n = flintmax('single') + 2;
j = single(0);
for i = single(1):single(n)
 j = i;
end
end

 Differences Between Generated Code and MATLAB Code

2-9

This code snippet executes in MATLAB, but it causes a compile-time or run-time error because the
value of the loop index variable, i, is calculated differently in the generated code. The code generator
displays a compile-time or run-time error and stops code generation or execution to prevent this
discrepancy.

To avoid this discrepancy, replace the single type operands with double type or integer type operands.

For more information on run-time errors, see “Generate Standalone C/C++ Code That Detects and
Reports Run-Time Errors” on page 29-20.

Index of an Unentered for Loop
In your MATLAB code and generated code, after a for loop execution is complete, the value of the
index variable is equal to its value during the final iteration of the for loop.

In MATLAB, if the loop does not execute, the value of the index variable is stored as [] (empty
matrix). In generated code, if the loop does not execute, the value of the index variable is different
than the MATLAB index variable.

• If you provide the for loop start and end variables at run time, the value of the index variable is
equal to the start of the range. For example, consider this MATLAB code:

function out = indexTest(a,b)
for i = a:b
end
out = i;
end

Suppose that a and b are passed as 1 and -1. The for loop does not execute. In MATLAB, out is
assigned []. In the generated code, out is assigned the value of a, which is 1.

• If you provide the for loop start and end values before compile time, the value of the index
variable is assigned [] in both MATLAB and the generated code. Consider this MATLAB code:

function out = indexTest
for i = 1:-1
end
out = i;
end

In both MATLAB and the generated code, out is assigned [].

Character Size
MATLAB supports 16-bit characters, but the generated code represents characters in 8 bits, the
standard size for most embedded languages like C. See “Encoding of Characters in Code Generation”
on page 5-12.

Order of Evaluation in Expressions
Generated code does not enforce the order of evaluation in expressions. For most expressions, the
order of evaluation is not significant. For expressions that have side effects, the generated code might
produce the side effects in a different order from the original MATLAB code. Expressions that
produce side effects include those that:

2 Design Considerations for C/C++ Code Generation

2-10

• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators that do not
short circuit.

For more predictable results, it is good coding practice to split expressions that depend on the order
of evaluation into multiple statements.

• Rewrite

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.
• Assign the outputs of a multi-output function call to variables that do not depend on one another.

For example, rewrite

[y, y.f, y.g] = foo;

as

[y, a, b] = foo;
y.f = a;
y.g = b;

• When you access the contents of multiple cells of a cell array, assign the results to variables that
do not depend on one another. For example, rewrite

[y, y.f, y.g] = z{:};

as

[y, a, b] = z{:};
y.f = a;
y.g = b;

Name Resolution While Constructing Function Handles
MATLAB and code generation follow different precedence rules for resolving names that follow the
symbol @. These rules do not apply to anonymous functions. The precedence rules are summarized in
this table.

Expression Precedence Order in MATLAB Precedence Order in Code
Generation

An expression that does not
contain periods, for example @x

Nested function, local function,
private function, path function

Local variable, nested function,
local function, private function,
path function

 Differences Between Generated Code and MATLAB Code

2-11

Expression Precedence Order in MATLAB Precedence Order in Code
Generation

An expression that contains
exactly one period, for example
@x.y

Local variable, path function Local variable, path function
(Same as MATLAB)

An expression that contains
more than one period, for
example @x.y.z

Path function Local variable, path function

If x is a local variable that is itself a function handle, generated code and MATLAB interpret the
expression @x differently:

• MATLAB produces an error.
• Generated code interprets @x as the function handle of x itself.

Here is an example that shows this difference in behavior for an expression that contains two periods.

Suppose that your current working folder contains a package x, which contains another package y,
which contains the function z. The current working folder also contains the entry-point function foo
for which you want to generate code.

This is the definition for the file foo:

function out = foo
 x.y.z = @()'x.y.z is an anonymous function';
 out = g(x);
end

function out = g(x)
 f = @x.y.z;
 out = f();
end

This is the definition for function z:

2 Design Considerations for C/C++ Code Generation

2-12

function out = z
 out = 'x.y.z is a package function';
end

Generate a MEX function for foo. Separately call both the generated MEX function foo_mex and the
MATLAB function foo.

codegen foo
foo_mex
foo

ans =

 'x.y.z is an anonymous function'

ans =

 'x.y.z is a package function'

The generated code produces the first output. MATLAB produces the second output. Code generation
resolves @x.y.z to the local variable x that is defined in foo. MATLAB resolves @x.y.z to z, which
is within the package x.y.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source code. For example, if
infinite loops do not have side effects, optimizations remove them from generated code. As a result,
the generated code can possibly terminate even though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different result in generated code than
in MATLAB source code. The size function sometimes returns trailing ones (singleton dimensions) in
generated code, but always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code, but always returns [4
2] in MATLAB. See “Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays”
on page 6-16.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size in MATLAB source code.
See “Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 6-17.

Size of Empty Array That Results from Deleting Elements of an Array
Deleting all elements of an array results in an empty array. The size of this empty array in generated
code might differ from its size in MATLAB source code.

 Differences Between Generated Code and MATLAB Code

2-13

Case Example Code Size of Empty Array
in MATLAB

Size of Empty
Array in Generated
Code

Delete all elements of
an m-by-n array by
using the colon
operator (:).

coder.varsize('X',[4,4],[1,1]);
X = zeros(2);
X(:) = [];

0-by-0 1-by-0

Delete all elements of a
row vector by using the
colon operator (:).

coder.varsize('X',[1,4],[0,1]);
X = zeros(1,4);
X(:) = [];

0-by-0 1-by-0

Delete all elements of a
column vector by using
the colon operator (:).

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
X(:) = [];

0-by-0 0-by-1

Delete all elements of a
column vector by
deleting one element at
a time.

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
for i = 1:4
 X(1)= [];
end

1-by-0 0-by-1

Binary Element-Wise Operations with Single and Double Operands
If your MATLAB code contains a binary element-wise operation that involves a single type operand
and a double type operand, the generated code might not produce the same result as MATLAB.

For such an operation, MATLAB casts both operands to double type and performs the operation with
the double types. MATLAB then casts the result to single type and returns it.

The generated code casts the double type operand to single type. It then performs the operation with
the two single types and returns the result.

For example, define a MATLAB function foo that calls the binary element-wise operation plus.

function out = foo(a,b)
out = a + b;
end

Define a variable s1 of single type and a variable v1 of double type. Generate a MEX function for foo
that accepts a single type input and a double type input.

s1 = single(1.4e32);
d1 = -5.305e+32;
codegen foo -args {s1, d1}

Call both foo and foo_mex with inputs s1 and d1. Compare the two results.

ml = foo(s1,d1);
mlc = foo_mex(s1,d1);
ml == mlc

ans =

 logical

 0

2 Design Considerations for C/C++ Code Generation

2-14

The output of the comparison is a logical 0, which indicates that the generated code and MATLAB
produces different results for these inputs.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical results as MATLAB in these:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-point
registers. Computation results might not match MATLAB calculations because of different compiler
optimization settings or different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced library functions,
such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to accommodate a
smaller footprint. Results might also vary according to matrix properties. For example, MATLAB
might detect symmetric or Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations might produce different results
from platform-specific BLAS implementations in MATLAB.

NaN and Infinity
The generated code might not produce exactly the same pattern of NaN and Inf values as MATLAB
code when these values are mathematically meaningless. For example, if MATLAB output contains a
NaN, output from the generated code should also contain a NaN, but not necessarily in the same
place.

The bit pattern for NaN can differ between MATLAB code output and generated code output because
the C99 language standard that is used to generate code does not specify a unique bit pattern for NaN
across all implementations. Avoid comparing bit patterns across different implementations, for
example, between MATLAB output and SIL or PIL output.

Negative Zero
In a floating-point type, the value 0 has either a positive sign or a negative sign. Arithmetically, 0 is
equal to -0, but some operations are sensitive to the sign of a 0 input. Examples include rdivide,
atan2, atan2d, and angle. Division by 0 produces Inf, but division by -0 produces -Inf. Similarly,
atan2d(0,-1) produces 180, but atan2d (-0,-1) produces -180.

If the code generator detects that a floating-point variable takes only integer values of a suitable
range, then the code generator can use an integer type for the variable in the generated code. If the
code generator uses an integer type for the variable, then the variable stores -0 as +0 because an
integer type does not store a sign for the value 0. If the generated code casts the variable back to a

 Differences Between Generated Code and MATLAB Code

2-15

floating-point type, the sign of 0 is positive. Division by 0 produces Inf, not -Inf. Similarly,
atan2d(0,-1) produces 180, not -180.

There are other contexts in which the generated code might treat -0 differently than MATLAB. For
example, suppose that your MATLAB code computes the minimum of two scalar doubles x and y by
using z = min(x,y). The corresponding line in the generated C code might be z = fmin(x,y).
The function fmin is defined in the runtime math library of the C compiler. Because the comparison
operation 0.0 == -0.0 returns true in C/C++, the compiler's implementation of fmin might return
either 0.0 or -0.0 for fmin(0.0,-0.0).

Code Generation Target
The coder.target function returns different values in MATLAB than in the generated code. The
intent is to help you determine whether your function is executing in MATLAB or has been compiled
for a simulation or code generation target. See coder.target.

MATLAB Class Property Initialization
Before code generation, at class loading time, MATLAB computes class default values. The code
generator uses the values that MATLAB computes. It does not recompute default values. If the
property definition uses a function call to compute the initial value, the code generator does not
execute this function. If the function has side effects such as modifying a global variable or a
persistent variable, then it is possible that the generated code might produce different results than
MATLAB. For more information, see “Defining Class Properties for Code Generation” on page 15-3.

MATLAB Classes in Nested Property Assignments That Have Set
Methods
When you assign a value to a handle object property, which is itself a property of another object, and
so on, then the generated code can call set methods for handle classes that MATLAB does not call.

For example, suppose that you define a set of variables such that x is a handle object, pa is an object,
pb is a handle object, and pc is a property of pb. Then you make a nested property assignment, such
as:

x.pa.pb.pc = 0;

In this case, the generated code calls the set method for the object pb and the set method for x.
MATLAB calls only the set method for pb.

MATLAB Handle Class Destructors
The behavior of handle class destructors in the generated code can be different from the behavior in
MATLAB in these situations:

• The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

• The lifetime of objects in the generated code can be different from their lifetime in MATLAB.
• The generated code does not destroy partially constructed objects. If a handle object is not fully

constructed at run time, the generated code produces an error message but does not call the

2 Design Considerations for C/C++ Code Generation

2-16

delete method for that object. For a System object™, if there is a run-time error in setupImpl,
the generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.

For more information, see “Code Generation for Handle Class Destructors” on page 15-15.

Variable-Size Data
See “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15.

Complex Numbers
See “Code Generation for Complex Data” on page 5-8.

Converting Strings with Consecutive Unary Operators to double
Converting a string that contains multiple, consecutive unary operators to double can produce
different results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB, the answer
is NaN. In the generated code, the answer is 1.

See Also

More About
• “Potential Differences Reporting” on page 2-18
• “Potential Differences Messages” on page 2-20
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

 Differences Between Generated Code and MATLAB Code

2-17

Potential Differences Reporting
Generation of efficient C/C++ code from MATLAB code sometimes results in behavior differences
between the generated code and the MATLAB code on page 2-6. When you run your program, run-
time error checks can detect some of these differences. By default, run-time error checks are enabled
for MEX code and disabled for standalone C/C++ code. To help you identify and address differences
before you deploy code, the code generator reports a subset of the differences as potential
differences. A potential difference is a difference that occurs at run time only under certain
conditions.

Addressing Potential Differences Messages
If the code generator detects a potential difference, it displays a message for the difference on the
Potential Differences tab of the report or the MATLAB Coder app. To highlight the MATLAB code
that corresponds to the message, click the message.

The presence of a potential difference message does not necessarily mean that the difference will
occur when you run the generated code. To determine whether the potential difference affects your
application:

• Analyze the behavior of your MATLAB code for the range of data for your application.
• Test a MEX function generated from your MATLAB code. Use the range of data that your

application uses. If the difference occurs, the MEX function reports an error.

If your analysis or testing confirms the reported difference, consider modifying your code. Some
potential differences messages provide a workaround. For additional information about some of the
potential differences messages, see “Potential Differences Messages” on page 2-20. Even if you
modify your code to prevent a difference from occurring at run time, the code generator might still
report the potential difference.

The set of potential differences that the code generator detects is a subset of the differences that
MEX functions report as errors. It is a best practice to test a MEX function over the full range of
application data.

Disabling and Enabling Potential Differences Reporting
By default, potential differences reporting is enabled for:

• Code generation with the codegen command
• The Check for Run-Time Issues step in the MATLAB Coder app

To disable potential differences reporting:

• In a code configuration object, set ReportPotentialDifferences to false.
• In the MATLAB Coder app, in the Debugging settings, clear the Report differences from

MATLAB check box.

By default, potential differences reporting is disabled for the Generate code step and the code
generation report in the MATLAB Coder app. To enable potential differences reporting, in the
Debugging settings, select the Report differences from MATLAB check box.

2 Design Considerations for C/C++ Code Generation

2-18

See Also

More About
• “Potential Differences Messages” on page 2-20
• “Differences Between Generated Code and MATLAB Code” on page 2-6
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

 Potential Differences Reporting

2-19

Potential Differences Messages
When you enable potential differences on page 2-18 reporting, the code generator reports potential
differences between the behavior of the generated code and the behavior of the MATLAB code.
Reviewing and addressing potential differences before you generate standalone code helps you to
avoid errors and incorrect answers in generated code.

Here are some of the potential differences messages:

• “Automatic Dimension Incompatibility” on page 2-20
• “mtimes No Dynamic Scalar Expansion” on page 2-20
• “Matrix-Matrix Indexing” on page 2-21
• “Vector-Vector Indexing” on page 2-21
• “Loop Index Overflow” on page 2-22

Automatic Dimension Incompatibility
In the generated code, the dimension to operate along is
selected automatically, and might be different from MATLAB.
Consider specifying the working dimension explicitly as a
constant value.

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X,2).

mtimes No Dynamic Scalar Expansion
The generated code performs a general matrix multiplication.
If a variable-size matrix operand becomes a scalar at run
time, dimensions must still agree. There will not be an
automatic switch to scalar multiplication.

Consider the multiplication A*B. If the code generator is aware that A is scalar and B is a matrix, the
code generator produces code for scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a general matrix multiplication. At
run time, if A turns out to be scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can occur.

2 Design Considerations for C/C++ Code Generation

2-20

Matrix-Matrix Indexing
For indexing a matrix with a matrix, matrix1(matrix2), the
code generator assumed that the result would have the same
size as matrix2. If matrix1 and matrix2 are vectors at run
time, their orientations must match.

In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size(A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
error can occur.

To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
 C = A(:);
 D = C(B(:));
else
 D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Vector-Vector Indexing
For indexing a vector with a vector, vector1(vector2), the
code generator assumed that the result would have the same
orientation as vector1. If vector1 is a scalar at run time,
the orientation of vector2 must match vector1.

In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
error can occur.

 Potential Differences Messages

2-21

To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Loop Index Overflow
The generated code assumes the loop index does not overflow on
the last iteration of the loop. If the loop index overflows,
an infinite loop can occur.

Suppose that a for-loop end value is equal to or close to the maximum or minimum value for the loop
index data type. In the generated code, the last increment or decrement of the loop index might
cause the index variable to overflow. The index overflow might result in an infinite loop.

When memory integrity checks are enabled, if the code generator detects that the loop index might
overflow, it reports an error. The software error checking is conservative. It might incorrectly report a
loop index overflow. By default, memory-integrity checks are enabled for MEX code and disabled for
standalone C/C++ code. See “Why Test MEX Functions in MATLAB?” on page 26-2 and “Generate
Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20.

To avoid a loop index overflow, use the workarounds in this table.

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments by 1.
• The end value equals the maximum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop index decrements by 1.
• The end value equals the minimum value of

the integer type.

If the loop does not have to cover the full range of
the integer type, rewrite the loop so that the end
value is not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

2 Design Considerations for C/C++ Code Generation

2-22

Loop Conditions Causing the Potential
Overflow

Workaround

• The loop index increments or decrements by
1.

• The start value equals the minimum or
maximum value of the integer type.

• The end value equals the maximum or
minimum value of the integer type.

If the loop must cover the full range of the
integer type, cast the type of the loop start, step,
and end values to a bigger integer or to double.
For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
 % Loop body
end

as:

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
 % Loop body
end

• The loop index increments or decrements by a
value not equal to 1.

• On the last loop iteration, the loop index is not
equal to the end value.

Rewrite the loop so that the loop index in the last
loop iteration is equal to the end value.

See Also

More About
• “Potential Differences Reporting” on page 2-18
• “Differences Between Generated Code and MATLAB Code” on page 2-6
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

 Potential Differences Messages

2-23

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports
Code generation from MATLAB code supports many major language features including:

• n-dimensional arrays (see “Array Size Restrictions for Code Generation” on page 5-13)
• matrix operations, including deletion of rows and columns
• variable-size data (see “Code Generation for Variable-Size Arrays” on page 6-2)
• subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code

Generation” on page 6-19)
• complex numbers (see “Code Generation for Complex Data” on page 5-8)
• numeric classes (see “Supported Variable Types” on page 4-13)
• double-precision, single-precision, and integer math
• enumerations (see “Code Generation for Enumerations” on page 14-2)
• fixed-point arithmetic
• program control statements if, switch, for, while, and break
• arithmetic, relational, and logical operators
• local functions
• persistent variables
• global variables (see “Specify Global Variable Type and Initial Value Using the App” on page 24-

26)
• structures (see “Structure Definition for Code Generation” on page 7-2)
• cell arrays (see “Cell Arrays”)
• tables (see “Code Generation for Tables” on page 12-2)
• timetables (see “Code Generation for Timetables” on page 13-2)
• characters (see “Encoding of Characters in Code Generation” on page 5-12)
• string scalars (see “Code Generation for Strings” on page 5-16)
• categorical arrays (see “Code Generation for Categorical Arrays” on page 8-2)
• datetime arrays (see “Code Generation for Datetime Arrays” on page 10-2)
• duration arrays (see “Code Generation for Duration Arrays” on page 11-2)
• sparse matrices (see “Code Generation for Sparse Matrices” on page 5-19)
• function handles (see “Function Handle Limitations for Code Generation” on page 17-2)
• anonymous functions (see “Code Generation for Anonymous Functions” on page 19-6)
• recursive functions (see “Code Generation for Recursive Functions” on page 20-14)
• nested functions (see “Code Generation for Nested Functions” on page 19-7)
• variable length input and output argument lists (see “Code Generation for Variable Length

Argument Lists” on page 19-2)
• subset of MATLAB toolbox functions (see “Functions and Objects Supported for C/C++ Code

Generation” on page 3-2)

2 Design Considerations for C/C++ Code Generation

2-24

• subset of functions and System objects in several toolboxes (see “Functions and Objects
Supported for C/C++ Code Generation” on page 3-2)

• MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page 15-2)
• Class aliasing
• function calls (see “Resolution of Function Calls for Code Generation” on page 20-2)

MATLAB Language Features That Code Generation Does Not Support
Code generation from MATLAB does not support the following frequently used MATLAB features (this
list is not exhaustive):

• scripts
• GPU arrays

MATLAB Coder does not support GPU arrays. However, if you have GPU Coder™, you can
generate CUDA® MEX code that takes GPU array inputs.

• calendarDuration arrays
• Java
• Map containers
• time series objects
• tall arrays
• try/catch statements
• import statements
• pattern arrays
• Function argument validation

 MATLAB Language Features Supported for C/C++ Code Generation

2-25

Functions, Classes, and System Objects
Supported for Code Generation

3

Functions and Objects Supported for C/C++ Code Generation
You can generate efficient C/C++ code for a subset of MATLAB built-in functions and toolbox
functions and System objects that you call from MATLAB code.

These functions and System objects are listed in the following tables. In these tables, a icon
before the name of a function or a System object indicates that there are specific usage notes and
limitations related to C/C++ code generation for that function or System object. To view these usage
notes and limitations, in the corresponding reference page, scroll down to the Extended
Capabilities section at the bottom and expand the C/C++ Code Generation section.

• Functions and Objects Supported for C/C++ Code Generation (Category List)
• Functions and Objects Supported for C/C++ Code Generation (Alphabetical List)

See Also

More About
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-24

3 Functions, Classes, and System Objects Supported for Code Generation

3-2

Defining MATLAB Variables for C/C++
Code Generation

• “Variables Definition for Code Generation” on page 4-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 4-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7
• “Reassignment of Variable Properties” on page 4-9
• “Reuse the Same Variable with Different Properties” on page 4-10
• “Supported Variable Types” on page 4-13
• “Edit and Represent Coder Type Objects and Properties” on page 4-14

4

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically at run time so you can
use the same variable to hold a value of any class, size, or complexity. For example, the following code
works in MATLAB:

function x = foo(c) %#codegen
if(c>0)
 x = 0;
else
 x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable properties at compile
time. Therefore, for C/C++ code generation, you must explicitly define the class, size, and complexity
of variables in MATLAB source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)
 x = 0;
else
 x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++ Code Generation” on
page 4-3.

4 Defining MATLAB Variables for C/C++ Code Generation

4-2

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...
“Define Variables By Assignment Before Using Them” on page 4-3
“Use Caution When Reassigning Variables” on page 4-5
“Use Type Cast Operators in Variable Definitions” on page 4-5
“Define Matrices Before Assigning Indexed Variables” on page 4-5
“Index Arrays by Using Constant Value Vectors” on page 4-5

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define the class, size, and
complexity of variables before using them in operations or returning them as outputs. Define
variables by assignment, but note that the assignment copies not only the value, but also the size,
class, and complexity represented by that value to the new variable. For example:

Assignment: Defines:
a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths during C/C
++ code generation.

The data that you assign to a variable can be a scalar, matrix, or structure. If your variable is a
structure, define the properties of each field explicitly.

Initializing the new variable to the value of the assigned data sometimes results in redundant copies
in the generated code. To avoid redundant copies, you can define variables without initializing their
values by using the coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 4-7.

When you define variables, they are local by default; they do not persist between function calls. To
make variables persistent, see persistent.

Example 4.1. Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0
 x = 11;
end
% Later in your code ...
if c > 0
 use(x);

 Best Practices for Defining Variables for C/C++ Code Generation

4-3

end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in MATLAB, but
generates a compilation error during code generation because it detects that x is undefined on some
execution paths (when c <= 0).

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0
 x = 11;
end
% Later in your code ...
if c > 0
 use(x);
end
...

Example 4.2. Defining Fields in a Structure

Consider the following MATLAB code:

...
if c > 0
 s.a = 11;
 disp(s);
else
 s.a = 12;
 s.b = 12;
end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else clause uses fields a and b.
This code works in MATLAB, but generates a compilation error during C/C++ code generation
because it detects a structure type mismatch. To prevent this error, do not add fields to a structure
after you perform certain operations on the structure. For more information, see “Structure
Definition for Code Generation” on page 7-2.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

...
% Define all fields in structure s
s = struct(‘a’,0, ‘b’, 0);
if c > 0
 s.a = 11;
 disp(s);
else
 s.a = 12;
 s.b = 12;
end
% Use s
use(s);
...

4 Defining MATLAB Variables for C/C++ Code Generation

4-4

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++ code generation; that is,
each variable must have a specific class, size and complexity. Generally, if you reassign variable
properties after the initial assignment, you get a compilation error during code generation, but there
are exceptions, as described in “Reassignment of Variable Properties” on page 4-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types, you can use type cast
operators in variable definitions. For example, the following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % y has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by writing into an element
beyond its current size. Such indexing operations produce run-time errors. You must define the
matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g
 % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 6-19.

Index Arrays by Using Constant Value Vectors
It is a best practice to use constant value vectors to index arrays instead of using ranges that contain
nonconstant objects.

In some cases, the code generator is unable to determine whether an expression containing the
colon operator is fixed-size or variable-size. Use constant value vectors to index arrays to prevent
them from being unnecessarily created as variable-size arrays in the generated code.

For example, the array out has been created by using the variable i indexed through the random
row vector A.

...
% extract elements i through i+5 for processing
A = rand(1,10);
out = A(i:i+5); % If i is unknown at compile time, out is variable-size
...

If i is a compile-time constant value, the code generator produces a fixed-size object for out. If i is
unknown at compile time, the code generator produces a variable-size array for out in the generated
code.

 Best Practices for Defining Variables for C/C++ Code Generation

4-5

To prevent the code generator from creating variable-size arrays, the previous code snippet is
rewritten in this pattern:
...
% extract elements i through i+5 for processing
A = rand(1,10);
out = A (i+(0:5)); % out is fixed-size, even if i is unknown at compile time
...

This pattern enables you to generate fixed-size arrays that have iterator values unknown at compile-
time. Another example of the recommended rewrite is:
width = 25;
A = A(j-width:j+width); % A is variable-size, if j is unknown at compile time
fsA = A(j+(-width:width)); % This makes A fixed-size, even if j is unknown at compile time
...

See Also
coder.nullcopy | persistent

More About
• “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7
• “Structure Definition for Code Generation” on page 7-2
• “Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 6-

19
• “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6

4 Defining MATLAB Variables for C/C++ Code Generation

4-6

Eliminate Redundant Copies of Variables in Generated Code
In this section...
“When Redundant Copies Occur” on page 4-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page 4-7
“Defining Uninitialized Variables” on page 4-7

When Redundant Copies Occur
During C/C++ code generation, the code generator checks for statements that attempt to access
uninitialized memory. If it detects execution paths where a variable is used but is potentially not
defined, it generates a compile-time error. To prevent these errors, define variables by assignment
before using them in operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the assigned data to the new
variable, but also initialize the new variable to the assigned value. This forced initialization
sometimes results in redundant copies in C/C++ code. To eliminate redundant copies, define
uninitialized variables by using the coder.nullcopy function, as described in “How to Eliminate
Redundant Copies by Defining Uninitialized Variables” on page 4-7.

How to Eliminate Redundant Copies by Defining Uninitialized
Variables
1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements before passing
the array as an input to a function or operator — even if the function or operator does not read
from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized data may lead
to segmentation violations or nondeterministic program behavior (different runs of the same
program may yield inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only defines X to be a 1-by-5
vector of real doubles, but also initializes each element of X to zero.

function X = withoutNullcopy %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 elseif mod(i,2) == 1
 X(i) = 0;

 Eliminate Redundant Copies of Variables in Generated Code

4-7

 end
end

This forced initialization creates an extra copy in the generated code. To eliminate this overhead, use
coder.nullcopy in the definition of X:

function X = withNullcopy %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 else
 X(i) = 0;
 end
end

See Also
coder.nullcopy

More About
• “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6

4 Defining MATLAB Variables for C/C++ Code Generation

4-8

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes. If the size of
the initial assignment is not constant, the variable is dynamically sized in generated code. For more
information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables. For more information, see “Reuse the Same
Variable with Different Properties” on page 4-10.

 Reassignment of Variable Properties

4-9

Reuse the Same Variable with Different Properties
In this section...
“When You Can Reuse the Same Variable with Different Properties” on page 4-10
“When You Cannot Reuse Variables” on page 4-10
“Limitations of Variable Reuse” on page 4-11

For C/C++ code generation, there are certain variables that you can reassign after the initial
assignment with a value of different class, size, or complexity. A variable can hold values that have
the same class and complexity but different sizes. If the size of the initial assignment is not constant,
the variable is dynamically sized in generated code. For more information, see “Variable-Size Data”.

You can reassign the type (class, size, and complexity) of a variable after the initial assignment if each
occurrence of the variable can have only one type. In this case, the variable is renamed in the
generated code to create multiple independent variables.

When You Can Reuse the Same Variable with Different Properties
You can reuse (reassign) an input, output, or local variable with different class, size, or complexity if
the code generator can unambiguously determine the properties of each occurrence of this variable
during C/C++ code generation. If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation report.

A common example of variable reuse is in if-elseif-else or switch-case statements. For
example, the following function example1 first uses the variable t in an if statement, where it holds
a scalar double, then reuses t outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))
 % First, t is used to hold a scalar double value
 t = mean(mean(u)) / numel(u);
 u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the class, size, and complexity
of an occurrence of a variable unambiguously during code generation. In this case, variables cannot
be renamed and a compilation error occurs.

For example, the following example2 function assigns a fixed-point value to x in the if statement
and reuses x to store a matrix of doubles in the else clause. It then uses x after the if-else
statement. This function generates a compilation error because after the if-else statement,
variable x can have different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
 if use_fixpoint
 % x is fixed-point
 x = fi(data, 1, 12, 3);

4 Defining MATLAB Variables for C/C++ Code Generation

4-10

 else
 % x is a matrix of doubles
 x = data;
 end
 % When x is reused here, it is not possible to determine its
 % class, size, and complexity
 t = sum(sum(x));
 y = t > 0;
end

Example 4.3. Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))
 % First, t is used to hold a scalar double value
 t = mean(mean(u)) / numel(u);
 u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));
end

2 Generate a MEX function for example1 and produce a code generation report.

codegen -o example1x -report example1.m -args {ones(5,5)}
3 Open the code generation report.

On the Variables tab, you see two uniquely named local variables t>1 and t>2.

4 In the list of variables, click t>1. The report highlights the instances of the variable t that are
inside of the if statement. These instances of t are scalar double.

5 Click t>2. The code generation report highlights the instances of t that are outside of the if
statement. These instances of t are variable-size column vectors with an upper bound of 25.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.

 Reuse the Same Variable with Different Properties

4-11

• Variables whose size is set using coder.varsize.
• Variables whose names are controlled using coder.cstructname.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow® chart.

4 Defining MATLAB Variables for C/C++ Code Generation

4-12

Supported Variable Types
You can use the following data types for C/C++ code generation from MATLAB:

Type Description
char Character array
complex Complex data. Cast function takes real and imaginary components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16, uint32,
uint64

Unsigned integer

Fixed-point Fixed-point data types

 Supported Variable Types

4-13

Edit and Represent Coder Type Objects and Properties
Passing an object to coder.typeof or passing a class name as a string scalar to coder.newtype
creates an object that represents the type of object for code generation.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values.

To create a coder type object, pass a compatible object to coder.typeof. For example:

t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType =

 matlab.coder.type.CategoricalType
 1x3 categorical
 Categories : 3x1 homogeneous cell
 Ordinal : 1x1 logical
 Protected : 1x1 logical

Object Properties
You can edit the properties of coder type objects. You can assign scalar values to the object
properties. Values are implicitly converted to the corresponding coder type values when they are
assigned to coder type object properties. The code generator implicitly converts constants assigned
to coder type object properties to coder.Constant values. You can resize objects themselves

Resize Objects by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For example, for a timetable coder object, you can resize the object:

t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t);
tType = coder.resize(tType, [10 2],[1 0])

This code resizes the timetable to a :10x2 object.

tType =

 matlab.coder.type.RegularTimetableType
 :10x2 timetable
 Data : 1x2 homogeneous cell
 Description : 1x0 char
 UserData : 0x0 double
 DimensionNames : {'Time'} {'Variables'}
 VariableNames : {'Var1'} {'Var2'}
 VariableDescriptions : 1x2 homogeneous cell
 VariableUnits : 1x2 homogeneous cell
 VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity

4 Defining MATLAB Variables for C/C++ Code Generation

4-14

 StartTime : 1x1 matlab.coder.type.DurationType
 SampleRate : 1x1 double
 TimeStep : 1x1 matlab.coder.type.DurationType

The constant properties of tType display their values. The nonconstant properties display only their
type and size.

Note Not all types representing MATLAB classes are compatible with coder.resize.

Resize Objects by Editing Object Properties

You can resize the objects by editing the properties themselves. For a duration coder type object x,
edit the Size property to change the size as needed.

x = coder.typeof(duration((1:3),0,0));
x.Size = [10 10]

This code changes the size of the coder type object.

x =

 matlab.coder.type.DurationType
 10x10 duration
 Format : 1x8 char

You can also make the coder type object variable-size by setting the VarDims flag:

x.VarDims(2) = true

The second dimension of the coder type object is upper-bounded at 10.

x =

 matlab.coder.type.DurationType
 10x:10 duration
 Format : 1x8 char

Legacy Representation of Coder Type Objects
In R2021a, calling coder.typeof no longer returns a coder.ClassType object. If your workflow
requires the legacy representation of coder type objects, use the getCoderType function on the
variable that has the new representation of your class or object. For example, to get the legacy
representation of a datetime variable, use the variable that has the new representation tt to call
the getCoderType function:

t = datetime;
tt = coder.typeof(t);
ttLegacy = tt.getCoderType()

In the Coder Type Editor, the code generator includes the function getCoderType for coder type
objects. Use this function to return the legacy representation of coder types. See, “Create and Edit
Input Types by Using the Coder Type Editor” on page 27-69

Certain MATLAB data types provide customized type representations for MATLAB code generation. In
other cases, the type is represented using coder.ClassType.

 Edit and Represent Coder Type Objects and Properties

4-15

See Also
coder.resize | coder.newtype | coder.typeof | “Code Generation for Variable-Size Arrays” on
page 6-2

4 Defining MATLAB Variables for C/C++ Code Generation

4-16

Defining Data for Code Generation

• “Data Definition Considerations for Code Generation” on page 5-2
• “Code Generation for Complex Data” on page 5-8
• “Encoding of Characters in Code Generation” on page 5-12
• “Array Size Restrictions for Code Generation” on page 5-13
• “Code Generation for Constants in Structures and Arrays” on page 5-14
• “Code Generation for Strings” on page 5-16
• “Define String Scalar Inputs” on page 5-17
• “Code Generation for Sparse Matrices” on page 5-19
• “Specify Array Layout in Functions and Classes” on page 5-22
• “Code Design for Row-Major Array Layout” on page 5-26

5

Data Definition Considerations for Code Generation
To generate efficient standalone code, you must define the following types and classes of data
differently from when you run your code in MATLAB.

Data Type Considerations More Information
Arrays Maximum number of elements is

restricted.
“Array Size Restrictions for
Code Generation” on page 5-13

Numeric types Assign numeric type variables a
value before using them in
operations or returning them as
outputs.

“Best Practices for Defining
Variables for C/C++ Code
Generation” on page 4-3

Complex numbers • Set complexity of variables
at the time of assignment
and before first use.

• Expressions containing a
complex number or variable
evaluate to a complex result,
even if the imaginary part of
the result is zero.

“Code Generation for Complex
Data” on page 5-8

Characters and strings • Characters are restricted to
8 bits of precision.

• For code generation, string
scalars do not support global
variables, indexing with
curly braces, missing values,
or size changes by using the
function coder.varsize.

• “Encoding of Characters in
Code Generation” on page 5-
12

• “Code Generation for
Strings” on page 5-16

Variable-Size data After initial fixed-size
assignment to a variable,
attempts to grow the variable
might cause a compilation error.

• “Code Generation for
Variable-Size Arrays” on
page 6-2

• “Define Variable-Size Data
for Code Generation” on
page 6-8

Structures • Assign fields to structures in
the same order on each
control path.

• Assign corresponding fields
in the structure array
elements with same size,
type, and complexity.

• “Define Scalar Structures for
Code Generation” on page 7-
4

• “Define Arrays of Structures
for Code Generation” on
page 7-6

5 Defining Data for Code Generation

5-2

Data Type Considerations More Information
Cell arrays • Assign all cell array elements

before passing the cell array
to a function or returning it
from a function.

• Variable-size cell array
elements must all have the
same size, type, and
complexity.

• “Code Generation for Cell
Arrays” on page 9-2

• “Cell Array Limitations for
Code Generation” on page 9-
8

Tables • You must specify variable
names by using the
'VariableNames' name-
value argument when
creating tables from input
arrays.

• Limited data type support
when you preallocate a table
by using the table function
and the 'Size' name-value
argument.

• Table indices that specify
variables must be compile
time constant.

• You cannot change the size
of a table by assignments.

• You cannot change the
VariableNames,
RowNames,
DimensionNames, or
UserData properties of a
table after you create it.

Limitations that apply to classes
also apply to tables.

• “Code Generation for Tables”
on page 12-2

• “Table Limitations for Code
Generation” on page 12-8

Categorical arrays Categorical arrays do not
support these inputs and
operations:

• Arrays of MATLAB objects
• Sparse matrices
• Duplicate category names
• Growth by assignment
• Adding a category
• Deleting an element

Limitations that apply to classes
also apply to categorical arrays.

• “Code Generation for
Categorical Arrays” on page
8-2

• “Categorical Array
Limitations for Code
Generation” on page 8-9

 Data Definition Considerations for Code Generation

5-3

Data Type Considerations More Information
Datetime arrays datetime arrays do not support

these inputs and operations:

• Text inputs
• The 'Format' name-value

argument
• The 'TimeZone' name-value

argument and the
'TimeZone' property

• Setting time component
properties

• Growth by assignment
• Deleting an element

Limitations that apply to classes
also apply to datetime arrays.

• “Code Generation for
Datetime Arrays” on page
10-2

• “Datetime Array Limitations
for Code Generation” on
page 10-7

Duration arrays Duration arrays do not support
these inputs and operations:

• Text inputs
• Growth by assignment
• Deleting an element
• Converting duration values

to text by using
char,cellstr, or string
functions

Limitations that apply to classes
also apply to duration arrays.

• “Code Generation for
Duration Arrays” on page 11-
2

• “Duration Array Limitations
for Code Generation” on
page 11-8

5 Defining Data for Code Generation

5-4

Data Type Considerations More Information
Timetables • You must specify variable

names by using the
'VariableNames' name-
value argument when
creating timetables from
input arrays.

• Limited data type support
when you preallocate a table
by using the timetable
function and the 'Size'
name-value argument.

• Timetable indices that
specify variables must be
compile time constant.

• You cannot change the size
of a timetable by
assignments.

• You cannot change the
VariableNames,
DimensionNames, or
UserData properties of a
timetable after you create it.

• If you create a regular
timetable, and you attempt
to set irregular row times,
then an error is produced.

• If you create an irregular
timetable, then it remains
irregular even if you set its
sample rate or time step.

Limitations that apply to classes
also apply to timetables.

• “Code Generation for
Timetables” on page 13-2

• “Timetable Limitations for
Code Generation” on page
13-9

Enumerated data Supports integer-based
enumerated types only.

“Enumerations”

 Data Definition Considerations for Code Generation

5-5

Data Type Considerations More Information
MATLAB Classes • Before generating code, it is

a best practice to test class
property validation by
running a MEX function over
the full range of input values.

• If a property does not have
an explicit initial value, the
code generator assumes that
it is undefined at the
beginning of the constructor.
The code generator does not
assign an empty matrix as
the default.

• The coder.varsize
function is not supported for
class properties.

• If the initial value of a
property is an object, then
the property must be
constant. To make a property
constant, declare the
Constant attribute in the
property block.

• “Generate C++ Classes for
MATLAB Classes” on page
16-2

• “MATLAB Classes Definition
for Code Generation” on
page 15-2

Function handles • Assigning different function
handles to the same variable
can cause a compile-time
error.

• You cannot pass function
handles to or from entry-
point functions or extrinsic
functions.

• You cannot view function
handles from the MATLAB
Function Block debugger.

“Function Handles”

5 Defining Data for Code Generation

5-6

Data Type Considerations More Information
Deep learning arrays dlarrays do not support these

inputs and operations:

• The data format argument
must be a compile-time
constant

• Define dlarray variables
inside the entry-point
function.

• The input to a dlarray must
be fixed-size.

• Code generation does not
support creating a dlarray
type object by using the
coder.typeof function
with upper bound size and
variable dimensions
specified.

• “Code Generation for
dlarray” on page 18-2

• “dlarray Limitations for Code
Generation” on page 18-12

The information in the preceding table is not an exhaustive list of considerations for each data type.
See the topics in the More Information column.

See Also

Related Examples
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 4-3
• “Reuse the Same Variable with Different Properties” on page 4-10
• “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7

 Data Definition Considerations for Code Generation

5-7

Code Generation for Complex Data
In this section...
“Restrictions When Defining Complex Variables” on page 5-8
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page 5-8
“Results of Expressions That Have Complex Operands” on page 5-11
“Results of Complex Multiplication with Nonfinite Values” on page 5-11

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of assignment. Assign a
complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.
y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for the following
function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1()
x = zeros(3,3); % x is real
for k = 1:numel(x)
 x(k) = 3 + 4i;
end
end

To resolve this issue, assign a complex constant to x.

function x = test1()
x = zeros(3,3)+ 0i; %x is complex
for k = 1:numel(x)
 x(k) = 3 + 4i;
end
end

Code Generation for Complex Data with Zero-Valued Imaginary Parts
For code generation, complex data that has all zero-valued imaginary parts remains complex. This
data does not become real. This behavior has the following implications:

• In some cases, results from functions that sort complex data by absolute value can differ from the
MATLAB results. See “Functions That Sort Complex Values by Absolute Value” on page 5-8.

• For functions that require that complex inputs are sorted by absolute value, complex inputs with
zero-valued imaginary parts must be sorted by absolute value. These functions include ismember,
union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted, sortrows, median,
min, and max. These functions sort complex numbers by absolute value even when the imaginary
parts are zero. In general, sorting the absolute values produces a different result than sorting the real
parts. Therefore, when inputs to these functions are complex with zero-valued imaginary parts in

5 Defining Data for Code Generation

5-8

generated code, but real in MATLAB, the generated code can produce different results than MATLAB.
In the following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)
myout = sort(A);
end

2 Call mysort in MATLAB.

A = -2:2;
mysort(A)

ans =

 -2 -1 0 1 2
3 Generate a MEX function for complex inputs.

A = -2:2;
codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

ans =

 0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the real inputs as
complex numbers with zero-valued imaginary parts. It sorts the numbers by the absolute
values of the complex numbers. Because the imaginary parts are zero, the MEX function
returns the results to the MATLAB workspace as real numbers. See “Inputs and Outputs for
MEX Functions Generated for Complex Arguments” on page 5-10.

• Input to sort Is Output from a Function That Returns Complex in Generated Code

1 Write this function:

function y = myfun(A)
x = eig(A);
y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a complex result.
Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];
myfun(A)

ans =

 12.5777
 2.0000
 -3.5777

 Code Generation for Complex Data

5-9

The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}

4 Call the MEX function.

myfun_mex(A)

ans =

 12.5777
 -3.5777
 2.0000

In the MEX function, eig returns a complex result. Therefore, the inputs to sort are
complex. The MEX function sorts the inputs in descending order of the absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by MATLAB Coder :

• Suppose that you generate the MEX function for complex inputs. If you call the MEX function with
real inputs, the MEX function transforms the real inputs to complex values with zero-valued
imaginary parts.

• If the MEX function returns complex values that have all zero-valued imaginary parts, the MEX
function returns the values to the MATLAB workspace as real values. For example, consider this
function:

function y = foo()
 y = 1 + 0i; % y is complex with imaginary part equal to zero
end

If you generate a MEX function for foo and view the code generation report, you see that y is
complex.

codegen foo -report

If you run the MEX function, you see that in the MATLAB workspace, the result of foo_mex is the
real value 1.

z = foo_mex

ans =

 1

5 Defining Data for Code Generation

5-10

Results of Expressions That Have Complex Operands
In general, expressions that contain one or more complex operands produce a complex result in
generated code, even if the value of the result is zero. Consider the following line of code:

z = x + y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In MATLAB, this code
produces the real result z = 4. During code generation, the types for x and y are known, but their
values are not known. Because either or both operands in this expression are complex, z is defined as
a complex variable requiring storage for a real and an imaginary part. z equals the complex result 4
+ 0i in generated code, not 4, as in MATLAB code.

Exceptions to this behavior are:

• When the imaginary parts of complex results are zero, MEX functions return the results to the
MATLAB workspace as real values. See “Inputs and Outputs for MEX Functions Generated for
Complex Arguments” on page 5-10.

• When the imaginary part of the argument is zero, complex arguments to extrinsic functions are
real.

function y = foo()
 coder.extrinsic('sqrt')
 x = 1 + 0i; % x is complex
 y = sqrt(x); % x is real, y is real
end

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex values.

z = complex(x,y); % z is a complex number for a real x and y.

Results of Complex Multiplication with Nonfinite Values
When an operand of a complex multiplication contains a nonfinite value, the generated code might
produce a different result than the result that MATLAB produces. The difference is due to the way
that code generation defines complex multiplication. For code generation:

• Multiplication of a complex value by a complex value (a + bi) (c + di) is defined as (ac - bd) + (ad
+ bc)i. The complete calculation is performed, even when a real or an imaginary part is zero.

• Multiplication of a real value by a complex value c(a + bi) is defined as ca + cbi .

 Code Generation for Complex Data

5-11

Encoding of Characters in Code Generation
MATLAB represents characters in 16-bit Unicode. The code generator represents characters in an 8-
bit codeset that the locale setting determines. Differences in character encoding between MATLAB
and code generation have these consequences:

• Code generation of characters with numeric values greater than 255 produces an error.
• For some characters in the range 128–255, it might not be possible to represent the character in

the codeset of the locale setting or to convert the character to an equivalent 16-bit Unicode
character. Passing characters in this range between MATLAB and generated code can result in
errors or different answers.

• For code generation, some toolbox functions accept only 7-bit ASCII characters.
• Casting a character that is not in the 7-bit ASCII codeset to a numeric type, such as double, can

produce a different result in the generated code than in MATLAB. As a best practice, for code
generation, avoid performing arithmetic with characters.

See Also

More About
• “Locale Setting Concepts for Internationalization”
• “Differences Between Generated Code and MATLAB Code” on page 2-6

5 Defining Data for Code Generation

5-12

Array Size Restrictions for Code Generation
For code generation, the maximum number of elements of an array is constrained by the code
generator and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the maximum number
of elements is the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of elements is the
smaller of:

• intmax('int32').
• The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code generator reports an
error at compile time. For a variable-size array, at run time, if the number of elements exceeds the
maximum and run-time error checks are enabled, the generated code reports an error. By default,
run-time error checks are enabled for MEX code and disabled for standalone C/C++ code.

See Also
coder.HardwareImplementation

More About
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
• “Control Run-Time Checks” on page 33-12
• “Potential Differences Reporting” on page 2-18

 Array Size Restrictions for Code Generation

5-13

Code Generation for Constants in Structures and Arrays
The code generator does not recognize constant structure fields or array elements in the following
cases:

Fields or elements are assigned inside control constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generator does not recognize the
constant fields. This limitation also applies to arrays with constant elements. Consider the following
code:

function y = mystruct(x)
s.a = 3;
if x > 1
 s.b = 4;
else
 s.b = 5;
end
y = zeros(s.a,s.b);

The code generator does not recognize that s.a and s.b are constant. If variable-sizing is enabled, y
is treated as a variable-size array. If variable-sizing is disabled, the code generator reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generator recognizes that a(1) is constant.

function y = myarray()
a = zeros(1,3);
a(1) = 20;
y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code generator does
not recognize that a(1) is constant.

function y = myarray()
a = zeros(1,3);
a(1:2) = 20;
y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code generator does not
recognize the constant fields. This limitation also applies to arrays that have constant and
nonconstant elements. Consider the following code:

function y = mystruct_out(x)
s = create_structure(x);
y = coder.const(s.a);

5 Defining Data for Code Generation

5-14

function s = create_structure(x)
s.a = 10;
s.b = x;

Because create_structure returns a structure s that has one constant field and one nonconstant
field, the code generator does not recognize that s.a is constant. The coder.const call fails
because s.a is not constant.

 Code Generation for Constants in Structures and Arrays

5-15

Code Generation for Strings
Code generation supports 1-by-1 MATLAB string arrays. Code generation does not support string
arrays that have more than one element.

A 1-by-1 string array, called a string scalar, contains one piece of text, represented as a 1-by-n
character vector. An example of a string scalar is "Hello, world". For more information about
strings, see “Text in String and Character Arrays”.

Limitations
For string scalars, code generation does not support:

• Global variables
• Indexing with curly braces {}
• Missing values
• Defining input types programmatically (by using preconditioning with assert statements)
• Their use with coder.varsize

For code generation, limitations that apply to classes apply to strings. See “MATLAB Classes
Definition for Code Generation” on page 15-2.

Differences Between Generated Code and MATLAB Code
• Converting a string that contains multiple unary operators to double can produce different

results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB, the
answer is NaN. In the generated code, the answer is 1.

• Double conversion for a string with misplaced commas (commas that are not used as thousands
separators) can produce different results from MATLAB.

See Also

More About
• “Define String Scalar Inputs” on page 5-17

5 Defining Data for Code Generation

5-16

Define String Scalar Inputs
You can define string scalar inputs at the command line or in the MATLAB Coder app. Programmatic
specification of string scalar input types by using preconditioning (assert statements) is not
supported.

Define String Scalar Types at the Command Line
To define string scalar inputs at the command line, use one of these procedures:

• “Provide an Example String Scalar Input” on page 5-17
• “Provide a String Scalar Type” on page 5-17
• “Provide a Constant String Scalar Input” on page 5-17
• “Provide a Variable-Size String Scalar Input” on page 5-17

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example String Scalar Input

To provide an example string scalar to codegen, use the -args option:

codegen myFunction -args {"Hello, world"}

Provide a String Scalar Type

To provide a type for a string scalar to codegen:

1 Define a string scalar. For example:

s = "mystring";
2 Create a type from s.

t = coder.typeof(s);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant String Scalar Input

To specify that a string scalar input is constant, use coder.Constant with the -args option:

codegen myFunction -args {coder.Constant("Hello, world")}

Provide a Variable-Size String Scalar Input

To specify that a string scalar input has a variable-size:

1 Define a string scalar. For example:

s = "mystring";
2 Create a type from s.

t = coder.typeof(s);

 Define String Scalar Inputs

5-17

3 Assign the Value property of the type to a type for a variable-size character vector that has the
upper bound that you want. For example, specify that type t is variable-size with an upper bound
of 10.

t.Properties.Value = coder.typeof('a',[1 10], [0 1]);

To specify that t is variable-size with no upper bound:

t.Properties.Value = coder.typeof('a',[1 inf]);
4 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Define String Scalar Inputs in the MATLAB Coder App
To define string scalar inputs in the app, use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

See Also
coder.Constant | coder.getArgTypes | coder.typeof

More About
• “Code Generation for Strings” on page 5-16
• “Specify Properties of Entry-Point Function Inputs” on page 27-43

5 Defining Data for Code Generation

5-18

Code Generation for Sparse Matrices
Sparse matrices provide efficient storage in memory for arrays with many zero elements. Sparse
matrices can provide improved performance and reduced memory usage for generated code.
Computation time on sparse matrices scales only with the number of operations on nonzero elements.

Functions for creating and manipulating sparse matrices are listed in “Sparse Matrices”. To check if a
function is supported for code generation, see the function reference page. Code generation does not
support sparse matrix inputs created by using sparse for all functions.

Sparse Data Types in Generated Code
If your target language is C, the code generator creates a type definition for sparse matrices called
sparse. This definition stores the arrays of row indices, column indices, and corresponding element
values for the sparse matrix. The sparse type definition is generated in the file
myFunction_types.h, where myFunction refers to the name of your top-level function.

If your target language is C++, the code generator creates a class sparse in the file sparse.h.

The number of nonzero elements in a sparse matrix can change during computation. For this reason,
sparse matrices in the generated code use variable-size arrays and dynamic memory allocation. If
your target language is C, the generated code implements dynamically allocated variables by using
the emxArray type. If your target language is C++, the generated code implements dynamically
allocated variables by using the coder::array class template.

For example, consider the function myDiag:

function out = myDiag(n,k)
% create diagonal sparse matrix
%#codegen
A = speye(n);
out = A.*k;
end

Generate code for the function by using the codegen command:

codegen -config:lib myDiag -args {3, 5} -launchreport

The sparse type can be found in the file myDiag_types.h.

Input Definition
Suppose that you have a function foo that accepts a sparse matrix as an input. This function
multiplies the sparse matrix by an identity matrix and outputs the product:

function C = foo(ASparseInput)
%#codegen
B = speye(size(ASparseInput'));
C = ASparseInput*B;

Suppose that you want to generate standalone lib, dll, or exe code to use outside of the MATLAB
environment. To generate lib code, enter:

codegen -config:lib foo -args {sparse(5,5)} -launchreport

 Code Generation for Sparse Matrices

5-19

You can simplify your standalone code by constructing the sparse matrix inside your entry-point
function rather than passing a sparse matrix as an input. When you follow this guideline, construction
of the sparse matrix can be deferred to the code generator. Other code that uses your generated code
can pass input types such as arrays rather than specialized sparse types.

For example, instead of generating code directly from foo, create a new entry-point function
fooMain to generate code from. Replace the sparse input with the triplet form of the sparse data.

function [ii,jj,out] = fooMain(i,j,v,m,n)
%#codegen
S = sparse(i,j,v,m,n);
[ii,jj,out] = find(foo(S));

Suppose that you want to generate code for a 5-by-5 sparse matrix S with a variable-size number of
nonzero elements. To generate code, enter:

S = sparse(5,5);
[m,n] = size(S);
[i,j,v] = find(S);
i = coder.typeof(i,[inf 1]);
codegen -config:lib fooMain -args {i,i,i,m,n} -launchreport

You can specify the input for fooMain with integer and variable-size array types. If you generate
code directly from foo, you must construct the input as a sparse type.

If you do choose to pass a sparse matrix as an entry-point function input, you can use coder.typeof
to initialize the input. For example, for the function foo, you can enter:

t = coder.typeof(sparse(5,5));
codegen -config:lib foo -args {t} -launchreport

For sparse matrices, the code generator does not track upper bounds for variable-size dimensions. All
variable-size dimensions are treated as unbounded.

If you generate a MEX function for foo, the input and output data must be converted to sparse type.
This conversion can slow performance for repeated MEX function calls or large inputs and outputs.

You cannot define sparse input types programmatically by using assert statements.

Code Generation Guidelines
Initialize matrices by using sparse constructors to maximize your code efficiency. For example, to
construct a 3-by-3 identity matrix, use speye(3,3) rather than sparse(eye(3,3)).

Indexed assignment into sparse matrices incurs an overhead compared to indexed assignment into
full matrices. For example:

S = speye(10);
S(7,7) = 42;

As in MATLAB, sparse matrices are stored in compressed sparse column format. When you insert a
new nonzero element into a sparse matrix, all subsequent nonzero elements must be shifted
downward, column by column. These extra manipulations can slow performance. See “Accessing
Sparse Matrices”.

5 Defining Data for Code Generation

5-20

Code Generation Limitations
To generate code that uses sparse matrices, dynamic memory allocation must be enabled. To store
the changing number of nonzero elements, and their values, sparse matrices use variable-size arrays
in the generated code. To change dynamic memory allocation settings, see “Control Memory
Allocation for Variable-Size Arrays” on page 6-4. Because sparse matrices use variable-size arrays
for dynamic memory allocation, limitations on “Variable-Size Data” also apply to sparse matrices.

You cannot assign sparse data to data that is not sparse. The generated code uses distinct data type
representations for sparse and full matrices. To convert to and from sparse data, use the explicit
sparse and full conversion functions.

You cannot define a sparse matrix with competing size specifications. The code generator fixes the
size of the sparse matrix when it produces the corresponding data type definition in C/C++. As an
example, the function foo causes an error in code generation:

function y = foo(n)
%#codegen
if n > 0
 y = sparse(3,2);
else
 y = sparse(4,3);
end

Logical indexing into sparse matrices is not supported for code generation. For example, this syntax
causes an error:

S = magic(3);
S(S > 7) = 42;

For sparse matrices, you cannot delete array elements by assigning empty arrays:

S(:,2) = [];

See Also
sparse | full | coder.typeof | magic | speye | codegen

More About
• “Sparse Matrices”
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Use C Arrays in the Generated Function Interfaces” on page 32-3
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15

 Code Generation for Sparse Matrices

5-21

Specify Array Layout in Functions and Classes
You can specialize individual MATLAB functions for row-major layout or column-major layout by
inserting coder.rowMajor or coder.columnMajor calls into the function body. Using these
function specializations, you can combine row-major data and column-major data in your generated
code. You can also specialize classes for one specific array layout. Function and class specializations
allow you to:

• Incrementally modify your code for row-major layout or column-major layout.
• Define array layout boundaries for applications that require different layouts in different

components.
• Structure the inheritance of array layout between many different functions and classes.

For MATLAB Coder entry-point (top-level) functions, all inputs and outputs must use the same array
layout. In the generated C/C++ code, the entry-point function interface accepts and returns data with
the same array layout as the function array layout specification.

Note By default, code generation uses column-major array layout.

Specify Array Layout in a Function
For an example of a specialized function, consider addMatrixRM:

function [S] = addMatrixRM(A,B)
%#codegen
S = zeros(size(A));
coder.rowMajor; % specify row-major code
for row = 1:size(A,1)
 for col = 1:size(A,2)
 S(row,col) = A(row,col) + B(row,col);
 end
end

For MATLAB Coder, you can generate code for addMatrixRM by using the codegen command.

codegen addMatrixRM -args {ones(20,10),ones(20,10)} -config:lib -launchreport

Because of the coder.rowMajor call, the code generator produces code that uses data stored in
row-major layout.

Other functions called from a row-major function or column-major function inherit the same array
layout. If a called function has its own distinct coder.rowMajor or coder.columnMajor call, the
local call takes precedence.

You can mix column-major and row-major functions in the same code. The code generator inserts
transpose or conversion operations when passing data between row-major and column-major
functions. These conversion operations ensure that array elements are stored as required by
functions with different array layout specifications. For example, the inputs to a column-major
function, called from a row-major function, are converted to column-major layout before being passed
to the column-major function.

5 Defining Data for Code Generation

5-22

Query Array Layout of a Function
To query the array layout of a function at compile time, use coder.isRowMajor or
coder.isColumnMajor. This query can be useful for specializing your generated code when it
involves row-major and column-major functions. For example, consider this function:

function [S] = addMatrixRouted(A,B)
 if coder.isRowMajor
 %execute this code if row-major
 S = addMatrixRM(A,B);
 elseif coder.isColumnMajor
 %execute this code if column-major
 S = addMatrix_OptimizedForColumnMajor(A,B);
 end

This function behaves differently depending on whether it is row-major or column-major. When
addMatrixRouted is row-major, it calls the addMatrixRM function, which has efficient memory
access for row-major data. When the function is column-major, it calls a version of the addMatrixRM
function optimized for column-major data.

For example, consider this function definition. The algorithm iterates through the columns in the
outer loop and the rows in the inner loop, in contrast to the addMatrixRM function.

function [S] = addMatrix_OptimizedForColumnMajor(A,B)
%#codegen
S = zeros(size(A));
for col = 1:size(A,2)
 for row = 1:size(A,1)
 S(row,col) = A(row,col) + B(row,col);
 end
end

Code generation for this function yields:

...
/* column-major layout */
for (col = 0; col < 10; col++) {
 for (row = 0; row < 20; row++) {
 S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];
 }
}
...

The generated code has a stride length of only one element. Due to the specializing queries, the
generated code for addMatrixRouted provides efficient memory access for either choice of array
layout.

Specify Array Layout in a Class
You can specify array layout for a class so that object property variables are stored with a specific
array layout. To specify the array layout, place a coder.rowMajor or coder.columnMajor call in
the class constructor. If you assign an object with a specified array layout to the property of another
object, the array layout of the assigned object takes precedence.

Consider the row-major class rowMats as an example. This class contains matrix properties and a
method that consists of an element-wise addition algorithm. The algorithm in the method performs

 Specify Array Layout in Functions and Classes

5-23

more efficiently for data stored in row-major layout. By specifying coder.rowMajor in the class
constructor, the generated code uses row-major layout for the property data.

classdef rowMats
 properties (Access = public)
 A;
 B;
 C;
 end
 methods
 function obj = rowMats(A,B)
 coder.rowMajor;
 if nargin == 0
 obj.A = 0;
 obj.B = 0;
 obj.C = 0;
 else
 obj.A = A;
 obj.B = B;
 obj.C = zeros(size(A));
 end
 end
 function obj = add(obj)
 for row = 1:size(obj.A,1)
 for col = 1:size(obj.A,2)
 obj.C(row,col) = obj.A(row,col) + obj.B(row,col);
 end
 end
 end
 end
end

Use the class in a simple function doMath. The inputs and outputs of the entry-point function must all
use the same array layout.

function [out] = doMath(in1,in2)
%#codegen
out = zeros(size(in1));
myMats = rowMats(in1,in2);
myMats = myMats.add;
out = myMats.C;
end

For MATLAB Coder, you can generate code by entering:

A = rand(20,10);
B = rand(20,10);
cfg = coder.config('lib');
codegen -config cfg doMath -args {A,B} -launchreport

With default settings, the code generator assumes that the entry-point function inputs and outputs
use column-major layout, because you do not specify row-major layout for the function doMath.
Therefore, before calling the class constructor, the generated code converts in1 and in2 to row-
major layout. Similarly, it converts the doMath function output back to column-major layout.

When designing a class for a specific array layout, consider:

5 Defining Data for Code Generation

5-24

• If you do not specify the array layout in a class constructor, objects inherit their array layout from
the function that calls the class constructor, or from code generation configuration settings.

• You cannot specify the array layout in a nonstatic method by using coder.rowMajor or
coder.columnMajor. Methods use the same array layout as the receiving object. Methods do not
inherit the array layout of the function that calls them. For static methods, which are used
similarly to ordinary functions, you can specify the array layout in the method.

• If you specify the array layout of a superclass, the subclass inherits this array layout specification.
You cannot specify conflicting array layouts between superclasses and subclasses.

See Also
coder.columnMajor | coder.rowMajor | coder.isRowMajor | coder.isColumnMajor |
codegen

More About
• “Generate Code That Uses Row-Major Array Layout” on page 38-4
• “Code Design for Row-Major Array Layout” on page 5-26
• “Generate Code That Uses N-Dimensional Indexing” on page 27-134

 Specify Array Layout in Functions and Classes

5-25

Code Design for Row-Major Array Layout
Outside of code generation, MATLAB uses column-major layout by default. Array layout specifications
do not affect self-contained MATLAB code. To test the efficiency of your generated code or your
MATLAB Function block, create separate versions with row-major layout and column-major layout.
Then, compare their performance.

You can design your MATLAB code to avoid potential inefficiencies related to array layout.
Inefficiencies can be caused by:

• Conversions between row-major layout and column-major layout.
• One-dimensional or linear indexing of row-major data.
• Reshaping or rearrangement of row-major data.

Array layout conversions are necessary when you mix row-major and column-major specifications in
the same code or model, or when you use linear indexing on data that is stored in row-major. When
you simulate a model or generate code for a model that uses column-major, and that contains a
MATLAB Function block that uses row-major, then the software converts input data to row-major and
output data back to column-major as needed, and vice versa.

Inefficiencies can be caused by functions or algorithms that are less optimized for a given choice of
array layout. If a function or algorithm is more efficient for a different layout, you can enforce that
layout by embedding it in another function with a coder.rowMajor or coder.columnMajor call.

Understand Potential Inefficiencies Caused by Array Layout
Consider the code for myMixedFn2, which uses coder.ceval to pass data with row-major and
column-major layout:

function [B, C] = myMixedFn2(x,y)
%#codegen
% specify type of return arguments for ceval calls
A = zeros(size(x));
B = zeros(size(x));
C = zeros(size(x));

% include external C functions that use row-major & column-major
coder.cinclude('addMatrixRM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixRM.c');
coder.cinclude('addMatrixCM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixCM.c');

% call C function that uses column-major order
coder.ceval('-layout:columnMajor','addMatrixCM', ...
 coder.rref(x),coder.rref(y),coder.wref(A));

% compute B
for i = 1:numel(A)
 B(i) = A(i) + 7;
end

% call C function that uses row-major order
coder.ceval('-layout:rowMajor','addMatrixRM', ...
 coder.rref(y),coder.rref(B),coder.wref(C));
end

5 Defining Data for Code Generation

5-26

The external files are:

addMatrixRM.h

extern void addMatrixRM(const double x[200], const double y[200], double z[200]);

addMatrixRM.c

#include "addMatrixRM.h"

void addMatrixRM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[col + 10 * row] = x[col + 10 * row] + y[col + 10 * row];
 }
 }
}

addMatrixCM.h

extern void addMatrixCM(const double x[200], const double y[200], double z[200]);

addMatrixCM.c

#include "addMatrixCM.h"

void addMatrixCM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[row + 20 * col] = x[row + 20 * col] + y[row + 20 * col];
 }
 }
}

Declare the configuration object, cfg. Generate code that uses row-major layout by using the -
rowmajor option.

cfg = coder.config('lib');
cfg.HighlightPotentialRowMajorIssues = true;
codegen myMixedFn2 -args {ones(20,10),ones(20,10)} -config cfg -launchreport -rowmajor

Highlighted issues are displayed in the code generation report, on the Code Insights tab, under the
Potential row major issues section.

 Code Design for Row-Major Array Layout

5-27

Array layout inefficiencies occur here because:

• The code generator must convert the input variables x and y to column-major layout before
passing them to addMatrixCM. Transposes must be inserted into the generated code.

• The code generator must transpose the output variable A back into row-major layout, because
myMixedFn2 uses row-major layout.

• The for-loop uses linear indexing, which requires column-major data. The code generator must
recalculate the linear indexing because variables A and B are stored in row-major.

Linear Indexing Uses Column-Major Array Layout
The code generator follows MATLAB column-major semantics for linear indexing. For more
information on linear indexing in MATLAB, see “Array Indexing”.

To use linear indexing on row-major data, the code generator must first recalculate the data
representation in column-major layout. This additional processing can slow performance. To improve
code efficiency, avoid using linear indexing on row-major data, or use column-major layout for code
that uses linear indexing.

For example, consider the function sumShiftedProducts, which accepts a matrix as an input and
outputs a scalar value. The function uses linear indexing on the input matrix to sum up the product of
each matrix element with an adjacent element. The output value of this operation depends on the
order in which the input elements are stored.

function mySum = sumShiftedProducts(A)
%#codegen

5 Defining Data for Code Generation

5-28

mySum = 0;
% create linear vector of A elements
B = A(:);
% multiply B by B with elements shifted by one, and take sum
mySum = sum(B.*circshift(B,1));
end

For MATLAB Coder, to generate code that uses row-major layout, enter:

codegen -config:mex sumShiftedProducts -args {ones(2,3)} -launchreport -rowmajor

For an example input, consider the matrix:

D = reshape(1:6,3,2)'

which yields:

D =
 1 2 3
 4 5 6

If you pass this matrix as input to the generated code, the elements of A are stored in the order:

 1 2 3 4 5 6

In contrast, because the vector B is obtained by linear indexing, it is stored in the order:

 1 4 2 5 3 6

The code generator must insert a reshaping operation to rearrange the data from row-major layout
for A to column-major layout for B. This additional operation reduces the efficiency of the function for
row-major layout. The inefficiency increases with the size of the array. Because linear indexing always
uses column-major layout, the generated code for sumShiftedProducts produces the same output
result whether generated with row-major layout or column-major layout.

In general, functions that compute indices or subscripts also use linear indexing, and produce results
corresponding to data stored in column-major layout. These functions include:

• ind2sub
• sub2ind
• colon

See Also
coder.ceval | coder.columnMajor | coder.rowMajor | coder.isRowMajor |
coder.isColumnMajor

More About
• “Generate Code That Uses Row-Major Array Layout” on page 38-4
• “Specify Array Layout in Functions and Classes” on page 5-22
• “Generate Code That Uses N-Dimensional Indexing” on page 27-134
• “Code Generation Reports” on page 29-7

 Code Design for Row-Major Array Layout

5-29

Code Generation for Variable-Size Data

• “Code Generation for Variable-Size Arrays” on page 6-2
• “Control Memory Allocation for Variable-Size Arrays” on page 6-4
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-6
• “Define Variable-Size Data for Code Generation” on page 6-8
• “Diagnose and Fix Variable-Size Data Errors” on page 6-12
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on page 6-15
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page 6-22
• “Generate Code With Implicit Expansion Enabled” on page 6-27
• “Optimize Implicit Expansion in Generated Code” on page 6-30
• “Representation of Arrays in Generated Code” on page 6-34
• “Control Memory Allocation for Fixed-Size Arrays” on page 6-38

6

Code Generation for Variable-Size Arrays
For code generation, an array dimension is fixed-size or variable-size. If the code generator can
determine the size of the dimension and that the size of the dimension does not change, then the
dimension is fixed-size. When all dimensions of an array are fixed-size, the array is a fixed-size array.
In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

The size of the first dimension is 1 and the size of the second dimension is 4.

If the code generator cannot determine the size of a dimension or the code generator determines that
the size changes, then the dimension is variable-size. When at least one of its dimensions is variable-
size, an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a fixed upper
size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an upper bound
of 16.

function s = myfcn(n)
if (n > 0)
 Z = zeros(1,4);
else
 Z = zeros(1,16);
end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second dimension of Z
is unbounded.

function s = myfcn(n)
Z = rand(1,n);
s = sum(Z);
end

You can define variable-size arrays by:

• Using constructors, such as zeros, with a nonconstant dimension
• Assigning multiple, constant sizes to the same variable before using it
• Declaring all instances of a variable to be variable-size by using coder.varsize

For more information, see “Define Variable-Size Data for Code Generation” on page 6-8.

You can control whether variable-size arrays are allowed for code generation. See “Enabling and
Disabling Support for Variable-Size Arrays” on page 6-3.

Memory Allocation for Variable-Size Arrays
For fixed-size arrays and variable-size arrays whose size is less than a threshold, the code generator
allocates memory statically on the stack. For unbounded, variable-size arrays and variable-size arrays

6 Code Generation for Variable-Size Data

6-2

whose size is greater than or equal to a threshold, the code generator allocates memory dynamically
on the heap.

You can control whether dynamic memory allocation is allowed or when it is used for code
generation. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

The code generator represents dynamically allocated data as a structure type called emxArray. The
code generator generates utility functions that create and interact with emxArrays. If you use
Embedded Coder, you can customize the generated identifiers for the emxArray types and utility
functions. See “Identifier Format Control” (Embedded Coder).

Enabling and Disabling Support for Variable-Size Arrays
By default, support for variable-size arrays is enabled. To modify this support:

• In a code configuration object, set the EnableVariableSizing parameter to true or false.
• In the MATLAB Coder app, in the Memory settings, select or clear the Enable variable-sizing

check box.

Variable-Size Arrays in a Code Generation Report
You can tell whether an array is fixed-size or variable-size by looking at the Size column of the
Variables tab in a code generation report.

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that the size is
unbounded. For example, a size of 1-by-:? indicates that the size of the first dimension is fixed-size 1
and the size of the second dimension is unbounded, variable-size. Italics indicates that the code
generator produced a variable-size array, but the size of the array does not change during execution.

See Also

More About
• “Control Memory Allocation for Variable-Size Arrays” on page 6-4
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-6
• “Define Variable-Size Data for Code Generation” on page 6-8

 Code Generation for Variable-Size Arrays

6-3

Control Memory Allocation for Variable-Size Arrays
Dynamic memory allocation allocates memory on the heap as needed at run-time, instead of
allocating memory statically on the stack. Dynamic memory allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

Dynamic memory allocation and the freeing of this memory can result in slower execution of the
generated code. To control the use of dynamic memory allocation for variable-size arrays, you can:

• Provide upper bounds for variable-size arrays on page 6-4.
• Disable dynamic memory allocation on page 6-4.
• Configure the code generator to use dynamic memory allocation for arrays bigger than a threshold

on page 6-4.

Provide Upper Bounds for Variable-Size Arrays
For an unbounded variable-size array, the code generator allocates memory dynamically on the heap.
For a variable-size array with upper bound, whose size, in bytes, is less than the dynamic memory
allocation threshold, the code generator allocates memory statically on the stack. To prevent dynamic
memory allocation:

1 Specify upper bounds for a variable-size array. See “Specify Upper Bounds for Variable-Size
Arrays” on page 6-6.

2 Make sure that the size of the array, in bytes, is less than the dynamic memory allocation
threshold. See “Configure Code Generator to Use Dynamic Memory Allocation for Arrays Bigger
Than a Threshold” on page 6-4.

Disable Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays. To disable it:

• In a configuration object for code generation, set the
DynamicMemoryAllocationForVariableSizeArrays parameter to 'Never'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for
variable-sized arrays to Never.

If you disable dynamic memory allocation, you must provide upper bounds for variable-size arrays.

Configure Code Generator to Use Dynamic Memory Allocation for
Arrays Bigger Than a Threshold
Instead of disabling dynamic memory allocation for all variable-size arrays, you can specify for which
size arrays the code generator uses dynamic memory allocation.

Use the dynamic memory allocation threshold to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static memory
allocation can speed up generated code. However, static memory allocation can lead to unused

6 Code Generation for Variable-Size Data

6-4

storage space. You can decide that the unused storage space is not a significant consideration for
smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use dynamic
memory allocation, you can significantly reduce storage requirements.

To instruct the code generator to use dynamic memory allocation for variable-size arrays whose size
is greater than or equal to the threshold:

• In the configuration object, set the DynamicMemoryAllocationForVariableSizeArrays to
'Threshold'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for
variable-sized arrays to For arrays with max size at or above threshold.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold:

• In a configuration object for code generation, set the DynamicMemoryAllocationThreshold.
• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation

threshold.

See Also

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Configure Build Settings” on page 27-13

 Control Memory Allocation for Variable-Size Arrays

6-5

Specify Upper Bounds for Variable-Size Arrays
Specify upper bounds for an array when:

• Dynamic memory allocation is disabled.

If dynamic memory allocation is disabled, you must specify upper bounds for all arrays.
• You do not want the code generator to use dynamic memory allocation for the array.

Specify upper bounds that result in an array size (in bytes) that is less than the dynamic memory
allocation threshold.

Specify Upper Bounds for Variable-Size Inputs
If you generate code by using codegen, to specify upper bounds for variable-size inputs, use the
coder.typeof construct with the -args option. For example:

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real doubles with two variable
dimensions. The upper bound for the first dimension is 3. The upper bound for the second dimension
is 100.

If you generate code by using the MATLAB Coder app, see “Specify Properties of Entry-Point
Function Inputs Using the App” on page 24-3 and “Make Dimensions Variable-Size When They
Meet Size Threshold” on page 24-5.

Specify Upper Bounds for Local Variables
When using static allocation, the code generator uses a sophisticated analysis to calculate the upper
bounds of local data. However, when the analysis fails to detect an upper bound or calculates an
upper bound that is not precise enough for your application, you must specify upper bounds explicitly
for local variables.

Constrain the Value of Variables That Specify the Dimensions of Variable-Size Arrays

To constrain the value of variables that specify the dimensions of variable-size arrays, use the assert
function with relational operators. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

This assert statement constrains input n to a maximum size of 5. L is variable-size with upper
bounds of 5 in each dimension. M is variable-size with an upper bound of 10 in the first dimension and
5 in the second dimension.

Specify the Upper Bounds for All Instances of a Local Variable

To specify the upper bounds for all instances of a local variable in a function, use the
coder.varsize function. For example:

6 Code Generation for Variable-Size Data

6-6

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y',[1 10]);
if (u > 0)
 Y = [Y Y+u];
else
 Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each instance of the variable
specified in the first argument. In this example, the argument [1 10] indicates that for every
instance of Y:

• The first dimension is fixed at size 1.
• The second dimension can grow to an upper bound of 10.

See Also
coder.varsize | coder.typeof

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Define Variable-Size Data for Code Generation” on page 6-8

 Specify Upper Bounds for Variable-Size Arrays

6-7

Define Variable-Size Data for Code Generation
For code generation, before using variables in operations or returning them as outputs, you must
assign them a specific class, size, and complexity. Generally, after the initial assignment, you cannot
reassign variable properties. Therefore, after assigning a fixed size to a variable or structure field,
attempts to grow the variable or structure field might cause a compilation error. In these cases, you
must explicitly define the data as variable-size by using one of these methods.

Method See
Assign the data from a variable-size matrix
constructor such as:

• ones
• zeros
• repmat

“Use a Matrix Constructor with Nonconstant
Dimensions” on page 6-8

Assign multiple, constant sizes to the same
variable before using (reading) the variable.

“Assign Multiple Sizes to the Same Variable” on
page 6-8

Define all instances of a variable to be variable-
size.

“Define Variable-Size Data Explicitly by Using
coder.varsize” on page 6-9

Use a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant dimensions. For
example:

function s = var_by_assign(u) %#codegen
y = ones(3,u);
s = numel(y);

If you are not using dynamic memory allocation, you must also add an assert statement to provide
upper bounds for the dimensions. For example:

function s = var_by_assign(u) %#codegen
assert (u < 20);
y = ones(3,u);
s = numel(y);

Assign Multiple Sizes to the Same Variable
Before you use (read) a variable in your code, you can make it variable-size by assigning multiple,
constant sizes to it. When the code generator uses static allocation on the stack, it infers the upper
bounds from the largest size specified for each dimension. When you assign the same size to a given
dimension across all assignments, the code generator assumes that the dimension is fixed at that size.
The assignments can specify different shapes and sizes.

When the code generator uses dynamic memory allocation, it does not check for upper bounds. It
assumes that the variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes
function s = var_by_multiassign(u) %#codegen
if (u > 0)

6 Code Generation for Variable-Size Data

6-8

 y = ones(3,4,5);
else
 y = zeros(3,1);
end
s = numel(y);

When the code generator uses static allocation, it infers that y is a matrix with three dimensions:

• The first dimension is fixed at size 3
• The second dimension is variable-size with an upper bound of 4
• The third dimension is variable-size with an upper bound of 5

When the code generator uses dynamic allocation, it analyzes the dimensions of y differently:

• The first dimension is fixed at size 3.
• The second and third dimensions are unbounded.

Define Variable-Size Data Explicitly by Using coder.varsize
To explicitly define variable-size data, use the function coder.varsize. Optionally, you can also
specify which dimensions vary along with their upper bounds. For example:

• Define B as a variable-size 2-dimensional array, where each dimension has an upper bound of 64.

coder.varsize('B', [64 64]);
• Define B as a variable-size array:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes that all dimensions of B can
vary and that the upper bound is size(B).

Specify Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For example, the
following statement defines B as an array whose first dimension is fixed at 2, but whose second
dimension can grow to a size of 16:

coder.varsize('B',[2, 16],[0 1])

.

The third argument specifies which dimensions vary. This argument must be a logical vector or a
double vector containing only zeros and ones. Dimensions that correspond to zeros or false have
fixed size. Dimensions that correspond to ones or true vary in size. coder.varsize usually treats
dimensions of size 1 as fixed. See “Define Variable-Size Matrices with Singleton Dimensions” on page
6-10.

Allow a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before the first use (where the
statement Y = Y + u reads from Y). However, coder.varsize defines Y as a variable-size matrix,
allowing it to change size based on decision logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

 Define Variable-Size Data for Code Generation

6-9

 Y = zeros(2,2);
 coder.varsize('Y');
 if (u < 10)
 Y = Y + u;
 end
else
 Y = zeros(5,5);
end

Without coder.varsize, the code generator infers Y to be a fixed-size, 2-by-2 matrix. It generates a
size mismatch error.

Define Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions are fixed in
size when:

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)
 Y = [Y 3];
else
 Y = [Y u];
end

• You initialize variable-size data with singleton dimensions by using matrix constructor expressions
or matrix functions.

For example, in this function, X and Y behave like vectors where only their second dimensions are
variable-size.

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)
 Y = [Y u];
else
 X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly that singleton
dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)
 Y = [Y Y+u];
else
 Y = [Y Y*u];
end

6 Code Generation for Variable-Size Data

6-10

In this example, the third argument of coder.varsize is a vector of ones, indicating that each
dimension of Y varies in size.

Define Variable-Size Structure Fields

To define structure fields as variable-size arrays, use a colon (:) as the index expression. The colon
(:) indicates that all elements of the array are variable-size. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end

The expression coder.varsize('data(:).values') defines the field values inside each element
of matrix data to be variable-size.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of matrix A
contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of matrix data
to be variable-size.

See Also
coder.varsize | coder.typeof

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-6

 Define Variable-Size Data for Code Generation

6-11

Diagnose and Fix Variable-Size Data Errors

Diagnosing and Fixing Size Mismatch Errors
Issue: Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code. Consider this
example:

function Y = example_mismatch1(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n == 3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);

6 Code Generation for Variable-Size Data

6-12

A(1) = mean(A(:));
if (n == 3)
 A = B(1:3, 1:3);
end
Y = A;

Issue: Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape the data in
generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize('Y', [1 10]);
if u < 0
 Y = [Y u];
end

In this example, coder.varsize defines Y as a column vector of up to 10 elements, so its first
dimension is fixed at size 1. The statement Y = [] designates the first dimension of Y as 0, creating
a mismatch. The right hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y = [] in generated code to Y
= zeros(1,0) so it matches the coder.varsize specification.

Issue: Assigning Implicitly Expanded Outputs to Fixed-Size Variable

If you assign the implicitly expanded output of a binary operation or function to a variable of different
size, the code generator might produce an error. For example:

function out = test(n) %#codegen
x = ones(n,1);
if mod(n,2) == 1
 y = ones(n,n);
 x = y + x;
end
out = out + x(2);
end

In this example, x is an unbounded vector. Due to implicit expansion, the plus operation on x and y
results in an unbounded matrix (Inf-by-Inf). Assigning an unbounded matrix to x, which is an
unbounded vector, results in an error.

If you want to use the implicitly expanded output, assign the output to a new variable with the same
size as the output.

If you want x to retain its size and not apply implicit expansion in the generated code, use
coder.sameSizeBinaryOp to apply the operation. You can also call
coder.noImplicitExpansionInFunction in your function body to disable implicit expansion in
the code generated for that function.

Implicit expansion automatically expands the operands to apply binary operations on arrays of
compatible sizes. See “Generate Code With Implicit Expansion Enabled” on page 6-27, “Optimize
Implicit Expansion in Generated Code” on page 6-30, and “Compatible Array Sizes for Basic
Operations”.

 Diagnose and Fix Variable-Size Data Errors

6-13

Diagnosing and Fixing Errors in Detecting Upper Bounds
Issue: Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant dimensions. For
example:

function y = dims_vary(u) %#codegen
if (u > 0)
 y = ones(3,u);
else
 y = zeros(3,1);
end

However, compiling this function generates an error because you did not specify an upper bound for
u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation, MATLAB does not
check for upper bounds when it uses dynamic memory allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert statement before the first
use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)
 y = ones(3,u);
else
 y = zeros(3,1);
end

6 Code Generation for Variable-Size Data

6-14

Incompatibilities with MATLAB in Variable-Size Support for
Code Generation

In this section...
“Incompatibility with MATLAB for Scalar Expansion” on page 6-15
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on page 6-16
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 6-17
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page 6-18
“Incompatibility with MATLAB in Matrix-Matrix Indexing” on page 6-18
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 6-19
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on page 6-19
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page 6-20
“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation Returns
No Elements” on page 6-20

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the dimensions of vector or matrix
data. If one operand is a scalar and the other is not, scalar expansion applies the scalar to every
element of the other operand.

During code generation, scalar expansion rules apply except when operating on two variable-size
expressions. In this case, both operands must be the same size. The generated code does not perform
scalar expansion even if one of the variable-size expressions turns out to be scalar at run time.
Therefore, when run-time error checks are enabled, a run-time error can occur.

Consider this function:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;
 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z;

When you generate code for this function, the code generator determines that z is variable size with
an upper bound of 3.

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-15

If you run the MEX function with u equal to 0 or 1, the generated code does not perform scalar
expansion, even though z is scalar at run time. Therefore, when run-time error checks are enabled, a
run-time error can occur.

scalar_exp_test_err1_mex(0)
Subscripted assignment dimension mismatch: [9] ~= [1].

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

To avoid this issue, use indexing to force z to be a scalar value.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;
 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays
For variable-size N-D arrays, the size function can return a different result in generated code than in
MATLAB. In generated code, size(A) returns a fixed-length output because it does not drop trailing
singleton dimensions of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D arrays as
MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB code.
• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot pass a variable-size X to
matrix constructors such as zeros that require a fixed-size argument.

6 Code Generation for Variable-Size Data

6-16

Incompatibility with MATLAB in Determining Size of Empty Arrays
The size of an empty array in generated code might be different from its size in MATLAB source code.
The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB. Therefore, you should not write
code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i = 0;
while (i < 10)
 x = [5 x];
 i = i + 1;
end
if n > 0
 x = [];
end
y = size(x);
end

Concatenation requires its operands to match on the size of the dimension that is not being
concatenated. In the preceding concatenation, the scalar value has size 1x1 and x has size 0x0. To
support this use case, the code generator determines the size for x as [1 x :?]. Because there is
another assignment x = [] after the concatenation, the size of x in the generated code is 1x0
instead of 0x0.

This behavior persists while determining the size of empty character vectors which are denoted as
''. For example, consider the following code:

function out = string_size
out = size('');
end

Here, the value of out might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.

For incompatibilities with MATLAB in determining the size of an empty array that results from
deleting elements of an array, see “Size of Empty Array That Results from Deleting Elements of an
Array” on page 2-13.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.
• Instead of using x=[] to create empty arrays, create empty arrays of a specific size using zeros.

For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;
while (i < 10)
 x = [5 x];
 i = i + 1;
end
if n > 0

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-17

 x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Determining Class of Empty Arrays
The class of an empty array in generated code can be different from its class in MATLAB source code.
Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)
x = [];
if n > 1
 x = ['a' x];
end
y=class(x);
end

fun(0) returns double in MATLAB, but char in the generated code. When the statement n > 1 is
false, MATLAB does not execute x = ['a' x]. The class of x is double, the class of the empty
array. However, the code generator considers all execution paths. It determines that based on the
statement x = ['a' x], the class of x is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class. For
example, use blanks(0) to create an empty array of characters.

function y = fun(n)
x = blanks(0);
if n > 1
 x = ['a' x];
end
y=class(x);
end

Incompatibility with MATLAB in Matrix-Matrix Indexing
In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB, the general
rule for matrix-matrix indexing is that the size and orientation of the result match the size and
orientation of the index matrix. For example, if A and B are matrices, size(A(B)) equals size(B).
When A and B are vectors, MATLAB applies a special rule. The special vector-vector indexing rule is
that the orientation of the result is the orientation of the data matrix. For example, if A is 1-by-5 and B
is 3-by-1, then A(B) is 1-by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B are
variable-size matrices, to apply the matrix-matrix indexing rules, the code generator assumes that
size(A(B)) equals size(B). If, at run time, A and B become vectors and have different
orientations, then the assumption is incorrect. Therefore, when run-time error checks are enabled, an
error can occur.

6 Code Generation for Variable-Size Data

6-18

To avoid this issue, force your data to be a vector by using the colon operator for indexing. For
example, suppose that your code intentionally toggles between vectors and regular matrices at run
time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
 C = A(:);
 D = C(B(:));
else
 D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. Therefore, the
code generator applies the indexing rule for indexing one vector with another vector. The orientation
of the result is the orientation of the data vector, C.

Incompatibility with MATLAB in Vector-Vector Indexing
In MATLAB, the special rule for vector-vector indexing is that the orientation of the result is the
orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B) is 1-by-3. If,
however, the data vector A is a scalar, then the orientation of A(B) is the orientation of the index
vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B are variable-
size vectors, to apply the indexing rules, the code generator assumes that the orientation of B
matches the orientation of A. At run time, if A is scalar and the orientation of A and B do not match,
then the assumption is incorrect. Therefore, when run-time error checks are enabled, a run-time
error can occur.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single elements by
specifying the row and column. For example, A(row, column).

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation
The following limitation applies to matrix indexing operations for code generation:

• Initialization of the following style:

for i = 1:10
 M(i) = 5;
end

In this case, the size of M changes as the loop is executed. Code generation does not support
increasing the size of an array over time.

For code generation, preallocate M.

M = zeros(1,10);
for i = 1:10
 M(i) = 5;
end

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-19

The following limitation applies to matrix indexing operations for code generation when dynamic
memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the expressions that
change as the program executes. To implement this behavior, use for-loops as shown:

...
M = ones(10,10);
for i=1:10
 for j = i:10
 M(i,j) = 2*M(i,j);
 end
end
...

Note The matrix M must be defined before entering the loop.

Incompatibility with MATLAB in Concatenating Variable-Size Matrices
For code generation, when you concatenate variable-size arrays, the dimensions that are not being
concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell Array
Inside Concatenation Returns No Elements
Suppose that:

• c is a variable-size cell array.
• You access the contents of c by using curly braces. For example, c{2:4}.
• You include the results in concatenation. For example, [a c{2:4} b].
• c{I} returns no elements. Either c is empty or the indexing inside the curly braces produces an

empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a c{I} b]
becomes [a b]. The code generator treats c{I} as the empty array [c{I}]. The concatenation
becomes [...[c{i}]...]. This concatenation then omits the array [c{I}]. So that the properties
of [c{I}] are compatible with the concatenation [...[c{i}]...], the code generator assigns the
class, size, and complexity of [c{I}] according to these rules:

• The class and complexity are the same as the base type of the cell array.
• The size of the second dimension is always 0.
• For the rest of the dimensions, the size of Ni depends on whether the corresponding dimension in

the base type is fixed or variable size.

• If the corresponding dimension in the base type is variable size, the dimension has size 0 in the
result.

• If the corresponding dimension in the base type is fixed size, the dimension has that size in the
result.

6 Code Generation for Variable-Size Data

6-20

Suppose that c has a base type with class int8 and size:10x7x8x:?. In the generated code, the
class of [c{I}] is int8. The size of [c{I}] is 0x0x8x0. The second dimension is 0. The first and
last dimensions are 0 because those dimensions are variable size in the base type. The third
dimension is 8 because the size of the third dimension of the base type is a fixed size 8.

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no elements, the
generated code can have the following differences from MATLAB:

• The class of [...c{i}...] in the generated code can differ from the class in MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation. Therefore, c{I}
does not affect the class of the result. MATLAB determines the class of the result based on the
classes of the remaining arrays, according to a precedence of classes. See “Valid Combinations of
Unlike Classes”. In the generated code, the class of [c{I}] affects the class of the result of the
overall concatenation [...[c{I}]...] because the code generator treats c{I} as [c{I}]. The
previously described rules determine the class of [c{I}].

• In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the previously
described rules determine the size of [c{I}].

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-21

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions

In this section...
“Common Restrictions” on page 6-22
“Toolbox Functions with Restrictions for Variable-Size Data” on page 6-23

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but only for code generation.
To determine which of these restrictions apply to specific library functions, see the table in “Toolbox
Functions with Restrictions for Variable-Size Data” on page 6-23.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors. A variable-length
vector is a variable-size array that has the shape 1x:n or :nx1 (one dimension is variable sized and
the other is fixed at size 1). Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction

This restriction applies to functions that take the working dimension (the dimension along which to
operate) as input. In MATLAB and in code generation, if you do not supply the working dimension, the
function selects it. In MATLAB, the function selects the first dimension whose size does not equal 1.
For code generation, the function selects the first dimension that has a variable size or that has a
fixed size that does not equal 1. If the working dimension has a variable size and it becomes 1 at run
time, then the working dimension is different from the working dimension in MATLAB. Therefore,
when run-time error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the generated
code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like sum(X,2) unless
size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value. For
example, sum(X,2).

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length vector assumes
the shape of a vector at run time. To avoid the issue, specify the input explicitly as a variable-length
vector instead of a variable-size array.

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time. To avoid this
issue, specify scalars as fixed size.

6 Code Generation for Variable-Size Data

6-22

Toolbox Functions with Restrictions for Variable-Size Data
The following table list functions that have code generation restrictions for variable-size data. For
additional restrictions for these functions, and restrictions for all functions and objects supported for
code generation, see “Functions and Objects Supported for C/C++ Code Generation” on page 3-2.

Function Restrictions for Variable-Size Data
all • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass the first argument a variable-size
matrix that is 0-by-0 at run time.

any • See “Automatic dimension restriction” on page 6-22.
• An error occurs if you pass the first argument a variable-size

matrix that is 0-by-0 at run time.
cat • Dimension argument must be a constant.
conv • See “Variable-length vector restriction” on page 6-22.

• Input vectors must have the same orientation, either both row
vectors or both column vectors.

cov • For cov(X), see “Array-to-vector restriction” on page 6-22.
cross • Variable-size array inputs that become vectors at run time must

have the same orientation.
deconv • For both arguments, see “Variable-length vector restriction” on

page 6-22.
detrend • For first argument for row vectors only, see “Array-to-vector

restriction” on page 6-22.
diag • See “Array-to-vector restriction” on page 6-22.
diff • See “Automatic dimension restriction” on page 6-22.

• Length of the working dimension must be greater than the
difference order input when the input is variable sized. For
example, if the input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1) generates a
run-time error.

fft • See “Automatic dimension restriction” on page 6-22.
filter • For first and second arguments, see “Variable-length vector

restriction” on page 6-22.
• See “Automatic dimension restriction” on page 6-22.

hist • For second argument, see “Variable-length vector restriction” on
page 6-22.

• For second input argument, see “Array-to-scalar restriction” on
page 6-22.

histc • See “Automatic dimension restriction” on page 6-22.
ifft • See “Automatic dimension restriction” on page 6-22.
ind2sub • First input (the size vector input) must be fixed size.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

6-23

Function Restrictions for Variable-Size Data
interp1 • For the xq input, see “Array-to-vector restriction” on page 6-22.

• If v becomes a row vector at run time, the array to vector
restriction on page 6-22 applies. If v becomes a column vector at
run time, this restriction does not apply.

interpft • See “Automatic dimension restriction” on page 6-22.
ipermute • Order input must be fixed size.
issorted • See “Automatic dimension restriction” on page 6-22.
magic • Argument must be a constant.

• Output can be fixed-size matrices only.
max • See “Automatic dimension restriction” on page 6-22.
maxk • See “Automatic dimension restriction” on page 6-22.
mean • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

median • See “Automatic dimension restriction” on page 6-22.
• An error occurs if you pass as the first argument a variable-size

matrix that is 0-by-0 at run time.
min • See “Automatic dimension restriction” on page 6-22.
mink • See “Automatic dimension restriction” on page 6-22.
mode • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

mtimes Consider the multiplication A*B. If the code generator is aware that
A is scalar and B is a matrix, the code generator produces code for
scalar-matrix multiplication. However, if the code generator is
aware that A and B are variable-size matrices, it produces code for a
general matrix multiplication. At run time, if A turns out to be
scalar, the generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch error can
occur.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static allocation. If

you enable dynamic allocation, the second input can be a
variable.

• You cannot create a variable-size array by passing in a variable,
k, unless you enable dynamic allocation.

permute • Order input must be fixed-size.
planerot • Input must be a fixed-size, two-element column vector. It cannot

be a variable-size array that takes on the size 2-by-1 at run time.
poly • See “Variable-length vector restriction” on page 6-22.

6 Code Generation for Variable-Size Data

6-24

Function Restrictions for Variable-Size Data
polyfit • For first and second arguments, see “Variable-length vector

restriction” on page 6-22.
prod • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

rand • For an upper-bounded variable N, rand(1,N) produces a
variable-length vector of 1x:M where M is the upper bound on N.

• For an upper-bounded variable N, rand([1 N]) may produce a
variable-length vector of :1x:M where M is the upper bound on
N.

randi • For an upper-bounded variable N, randi(imax,1,N) produces
a variable-length vector of 1x:M where M is the upper bound on
N.

• For an upper-bounded variable N, randi(imax,[1 N]) may
produce a variable-length vector of :1x:M where M is the upper
bound on N.

randn • For an upper-bounded variable N, randn(1,N) produces a
variable-length vector of 1x:M where M is the upper bound on N.

• For an upper-bounded variable N, randn([1 N]) may produce
a variable-length vector of :1x:M where M is the upper bound on
N.

reshape • If the input is a variable-size array and the output array has at
least one fixed-length dimension, do not specify the output
dimension sizes in a size vector sz. Instead, specify the output
dimension sizes as scalar values, sz1,...,szN. Specify fixed-
size dimensions as constants.

• When the input is a variable-size empty array, the maximum
dimension size of the output array (also empty) cannot be larger
than that of the input.

roots • See “Variable-length vector restriction” on page 6-22.
shiftdim • If you do not supply the second argument, the number of shifts is

determined at compilation time by the upper bounds of the
dimension sizes. Therefore, at run time the number of shifts is
constant.

• An error occurs if the dimension that is shifted to the first
dimension has length 1 at run time. To avoid the error, supply
the number of shifts as the second input argument (must be a
constant).

• First input argument must have the same number of dimensions
when you supply a positive number of shifts.

sort • See “Automatic dimension restriction” on page 6-22.
std • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass a variable-size matrix with 0-by-0
dimensions at run time.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

6-25

Function Restrictions for Variable-Size Data
sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass as the first argument a variable-size
matrix that is 0-by-0 at run time.

trapz • See “Automatic dimension restriction” on page 6-22.
• An error occurs if you pass as the first argument a variable-size

matrix that is 0-by-0 at run time.
typecast • See “Variable-length vector restriction” on page 6-22 on first

argument.
var • See “Automatic dimension restriction” on page 6-22.

• An error occurs if you pass a variable-size matrix with 0-by-0
dimensions at run time.

vecnorm • See “Automatic dimension restriction” on page 6-22.

6 Code Generation for Variable-Size Data

6-26

Generate Code With Implicit Expansion Enabled
Implicit expansion refers to the automatic size change of compatible operands to apply element-wise
operations. Two dimensions have compatible sizes if, for every dimension, the dimension sizes of the
arrays are either the same or one of them is singleton. See “Compatible Array Sizes for Basic
Operations”.

Implicit expansion in the generated code is enabled by default. Code generated with implicit
expansion enabled might differ from code generated with implicit expansion disabled in these ways:

• Output size
• Additional code generation
• Performance variation

For variable-size dynamic arrays, the generated code exhibits these changes to accomplish implicit
expansion at run-time.

For fixed-size and constant arrays, because the values and sizes of the operands are known at compile
time, the code generated to calculate the implicitly expanded output does not require additional code
generation or cause performance variations.

To control implicit expansion in the generated code, see “Optimize Implicit Expansion in Generated
Code” on page 6-30.

Output Size
Implicit expansion automatically expands the operands to apply element-wise operations. For
example, consider these input types of compatible size:

a_type = coder.typeof(1,[2 1]);
b_type = coder.typeof(1,[2 inf]);

A binary operation on these two operands with implicit expansion enabled automatically expands the
second dimension of a_type to result in an output size of 2-by-Inf. With implicit expansion disabled,
the second dimension of a_type is not automatically expanded, and the output size is 2-by-1.

For existing workflows created with implicit expansion disabled in the generated code, generating
code for the same MATLAB code with implicit expansion enabled might generate size mismatch
errors or change the size of outputs from binary operations and functions. To troubleshoot size
mismatch errors, see “Diagnose and Fix Variable-Size Data Errors” on page 6-12.

Additional Code Generation
Implicit expansion enables the operands to be automatically expanded if the operand sizes are
compatible. To perform this size change, the generated code introduces code that allows the
operands to be expanded.

For example, consider the following code snippet. The function vector_sum finds the sum of two
arrays.

function out = vector_sum(a,b)
out = a + b;
end

 Generate Code With Implicit Expansion Enabled

6-27

Consider the variable-size dynamic array defined here:

c_type = coder.typeof(1,[1 Inf]);

Generate code for vector_sum by using this command:

codegen vector_sum -args {c_type, c_type} -config:lib -report

The generated code for this function with and without implicit expansion is listed in this table.

Generated Code With Implicit Expansion
Disabled

Generated Code With Implicit Expansion
Enabled

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b, emxArray_real_T *out){
 int i;
 int loop_ub;
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = b->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = b->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i] + a->data[i];
 }
}

static void plus(emxArray_real_T *out, const emxArray_real_T *b, const emxArray_real_T *a)
{
 int i;

 if (a->size[1] == 1) {
 out->size[1] = b->size[1];
 } else {
 out->size[1] = a->size[1];
 }

 if (a->size[1] == 1) {
 loop_ub = b->size[1];
 }
 else {
 loop_ub = a->size[1];
 }
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i * stride_0_1] + a->data[i * stride_1_1];
 }
}
void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b, emxArray_real_T *out)
{
 int i;
 int loop_ub;
 if (b->size[1] == a->size[1]) {
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = b->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = b->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i] + a->data[i];
 }
 } else {
 plus(out, b, a);
 }
}

With implicit expansion enabled, the code generator creates a supporting function, in this case plus,
to carry out the size change and to calculate the output.

In most cases, the supporting function carrying out implicit expansion is named after the binary
operation it is assisting. In the previous example, if the expression out = a + b is changed to out
= a - b, the name of the supporting function changes to minus.

6 Code Generation for Variable-Size Data

6-28

Some supporting functions might also be named as expand_op, where op refers to the binary
operation. In the previous example, if the expression out = a + b is replaced with out =
max(a,b), the name of the supporting function in the generated code changes to expand_max.

If multiple operations in an expression require implicit expansion, the generated code includes a
supporting function that is named binary_expand_op. The supporting functions change the size of
the operand and apply the binary operations.

If you want to apply specific binary operations and functions without implicit expansion, use
coder.sameSizeBinaryOp. The code generated to apply this function does not include additional
code to expand the operands. The output of this function does not expand the operands in MATLAB.
This function does not support scalar expansion. Operands must be of the same size.

If you want to disable implicit expansion inside a function for all binary operations within that
function in the generated code, call coder.noImplicitExpansionInFunction in the required
function. Implicit expansion in MATLAB code is still enabled.

Performance Variation
Code generated with implicit expansion enabled might perform differently than when implicit
expansion is disabled. Depending on the input to the generated code that uses implicit expansion, the
code might take longer to evaluate the output.

If the generated code does not match the performance requirements of your workflow due to implicit
expansion, generate code for your project by turning off implicit expansion for specific binary
operations, specific function bodies, or for your whole project. See “Optimize Implicit Expansion in
Generated Code” on page 6-30.

Note Before disabling implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples
• “Compatible Array Sizes for Basic Operations”
• “Diagnose and Fix Variable-Size Data Errors” on page 6-12
• “Optimize Implicit Expansion in Generated Code” on page 6-30

 Generate Code With Implicit Expansion Enabled

6-29

Optimize Implicit Expansion in Generated Code
Implicit expansion in the generated code is enabled by default. The code generator introduces
modifications in the generated code to perform implicit expansion. The changes in the generated
code might result in additional code to expand the operands. The expansion of the operands might
affect the performance of the generated code. See “Generate Code With Implicit Expansion Enabled”
on page 6-27.

Implicit expansion might change the size of the outputs from the supported operators and functions
causing size and type mismatch errors in your workflow.

For fine-grained control of where implicit expansion is enabled in the generated code, use the
following functions in your MATLAB code:

• coder.noImplicitExpansionInFunction
• coder.sameSizeBinaryOp

For example, consider this code snippet. The function vector_sum finds the sum of two arrays of
compatible sizes.

function out = vector_sum(a,b)
out = b + a;
end

The types of operands a and b are defined as:

a_type = coder.typeof(1,[2 1]) %size: 2x1
b_type = coder.typeof(1,[2 Inf]) %size: 2x:inf

Without Implicit Expansion With Implicit Expansion
Without implicit expansion, the size of the out
variable is calculated as 2x1.

With implicit expansion, the size of the variable
out is calculated as 2x:?.

6 Code Generation for Variable-Size Data

6-30

These code snippets outline the changes in the generated code for the function vector_sum, while
implicit expansion is disabled and enabled. To generate the code, the types of operands a and b are
defined as:

a_type = coder.typeof(1,[1 Inf]) %size: 1x:inf
b_type = coder.typeof(1,[1 Inf]) %size: 1x:inf

Generated Code With Implicit Expansion
Disabled

Generated Code With Implicit Expansion
Enabled

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *out)
{
 int i;
 int loop_ub;
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = b->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = b->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i] + a->data[i];
 }
}

static void plus(emxArray_real_T *out, const emxArray_real_T *b,
 const emxArray_real_T *a)
{
 int i;

 if (a->size[1] == 1) {
 out->size[1] = b->size[1];
 } else {
 out->size[1] = a->size[1];
 }

 if (a->size[1] == 1) {
 loop_ub = b->size[1];
 } else {
 loop_ub = a->size[1];
 }
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i * stride_0_1] + a->data[i * stride_1_1];
 }
}
void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *out)
{
 int i;
 int loop_ub;
 if (b->size[1] == a->size[1]) {
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = b->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = b->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = b->data[i] + a->data[i];
 }
 } else {
 plus(out, b, a);
 }
}

Disable Implicit Expansion in Specified Function by Using
coder.noImplicitExpansionInFunction
If you require implicit expansion in your project but not in specific functions, disable implicit
expansion for the generated code of that function by calling
coder.noImplicitExpansionInFunction within the function.

For example, the code generated for vector_sum does not apply implicit expansion.

 Optimize Implicit Expansion in Generated Code

6-31

MATLAB Code Generated Code with
coder.sameSizeBinaryOp

function out = vector_sum(a,b)
coder.noImplicitExpansionInFunction();
out = a + b;
end

a = coder.typeof(1,[1 Inf]) %size: 1x:inf
b = coder.typeof(1,[1 Inf]) %size: 1x:inf
codegen vector_sum -launchreport -args {a,b} -config:lib

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *out)
{
 int i;
 int loop_ub;
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = a->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = a->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = a->data[i] + b->data[i];
 }
}

Note coder.noImplicitExpansionInFunction does not disable implicit expansion in your
MATLAB code. It disables implicit expansion only in the generated code.

Disable Implicit Expansion for Specific Binary Operation by Using
coder.sameSizeBinaryOp
Use the function coder.sameSizeBinaryOp to perform an error check to ensure that the operands
are the same size and prevent the code generator from generating implicitly expanded code for that
function.

For example, this code snippet applies the plus operation by using coder.sameSizeBinaryOp
without implicit expansion.

MATLAB Code Generated Code
function out = vector_sum(a,b)
out = coder.sameSizeBinaryOp(@plus, a, b);
end

a = coder.typeof(1,[1 Inf]) %size: 1x:inf
b = coder.typeof(1,[1 Inf]) %size: 1x:inf
codegen vector_sum -launchreport -args {a,b} -config:lib

void vector_sum(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *out)
{
 int i;
 int loop_ub;
 i = out->size[0] * out->size[1];
 out->size[0] = 1;
 out->size[1] = a->size[1];
 emxEnsureCapacity_real_T(out, i);
 loop_ub = a->size[1];
 for (i = 0; i < loop_ub; i++) {
 out->data[i] = a->data[i] + b->data[i];
 }
}

coder.sameSizeBinaryOp does not support scalar expansion. Operands given to
coder.sameSizeBinaryOp must be of the same size.

6 Code Generation for Variable-Size Data

6-32

Disable Implicit Expansion in your Project
If you do not require implicit expansion in your generated code or do not want the modifications to
affect your generated code, turn it off by setting the EnableImplicitExpansion flag in your
coder.config object to false. This flag is set to true by default.

cfg = coder.config;
cfg.EnableImplicitExpansion = false;

Disable implicit expansion in your Simulink model by setting the model-wide parameter Enable
Implicit Expansion in MATLAB functions to false. Alternatively, use this command:

set_param(gcs,'EnableImplicitExpansion',false);

Note Before turning off implicit expansion, ensure that the external code does not use implicit
expansion. Disabling implicit expansion for an entire project might cause errors when generating
code if your project includes MATLAB code from external sources.

See Also
coder.noImplicitExpansionInFunction | coder.sameSizeBinaryOp

Related Examples
• “Generate Code With Implicit Expansion Enabled” on page 6-27
• “Compatible Array Sizes for Basic Operations”
• “Diagnose and Fix Variable-Size Data Errors” on page 6-12

 Optimize Implicit Expansion in Generated Code

6-33

Representation of Arrays in Generated Code
The code generator produces C/C++ array definitions that depend on the array element type and
whether the array uses static or dynamic memory allocation. Use the generated array
implementations to interface your arrays with the generated code.

Memory allocation for arrays require different implementations:

• For a fixed-size array or a variable-size array whose size is bounded within a predefined memory
threshold, the generated C/C++ definition consists of a fixed-size array of elements and a size
vector that stores the total number of array elements. In some cases, the fixed-size element array
and the size vector are stored within a structure. The memory for this array comes from the
program stack and is statically allocated.

• For an array whose size is unbounded at compile time, or whose bounds exceed the predefined
threshold, the generated C definition consists of a data structure called an emxArray. The
generated C++ definition consists of a coder::array class template.

The predefined threshold size (in bytes) is specified in your configuration objects. The default value of
the parameter is 65536. See DynamicMemoryAllocationThreshold in coder.MexCodeConfig,
coder.CodeConfig, or coder.EmbeddedCodeConfig.

For dynamically allocated arrays, the run-time allocated size is set based on the current array size.
During program execution, as run-time allocated size is exceeded, the generated code reallocates
additional memory space from the heap and adds it to the dynamic array storage.

This table lists a few typical cases for array representation in the generated code.

Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create a fixed-size 1-by-500 row
vector. The array is the output
of the MATLAB function

The generated code allocates
memory to a fixed-size vector on
the program stack.

function B = create_vec0 %#codegen
B = zeros(1,500);
end

void create_vec0(double B[500])
{
 memset(&B[0], 0, 500U * sizeof(double));
}

The array is the input to the
function in the generated code.

Create a fixed-size 1-by-20 row
vector. Declare the array as
variable-size with bounds at 500
elements. Assign this variable-
size array to the input array.

This array is bound within the
size threshold and is the input
to the function in the generated
code.

function create_vec1(B) %#codegen
A = zeros(1,20);
coder.varsize('A',[1 500],[0 1]);
B = A;
end

void create_vec1(double B_data[], int B_size[2])
{
 int i;
 B_size[0] = 1;
 B_size[1] = 20;
 for (i = 0; i < 20; i++) {
 B_data[i] = 1.0;
 }
}

Note The generated code
includes the inputs in the
function parameters.

6 Code Generation for Variable-Size Data

6-34

Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create a local fixed-size 1-
by-20000 row vector. Declare
the array as variable-size with
bounds at 30,000 elements.

The variable-size array exceeds
the predefined dynamic memory
allocation threshold. This array
is stored on heap memory.

The generated code includes the
output array in the function
parameter.

function B = create_vec2() %#codegen
A = ones(1,20000);
coder.varsize("A",[1 30000], [0 1]);
B = [1 A];
end

C:

void create_vec2(emxArray_real_T *B)
{
 double *B_data;
 int i;
 i = B->size[0] * B->size[1];
 B->size[0] = 1;
 B->size[1] = 20001;
 emxEnsureCapacity_real_T(B, i);
 B_data = B->data;
 B_data[0] = 1.0;
 for (i = 0; i < 20000; i++) {
 B_data[i + 1] = 1.0;
 }
}

C++:

void create_vec2(coder::array<double, 2U> &B)
{
 B.set_size(1, 20001);
 B[0] = 1.0;
 for (int i{0}; i < 20000; i++) {
 B[i + 1] = 1.0;
 }
}

 Representation of Arrays in Generated Code

6-35

Algorithm Description and
Array Size

MATLAB Function Generated C/C++ Code

Create an array that has the
size determined by an
unbounded integer input.

The generated array size is
unknown and unbounded at
compile time.

function y = create_vec3(n) %#codegen
y = ones(1,n,'int8');

C:

void create_vec3(double n, emxArray_int8_T *y)
{
 int i;
 int loop_ub_tmp;
 signed char *y_data;
 i = y->size[0] * y->size[1];
 y->size[0] = 1;
 loop_ub_tmp = (int)n;
 y->size[1] = (int)n;
 emxEnsureCapacity_int8_T(y, i);
 y_data = y->data;
 for (i = 0; i < loop_ub_tmp; i++) {
 y_data[i] = 1;
 }
}

C++:

void create_vec3(double n, coder::array<signed char, 2U> &y)
{
 int loop_ub_tmp;
 loop_ub_tmp = static_cast<int>(n);
 y.set_size(1, loop_ub_tmp);
 for (int i{0}; i < loop_ub_tmp; i++) {
 y[i] = 1;
 }
}

To learn about the emxArray data structure, see “Use C Arrays in the Generated Function
Interfaces” on page 32-3.

To learn about the coder::array class template, see “Use Dynamically Allocated C++ Arrays in
Generated Function Interfaces” on page 32-15.

Customize Interface Generation
By default, the generated C++ code uses the coder::array template to implement dynamically
allocated arrays. You can choose to generate C++ code that uses the C style emxArray data
structure to implement dynamically allocated arrays. To generate C style emxArray data structures,
do either of the following:

• In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to
'C'.

• Alternatively, In the MATLAB Coder app, on the Memory tab, set Dynamic memory allocation
interface to Use C style EmxArray.

To create dynamically allocated arrays for variable-size arrays in the generated code, do either of the
following:

6 Code Generation for Variable-Size Data

6-36

• Set theDynamicMemoryAllocationForVariableSizeArrays flag to 'Always' or
'Threshold'.

• Alternatively, in the MATLAB Coder App, on the Memory tab, select the required option in the
drop-down list for the Dynamic memory allocation for variable size arrays option.

You can also create dynamically allocated arrays for fixed-size arrays. Do either of the following:

• Set the DynamicMemoryAllocationForFixedSizeArrays flag to 'Always' or 'Threshold'.
• Alternatively, in the MATLAB Coder App, on the Memory tab, select the required option in the

drop-down list for the Dynamic memory allocation for fixed size arrays option.

By default, arrays that are bounded within a threshold size do not use dynamic allocation in the
generated code. Alternatively, you can disable dynamic memory allocation and change the dynamic
memory allocation threshold. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

See Also
coder.config | coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

Related Examples
• “Use C Arrays in the Generated Function Interfaces” on page 32-3
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15

 Representation of Arrays in Generated Code

6-37

Control Memory Allocation for Fixed-Size Arrays
Dynamic memory allocation for fixed-size arrays allocates memory for the array on the heap instead
of allocating memory on the program stack. Consider using dynamic memory allocation when:

• The fixed-size arrays are large and you do not want to allocate memory on the stack.
• Your target hardware memory is limited and you do not want to allocate memory for the arrays on

the program stack.

For larger arrays, you can significantly reduce storage requirements. Dynamic memory allocation
might result in slower execution of the generated code.

Enable Dynamic Memory Allocation for All Fixed-Size Arrays
By default, dynamic memory allocation for fixed-size arrays is disabled. To enable it:

• In a configuration object for code generation, set the
DynamicMemoryAllocationForFixedSizeArrays parameter to 'Always'.

• Alternatively, in the app, under Memory settings, set Dynamic memory allocation fixed-sized
arrays to 'Always'.

The code generator dynamically allocates memory on the heap for all fixed-size arrays whose size is
greater than 64 bytes.

Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold
Instead of allocating all fixed-size arrays dynamically on the heap, you can specify the threshold size
above which memory is dynamically allocated. To instruct the code generator to use dynamic memory
allocation for fixed-size arrays whose size is greater than or equal to the threshold:

• In the configuration object, set the DynamicMemoryAllocationForFixedSizeArrays to
'Threshold'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation for fixed-
sized arrays to For arrays with max size at or above threshold.

The default dynamic memory allocation threshold is 64 kilobytes. To change the threshold:

• In a configuration object for code generation, set the DynamicMemoryAllocationThreshold.
• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation

threshold.

See Also
coder.EmbeddedCodeConfig | coder.MexCodeConfig | coder.CodeConfig

Related Examples
• “Control Memory Allocation for Variable-Size Arrays” on page 6-4
• “Representation of Arrays in Generated Code” on page 6-34
• “Use C Arrays in the Generated Function Interfaces” on page 32-3

6 Code Generation for Variable-Size Data

6-38

• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15

 Control Memory Allocation for Fixed-Size Arrays

6-39

Code Generation for MATLAB Structures

• “Structure Definition for Code Generation” on page 7-2
• “Structure Operations Allowed for Code Generation” on page 7-3
• “Define Scalar Structures for Code Generation” on page 7-4
• “Define Arrays of Structures for Code Generation” on page 7-6
• “Index Substructures and Fields” on page 7-8
• “Assign Values to Structures and Fields” on page 7-10

7

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use structures differently
than you normally would when running your code in the MATLAB environment:

What's Different More Information
Use a restricted set of operations. “Structure Operations Allowed for Code

Generation” on page 7-3
Observe restrictions on properties and values of
scalar structures.

“Define Scalar Structures for Code Generation”
on page 7-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 7-6

Reference structure fields individually during
indexing.

“Index Substructures and Fields” on page 7-8

Avoid type mismatch when assigning values to
structures and fields.

“Assign Values to Structures and Fields” on page
7-10

7 Code Generation for MATLAB Structures

7-2

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are restricted to the following
operations:

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions

 Structure Operations Allowed for Code Generation

7-3

Define Scalar Structures for Code Generation
In this section...
“Restrictions When Defining Scalar Structures by Assignment” on page 7-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 7-4
“Restriction on Adding New Fields After First Use” on page 7-4

Restrictions When Defining Scalar Structures by Assignment
When you define a scalar structure by assigning a variable to a preexisting structure, you do not need
to define the variable before the assignment. However, if you already defined that variable, it must
have the same class, size, and complexity as the structure you assign to it. In the following example, p
is defined as a structure that has the same properties as the predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control Flow Path
When you create a structure, you must add fields in the same order on each control flow path. For
example, the following code generates a compiler error because it adds the fields of structure x in a
different order in each if statement clause:

function y = fcn(u) %#codegen
if u > 0
 x.a = 10;
 x.b = 20;
else
 x.b = 30; % Generates an error (on variable x)
 x.a = 40;
end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement clause, but the
assignments appear in reverse order in the else clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0
 x.a = 10;
 x.b = 20;
else
 x.a = 40;
 x.b = 30;
end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform the following operations on the structure:

7 Code Generation for MATLAB Structures

7-4

• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

In this example, the attempt to add a new field d after reading from structure x generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add a field to a
structure after operating on one of its fields or nested structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the structure's
field c generates an error.

 Define Scalar Structures for Code Generation

7-5

Define Arrays of Structures for Code Generation

In this section...
“Ensuring Consistency of Fields” on page 7-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on page 7-6
“Defining an Array of Structures by Using struct” on page 7-6
“Defining an Array of Structures Using Concatenation” on page 7-7

Ensuring Consistency of Fields
For code generation, when you create an array of MATLAB structures, corresponding fields in the
array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields variable-size by
using coder.varsize. See “Declare Variable-Size Structure Fields”.

Using repmat to Define an Array of Structures with Consistent Field
Properties
You can create an array of structures from a scalar structure by using the MATLAB repmat function,
which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code Generation” on
page 7-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each element of the
array is defined by the structure s, which has two fields, a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures by Using struct
To create an array of structures using the struct function, specify the field value arguments as cell
arrays. Each cell array element is the value of the field in the corresponding structure array element.
For code generation, corresponding fields in the structures must have the same type. Therefore, the
elements in a cell array of field values must have the same type.

7 Code Generation for MATLAB Structures

7-6

For example, the following code creates a 1-by-3 structure array. For each structure in the array of
structures, a has type double and b has type char.

s = struct('a', {1 2 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator, square brackets
([]), to join one or more structures into an array. See “Creating, Concatenating, and Expanding
Matrices”. For code generation, the structures that you concatenate must have the same size, class,
and complexity.

For example, the following code uses concatenation and a local function to create the elements of a 1-
by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
 s.a = a;
 s.b = b;
...

 Define Arrays of Structures for Code Generation

7-7

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
 'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by resolving symbols as
follows:

Dot Notation Symbol Resolution
substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2
substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure of local

structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to the structure of
interest and then reference that structure's field individually using dot notation, as in this example:

...
y = X(1).a % Extracts the value of field a
 % of the first structure in array X
...

To reference all the values of a particular field for each structure in an array, use this notation in a
for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5
 X(i).a = i;
 X(i).b = i+1;
end

This example uses the repmat function to define an array of structures, each with two fields a and b
as defined by s. See “Define Arrays of Structures for Code Generation” on page 7-6 for more
information.

7 Code Generation for MATLAB Structures

7-8

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the field as a
variable expression that MATLAB evaluates at run time (see “Generate Field Names from Variables”).

 Index Substructures and Fields

7-9

Assign Values to Structures and Fields
When assigning values to a structure, substructure, or field for code generation, use these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:
Assigning one structure to another structure. Define each structure with the same number,

type, and size of fields.
Assigning one structure to a substructure of a
different structure and vice versa.

Define the structure with the same number, type,
and size of fields as the substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and size.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generator recognizes that the structure fields s.a and s.b are
constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generator does not
recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)
s.a = 3;
if x > 1
 s.b = 4;
else
 s.b = 5;
end
y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is disabled, y, the
code generator reports an error.

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types before code
generation (see “Working with mxArrays” on page 20-11).

Do not assign handle classes or sparse arrays to global structure variables

Global structure variables cannot contain handle objects or sparse arrays.

7 Code Generation for MATLAB Structures

7-10

Code Generation for Categorical Arrays

8

Code Generation for Categorical Arrays
In this section...
“Define Categorical Arrays for Code Generation” on page 8-2
“Allowed Operations on Categorical Arrays” on page 8-2
“MATLAB Toolbox Functions That Support Categorical Arrays” on page 8-3

Categorical arrays store data with values from a finite set of discrete categories. You can specify an
order for the categories, but it is not required. A categorical array provides efficient storage and
manipulation of nonnumeric data, while also maintaining meaningful names for the values.

When you use categorical arrays with code generation, adhere to these restrictions:

Define Categorical Arrays for Code Generation
For code generation, use the categorical function to create categorical arrays. For example,
suppose the input argument to your MATLAB function is a numeric array of arbitrary size whose
elements have values of either 1, 2, or 3. You can convert these values to the categories small,
medium, and large and turn the input array into a categorical array, as shown in this code.

function c = foo(x) %#codegen
 c = categorical(x,1:3,{'small','medium','large'});
end

Allowed Operations on Categorical Arrays
For code generation, you are restricted to the operations on categorical arrays listed in this table.

Operation Example Notes
assignment operator: = c = categorical(1:3,1:3,{'small','medium','large'});

c(1) = 'large';

c = categorical(1:3,1:3,{'small','medium','large'});
c(1) = 'large';

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a

categorical array.
• Add a new category, even

when the array is not
protected.

relational operators: < > <=
>= == ~=

c = categorical(1:3,'Ordinal',true);
tf = c(1) < c(2);

c = categorical(1:3,'Ordinal',true);
tf = c(1) < c(2);

Code generation supports all
relational operators.

cast to numeric type c = categorical(1:3);
double(c(1));

c = categorical(1:3);
double(c(1));

Code generation supports
casting categorical arrays to
arrays of double- or single-
precision floating-point
numbers, or to integers.

8 Code Generation for Categorical Arrays

8-2

Operation Example Notes
conversion to text c = categorical(1:3,1:3,{'small','medium','large'});

c1 = cellstr(c(1)); % One element
c2 = cellstr(c); % Entire array

c = categorical(1:3,1:3,{'small','medium','large'});
c1 = cellstr(c(1)); % One element
c2 = cellstr(c); % Entire array

Code generation does not
support using the char or
string functions to convert
categorical values to text.

To convert one or more
elements of a categorical array
to text, use the cellstr
function.

indexing operation c = categorical(1:3,1:3,{'small','medium','large'});
idx = [1 2];
c(idx);
idx = logical([1 1 0]);
c(idx);

c = categorical(1:3,1:3,{'small','medium','large'});
idx = [1 2];
c(idx);
idx = logical([1 1 0]);
c(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.

concatenation c1 = categorical(1:3,1:3,{'small','medium','large'});
c2 = categorical(4:6,[2 1 4],{'medium','small','extra-large'});
c = [c1 c2];

c1 = categorical(1:3,1:3,{'small','medium','large'});
c2 = categorical(4:6,[2 1 4],{'medium','small','extra-large'});
c = [c1 c2];

Code generation supports
concatenation of categorical
arrays along any dimension.

MATLAB Toolbox Functions That Support Categorical Arrays
For code generation, you can use categorical arrays with these MATLAB toolbox functions:

• addcats
• cat
• categorical
• categories
• cellstr
• countcats
• ctranspose
• double
• eq
• ge
• gt
• histcounts
• horzcat
• int8
• int16
• int32

 Code Generation for Categorical Arrays

8-3

• int64
• intersect
• iscategory
• iscolumn
• isempty
• isequal
• isequaln
• ismatrix
• ismember
• isordinal
• isprotected
• isrow
• isscalar
• issorted
• issortedrows
• isundefined
• isvector
• le
• length
• lt
• max
• mergecats
• min
• ndims
• ne
• numel
• permute
• removecats
• renamecats
• reordercats
• reshape
• setcats
• setdiff
• setxor
• single
• size
• sort
• sortrows
• transpose

8 Code Generation for Categorical Arrays

8-4

• uint8
• uint16
• uint32
• uint64
• union
• unique
• vertcat

See Also

More About
• “Define Categorical Array Inputs” on page 8-6
• “Categorical Array Limitations for Code Generation” on page 8-9

 Code Generation for Categorical Arrays

8-5

Define Categorical Array Inputs
You can define categorical array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of categorical input types by using preconditioning (assert statements)
is not supported.

Define Categorical Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Categorical Array Input” on page 8-6
• “Provide a Categorical Array Type” on page 8-6
• “Provide a Constant Categorical Array Input” on page 8-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Categorical Array Input

Use the -args option:

C = categorical({'r','g','b'});
codegen myFunction -args {C}

Provide a Categorical Array Type

To provide a type for a categorical array to codegen:

1 Define a categorical array. For example:

C = categorical({'r','g','b'});
2 Create a type from C.

t = coder.typeof(C);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant Categorical Array Input

To specify that a categorical array input is constant, use coder.Constant with the -args option:

C = categorical({'r','g','b'});
codegen myFunction -args {coder.Constant(C)}

Define Categorical Array Inputs in the MATLAB Coder App
Use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

8 Code Generation for Categorical Arrays

8-6

Representation of Categorical Arrays
A coder type object for a categorical array describes the object and its properties. Use
coder.typeof or pass categorical as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = categorical({'r','g','b'});
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType =

 matlab.coder.type.CategoricalType
 1x3 categorical
 Categories : 3x1 homogeneous cell
 Ordinal : 1x1 logical
 Protected : 1x1 logical

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a categorical coder object, you can resize the object properties:

t = categorical({'r','g','b'});
tType = coder.typeof(t);
tType.Categories = coder.resize(tType.Categories, [3 1],[1 0])

This code resizes the Categories property to be upper-bounded at 3 for the first dimension.

tType =

 matlab.coder.type.CategoricalType
 1x3 categorical
 Categories : :3x1 homogeneous cell
 Ordinal : 1x1 logical
 Protected : 1x1 logical

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
categorical | coder.Constant | coder.typeof

 Define Categorical Array Inputs

8-7

More About
• “Code Generation for Categorical Arrays” on page 8-2
• “Categorical Array Limitations for Code Generation” on page 8-9

8 Code Generation for Categorical Arrays

8-8

Categorical Array Limitations for Code Generation
When you create categorical arrays in MATLAB code that you intend for code generation, you must
specify the categories and elements of each categorical array by using the categorical function.
See “Categorical Arrays”.

For categorical arrays, code generation does not support the following inputs and operations:

• Arrays of MATLAB objects.
• Sparse matrices.
• Duplicate category names when you specify them using the categoryNames input argument of

the categorical function.
• Growth by assignment. For example, assigning a value beyond the end of an array produces an

error.

function c = foo() %#codegen
 c = categorical(1:3,1:3,{'small','medium','large'});
 c(4) = 'medium';
end

• Adding a category. For example, specifying a new category by using the = operator produces an
error, even when the categorical array is unprotected.

function c = foo() %#codegen
 c = categorical(1:3,1:3,{'small','medium','large'});
 c(1) = 'extra-large';
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function c = foo() %#codegen
 c = categorical(1:3,1:3,{'small','medium','large'});
 c(1) = [];
end

• Converting categorical values to text by using the char or string functions. To convert elements
of a categorical array to text, use the cellstr function.

Limitations that apply to classes also apply to categorical arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
categorical | cellstr

More About
• “Code Generation for Categorical Arrays” on page 8-2
• “Define Categorical Array Inputs” on page 8-6

 Categorical Array Limitations for Code Generation

8-9

Code Generation for Cell Arrays

• “Code Generation for Cell Arrays” on page 9-2
• “Control Whether a Cell Array Is Variable-Size” on page 9-5
• “Define Cell Array Inputs” on page 9-7
• “Cell Array Limitations for Code Generation” on page 9-8

9

Code Generation for Cell Arrays
When you generate code from MATLAB code that contains cell arrays, the code generator classifies
the cell arrays as homogeneous or heterogeneous. This classification determines how a cell array is
represented in the generated code. It also determines how you can use the cell array in MATLAB
code from which you generate code.

When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
certain restrictions. See “Cell Array Limitations for Code Generation” on page 9-8.

Homogeneous vs. Heterogeneous Cell Arrays
A homogeneous cell array has these characteristics:

• The cell array is represented as an array in the generated code.
• All elements have the same properties. The type associated with the cell array specifies the

properties of all elements rather than the properties of individual elements.
• The cell array can be variable-size.
• You can index into the cell array with an index whose value is determined at run time.

A heterogeneous cell array has these characteristics:

• The cell array is represented as a structure in the generated code. Each element is represented as
a field of the structure.

• The elements can have different properties. The type associated with the cell array specifies the
properties of each element individually.

• The cell array cannot be variable-size.
• You must index into the cell array with a constant index or with for-loops that have constant

bounds.

The code generator uses heuristics to determine the classification of a cell array as homogeneous or
heterogeneous. It considers the properties (class, size, complexity) of the elements and other factors,
such as how you use the cell array in your program. Depending on how you use a cell array, the code
generator can classify a cell array as homogeneous in one case and heterogeneous in another case.
For example, consider the cell array {1 [2 3]}. The code generator can classify this cell array as a
heterogeneous 1-by-2 cell array. The first element is double scalar. The second element is a 1-by-2
array of doubles. However, if you index into this cell array with an index whose value is determined at
run time, the code generator classifies it as a homogeneous cell array. The elements are variable-size
arrays of doubles with an upper bound of 2.

Controlling Whether a Cell Array Is Homogeneous or Heterogeneous
For cell arrays with certain characteristics, you cannot control the classification as homogeneous or
heterogeneous:

• If the elements have different classes, the cell array must be heterogeneous.
• If the cell array is variable-size, it must be homogeneous.
• If you index into the cell array with an index whose value is determined at run time, the cell array

must be homogeneous.

9 Code Generation for Cell Arrays

9-2

For other cell arrays, you can control the classification as homogeneous or heterogeneous.

To control the classification of cell arrays that are entry-point function inputs:

• At the command line, use the coder.CellType methods makeHomogeneous and
makeHeterogeneous.

• In the MATLAB Coder app, select cell (Homogeneous) or cell (Heterogeneous) from the type
menu. See “Define or Edit Input Parameter Type by Using the App” on page 24-14.

To control the classification of cell arrays that are not entry-point function inputs:

• If the cell array is fixed-size, you can force an otherwise homogeneous cell array to be
heterogeneous by using coder.cstructname. For example:

function y = mycell()
%#codegen
c = {1 2 3};
coder.cstructname(c, 'myname');
y = c;
end

• If the cell array elements have the same class, you can force a cell array to be homogeneous by
using coder.varsize. See “Control Whether a Cell Array Is Variable-Size” on page 9-5.

Naming the Structure Type That Represents a Heterogeneous Cell
Array in the Generated Code
The code generator represents a heterogeneous cell array as a structure in the generated code. You
can name the generated structure type. You cannot name the fields of the structure.

If the cell array is an entry-point function input, see “Define Cell Array Inputs” on page 9-7. If the
cell array is not an entry-point function input, use coder.cstructname in the MATLAB function. For
example:

function y = mycell()
%#codegen
c = {1 'a'};
coder.cstructname(c, 'myname');
y = c;
end

Cell Arrays in Reports
To see whether a cell array is homogeneous or heterogeneous, view the variable in the code
generation report.

For a homogeneous cell array, the report has one entry that specifies the properties of all elements.
The notation {:} indicates that all elements of the cell array have the same properties.

 Code Generation for Cell Arrays

9-3

For a heterogeneous cell array, the report has an entry for each element. For example, for a
heterogeneous cell array c with two elements, the entry for c{1} shows the properties for the first
element. The entry for c{2} shows the properties for the second element.

See Also
coder.CellType | coder.varsize | coder.cstructname

More About
• “Control Whether a Cell Array Is Variable-Size” on page 9-5
• “Cell Array Limitations for Code Generation” on page 9-8
• “Code Generation Reports” on page 29-7

9 Code Generation for Cell Arrays

9-4

Control Whether a Cell Array Is Variable-Size
The code generator classifies a variable-size cell array as homogeneous. The cell array elements must
have the same class. In the generated code, the cell array is represented as an array.

If a cell array is an entry-point function input, to make it variable-size:

• At the command line, you can use the coder.typeof function or the coder.newtype function to
create a type for a variable-size cell array. For example, to create a type for a cell array whose first
dimension is fixed and whose second dimension has an upper bound of 10, use this code:

 t = coder.typeof({1 2 3}, [1 10], [0 1])

See “Specify Variable-Size Cell Array Inputs” on page 27-55.
• In the MATLAB Coder app, select Homogeneous cell array as the type of the input. For the

variable-size dimension, specify that it is unbounded or has an upper bound.

If a cell array is not an entry-point function input, to make it variable-size:

• Create the cell array by using the cell function. For example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

For code generation, when you create a variable-size cell array by using cell, you must adhere to
certain restrictions. See “Definition of Variable-Size Cell Array by Using cell” on page 9-9.

• Grow the cell array. For example:

function z = mycell(n)
%#codegen
c = {1 2 3};
for i = 1:n
 c{end + 1} = 1;
end
z = c{n};
end

• Force the cell array to be variable-size by using coder.varsize. Consider this code:

function y = mycellfun()
%#codegen
c = {1 2 3};
coder.varsize('c', [1 10]);
y = c;
end

Without coder.varsize, c is fixed-size with dimensions 1-by-3. With coder.varsize, c is
variable-size with an upper bound of 10.

Sometimes, using coder.varsize changes the classification of a cell array from heterogeneous
to homogeneous. Consider this code:

 Control Whether a Cell Array Is Variable-Size

9-5

function y = mycell()
%#codegen
c = {1 [2 3]};
y = c{2};
end

The code generator classifies c as heterogeneous because the elements have different sizes. c is
fixed-size with dimensions 1-by-2. If you use coder.varsize with c, it becomes homogeneous.
For example:

function y = mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 10], [0 1]);
y = c{2};
end

c becomes a variable-size homogeneous cell array with dimensions 1-by-:10.

To force c to be homogeneous, but not variable-size, specify that none of the dimensions vary. For
example:

function y = mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 2], [0 0]);
y = c{2};
end

See Also
coder.CellType | coder.varsize

More About
• “Code Generation for Cell Arrays” on page 9-2
• “Cell Array Limitations for Code Generation” on page 9-8
• “Code Generation for Variable-Size Arrays” on page 6-2

9 Code Generation for Cell Arrays

9-6

Define Cell Array Inputs
To define types for cell arrays that are inputs to entry-point functions, use one of these approaches:

To Define Types: See
At the command line “Specify Cell Array Inputs at the Command Line”

on page 27-52
Programmatically in the MATLAB file “Define Input Properties Programmatically in the

MATLAB File” on page 27-60
In the MATLAB Coder app “Automatically Define Input Types by Using the

App” on page 24-4

“Define Input Parameter by Example by Using the
App” on page 24-6

“Define or Edit Input Parameter Type by Using
the App” on page 24-14

See Also
coder.CellType

More About
• “Code Generation for Cell Arrays” on page 9-2

 Define Cell Array Inputs

9-7

Cell Array Limitations for Code Generation
When you use cell arrays in MATLAB code that is intended for code generation, you must adhere to
these restrictions:

• “Cell Array Element Assignment” on page 9-8
• “Variable-Size Cell Arrays” on page 9-9
• “Definition of Variable-Size Cell Array by Using cell” on page 9-9
• “Cell Array Indexing” on page 9-12
• “Growing a Cell Array by Using {end + 1}” on page 9-13
• “Cell Array Contents” on page 9-13
• “Passing Cell Arrays to External C/C++ Functions” on page 9-14

Cell Array Element Assignment
You must assign a cell array element on all execution paths before you use it. For example:

function z = foo(n)
%#codegen
c = cell(1,3);
if n < 1
 c{2} = 1;

else
 c{2} = n;
end
z = c{2};
end

The code generator considers passing a cell array to a function or returning it from a function as a
use of all elements of the cell array. Therefore, before you pass a cell array to a function or return it
from a function, you must assign all of its elements. For example, the following code is not allowed
because it does not assign a value to c{2} and c is a function output.

function c = foo()
%#codegen
c = cell(1,3);
c{1} = 1;
c{3} = 3;
end

The assignment of values to elements must be consistent on all execution paths. The following code is
not allowed because y{2} is double on one execution path and char on the other execution path.

function y = foo(n)
y = cell(1,3)
if n > 1;
 y{1} = 1
 y{2} = 2;
 y{3} = 3;
else
 y{1} = 10;
 y{2} = 'a';

9 Code Generation for Cell Arrays

9-8

 y{3} = 30;
end

Variable-Size Cell Arrays
• coder.varsize is not supported for heterogeneous cell arrays.
• If you use the cell function to define a fixed-size cell array, you cannot use coder.varsize to

specify that the cell array has a variable size. For example, this code causes a code generation
error because x = cell(1,3) makes x a fixed-size,1-by-3 cell array.

...
x = cell(1,3);
coder.varsize('x',[1 5])
...

You can use coder.varsize with a cell array that you define by using curly braces. For example:

...
x = {1 2 3};
coder.varsize('x',[1 5])
...

• To create a variable-size cell array by using the cell function, use this code pattern:

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
end

See “Definition of Variable-Size Cell Array by Using cell” on page 9-9.

To specify upper bounds for the cell array, use coder.varsize.

function mycell(n)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
coder.varsize('x',[1,20]);
end
end

Definition of Variable-Size Cell Array by Using cell
For code generation, before you use a cell array element, you must assign a value to it. When you use
cell to create a variable-size cell array, for example, cell(1,n), MATLAB assigns an empty matrix
to each element. However, for code generation, the elements are unassigned. For code generation,
after you use cell to create a variable-size cell array, you must assign all elements of the cell array
before any use of the cell array. For example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);

 Cell Array Limitations for Code Generation

9-9

for i = 1:n
 x{i} = i;
end
z = x{j};
end

The code generator analyzes your code to determine whether all elements are assigned before the
first use of the cell array. If the code generator detects that some elements are not assigned, code
generation fails with an error message. For example, modify the upper bound of the for-loop to j.

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:j %<- Modified here
 x{i} = i;
end
z = x{j};
end

With this modification and with inputs j less than n, the function does not assign values to all of the
cell array elements. Code generation produces the error:

Unable to determine that every element of 'x{:}' is assigned
before this line.

Sometimes, even though your code assigns all elements of the cell array, the code generator reports
this message because the analysis does not detect that all elements are assigned. See “Unable to
Determine That Every Element of Cell Array Is Assigned” on page 37-10.

To avoid this error, follow these guidelines:

• When you use cell to define a variable-size cell array, write code that follows this pattern:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)
%#codegen
x = cell(m,n,p);
for i = 1:m
 for j =1:n
 for k = 1:p
 x{i,j,k} = i+j+k;
 end
 end
end
z = x{m,n,p};
end

• Increment or decrement the loop counter by 1.

9 Code Generation for Cell Arrays

9-10

• Define the cell array within one loop or one set of nested loops. For example, this code is not
allowed:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:5
 x{i} = 5;
end
for i = 6:n
 x{i} = 5;
end
z = x{j};
end

• Use the same variables for the cell dimensions and loop initial and end values. For example, code
generation fails for the following code because the cell creation uses n and the loop end value
uses m:

function z = mycell(n, j)
x = cell(1,n);
m = n;
for i = 1:m
 x{i} = 2;
end
z = x{j};
end

Rewrite the code to use n for the cell creation and the loop end value:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:n
 x{i} = 2;
end
z = x{j};
end

• Create the cell array with this pattern:

x = cell(1,n)

Assign the cell array to a field of a structure or a property of an object by initializing a temporary
variable with the required cell. For example:

t = cell(1,n)
for i = 1:n
 t{i} = i+1;
end
myObj.prop = t;

Do not assign a cell array to a field of a structure or a property of an object directly. For example,
this code is not allowed:

myObj.prop = cell(1,n);
for i = 1:n
 myObj.prop{i} = i+1;
end

Do not use the cell function inside the cell array constructor {}. For example, this code is not
allowed:

 Cell Array Limitations for Code Generation

9-11

x = {cell(1,n)};
• The cell array creation and the loop that assigns values to the cell array elements must be

together in a unique execution path. For example, the following code is not allowed.

function z = mycell(n)
if n > 3
 c = cell(1,n);
else
 c = cell(n,1);
end
for i = 1:n
 c{i} = i;
end
z = c{n};
end

To fix this code, move the assignment loop inside the code block that creates the cell array.

function z = cellerr(n)
if n > 3
 c = cell(1,n);
 for i = 1:n
 c{i} = i;
 end
else
 c = cell(n,1);
 for i = 1:n
 c{i} = i;
 end
end
z = c{n};
end

Cell Array Indexing
• You cannot index cell arrays by using smooth parentheses(). Consider indexing cell arrays by

using curly braces{} to access the contents of the cell.
• You must index into heterogeneous cell arrays by using constant indices or by using for-loops

with constant bounds.

For example, the following code is not allowed.

x = {1, 'mytext'};
disp(x{randi});

You can index into a heterogeneous cell array in a for-loop with constant bounds because the
code generator unrolls the loop. Unrolling creates a separate copy of the loop body for each loop
iteration, which makes the index in each loop iteration constant. However, if the for-loop has a
large body or it has many iterations, the unrolling can increase compile time and generate
inefficient code.

If A and B are constant, the following code shows indexing into a heterogeneous cell array in a
for-loop with constant bounds.

x = {1, 'mytext'};
for i = A:B

9 Code Generation for Cell Arrays

9-12

 disp(x{i});
end

Growing a Cell Array by Using {end + 1}
To grow a cell array X, you can use X{end + 1}. For example:

...
X = {1 2};
X{end + 1} = 'a';
...

When you use {end + 1} to grow a cell array, follow these restrictions:

• Use only {end + 1}. Do not use {end + 2}, {end + 3}, and so on.
• Use {end + 1} with vectors only. For example, the following code is not allowed because X is a

matrix, not a vector:

...
X = {1 2; 3 4};
X{end + 1} = 5;

...
• Use {end + 1} only with a variable. In the following code, {end + 1} does not cause {1 2 3}

to grow. In this case, the code generator treats {end + 1} as an out-of-bounds index into X{2}.

...
X = {'a' { 1 2 3 }};
X{2}{end + 1} = 4;
...

• When {end + 1} grows a cell array in a loop, the cell array must be variable-size. Therefore, the
cell array must be homogeneous on page 9-2.

This code is allowed because X is homogeneous.

...
X = {1 2};
for i=1:n
 X{end + 1} = 3;
end
...

This code is not allowed because X is heterogeneous.

...
X = {1 'a' 2 'b'};
for i=1:n
 X{end + 1} = 3;
end
...

Cell Array Contents
Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an extrinsic
function returns.

 Cell Array Limitations for Code Generation

9-13

Passing Cell Arrays to External C/C++ Functions
You cannot pass a cell array to coder.ceval. If a variable is an input argument to coder.ceval,
define the variable as an array or structure instead of as a cell array.

See Also

More About
• “Code Generation for Cell Arrays” on page 9-2
• “Differences Between Generated Code and MATLAB Code” on page 2-6

9 Code Generation for Cell Arrays

9-14

Code Generation for Datetime Arrays

• “Code Generation for Datetime Arrays” on page 10-2
• “Define Datetime Array Inputs” on page 10-5
• “Datetime Array Limitations for Code Generation” on page 10-7

10

Code Generation for Datetime Arrays

In this section...
“Define Datetime Arrays for Code Generation” on page 10-2
“Allowed Operations on Datetime Arrays” on page 10-2
“MATLAB Toolbox Functions That Support Datetime Arrays” on page 10-3

The values in a datetime array represent points in time using the proleptic ISO calendar.

When you use datetime arrays with code generation, adhere to these restrictions.

Define Datetime Arrays for Code Generation
For code generation, use the datetime function to create datetime arrays. For example, suppose
the input arguments to your MATLAB function are numeric arrays whose values indicate the year,
month, day, hour, minute, and second components for a point in time. You can create a datetime
array from these input arrays.

function d = foo(y,mo,d,h,mi,s) %#codegen
 d = datetime(y,mo,d,h,mi,s);
end

Allowed Operations on Datetime Arrays
For code generation, you are restricted to the operations on datetime arrays listed in this table.

Operation Example Notes
Assignment operator: = d = datetime(2019,1:12,1,12,0,0);

d(1) = datetime(2019,1,31);

d = datetime(2019,1:12,1,12,0,0);
d(1) = datetime(2019,1,31);

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a

datetime array.
Relational operators: < > <=
>= == ~=

d = datetime(2019,1:12,1,12,0,0);
tf = d(1) < d(2);

d = datetime(2019,1:12,1,12,0,0);
tf = d(1) < d(2);

Code generation supports
relational operators.

Indexing operation d = datetime(2019,1:12,1,12,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

d = datetime(2019,1:12,1,12,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.

10 Code Generation for Datetime Arrays

10-2

Operation Example Notes
Concatenation d1 = datetime(2019,1:6,1,12,0,0);

d2 = datetime(2019,7:12,1,12,0,0);
d = [d1 d2];

d1 = datetime(2019,1:6,1,12,0,0);
d2 = datetime(2019,7:12,1,12,0,0);
d = [d1 d2];

Code generation supports
concatenation of datetime
arrays.

MATLAB Toolbox Functions That Support Datetime Arrays
For code generation, you can use datetime arrays with these MATLAB toolbox functions:

• cat
• colon
• ctranspose
• datetime
• datevec
• diff
• eq
• ge
• gt
• hms
• horzcat
• hour
• interp1
• intersect
• iscolumn
• isempty
• isequal
• isequaln
• isfinite
• isinf
• ismatrix
• ismember
• isnat
• isreal
• isrow
• isscalar
• issorted
• issortedrows
• isvector
• le

 Code Generation for Datetime Arrays

10-3

• length
• linspace
• lt
• max
• mean
• min
• minus
• minute
• NaT
• ndims
• ne
• numel
• permute
• plus
• posixtime
• repmat
• reshape
• setdiff
• setxor
• size
• sort
• sortrows
• topkrows
• transpose
• union
• unique
• vertcat
• ymd

See Also

More About
• “Define Datetime Array Inputs” on page 10-5
• “Datetime Array Limitations for Code Generation” on page 10-7

10 Code Generation for Datetime Arrays

10-4

Define Datetime Array Inputs
You can define datetime array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of datetime input types by using preconditioning (assert statements)
is not supported.

Define Datetime Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Datetime Array Input” on page 10-5
• “Provide a Datetime Array Type” on page 10-5
• “Provide a Constant Datetime Array Input” on page 10-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Datetime Array Input

Use the -args option:

D = datetime(2019,1:12,1,12,0,0);
codegen myFunction -args {D}

Provide a Datetime Array Type

To provide a type for a datetime array to codegen:

1 Define a datetime array. For example:

D = datetime(2019,1:12,1,12,0,0);
2 Create a type from D.

t = coder.typeof(D);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant Datetime Array Input

To specify that a datetime array input is constant, use coder.Constant with the -args option:

D = datetime(2019,1:12,1,12,0,0);
codegen myFunction -args {coder.Constant(C)}

Define Datetime Array Inputs in the MATLAB Coder App
Use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

 Define Datetime Array Inputs

10-5

Representation of Datetime Arrays
A coder type object for a datetime array describes the object and its properties. Use coder.typeof
or pass datetime as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType =

 matlab.coder.type.DatetimeType
 1x12 datetime
 Format : 1x0 char
 TimeZone : 1x0 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a datetime coder object, you can resize the object properties:

t = datetime(2019,1:12,1,12,0,0);
tType = coder.typeof(t)
tType.Format = coder.resize(tType.Format, [1 12])

This code resizes the Format property to be a 1x12 char property.

tType =

 matlab.coder.type.DatetimeType
 1x12 datetime
 Format : 1x12 char
 TimeZone : 1x0 char

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
datetime | NaT | coder.Constant | coder.typeof

More About
• “Code Generation for Datetime Arrays” on page 10-2
• “Datetime Array Limitations for Code Generation” on page 10-7

10 Code Generation for Datetime Arrays

10-6

Datetime Array Limitations for Code Generation
When you create datetime arrays in MATLAB code that you intend for code generation, you must
specify the values by using the datetime function. See “Dates and Time”.

For datetime arrays, code generation does not support the following inputs and operations:

• Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
 d = datetime('2019-12-01');
end

• The 'Format' name-value pair argument. You cannot specify the display format by using the
datetime function, or by setting the Format property of a datetime array. To use a specific
display format, create a datetime array in MATLAB, then pass it as an input argument to a
function that is intended for code generation.

• The 'TimeZone' name-value pair argument and the TimeZone property. When you use
datetime arrays in code that is intended for code generation, they must be unzoned.

• Setting time component properties. For example, setting the Hour property in the following code
produces an error:

d = datetime;
d.Hour = 2;

• Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
 d = datetime(2019,1:12,1,12,0,0);
 d(13) = datetime(2020,1,1,12,0,0);
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function d = foo() %#codegen
 d = datetime(2019,1:12,1,12,0,0);
 d(1) = [];
end

• Converting datetime values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to datetime arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
datetime | NaT

More About
• “Code Generation for Datetime Arrays” on page 10-2
• “Define Datetime Array Inputs” on page 10-5

 Datetime Array Limitations for Code Generation

10-7

Code Generation for Duration Arrays

• “Code Generation for Duration Arrays” on page 11-2
• “Define Duration Array Inputs” on page 11-6
• “Duration Array Limitations for Code Generation” on page 11-8

11

Code Generation for Duration Arrays
In this section...
“Define Duration Arrays for Code Generation” on page 11-2
“Allowed Operations on Duration Arrays” on page 11-2
“MATLAB Toolbox Functions That Support Duration Arrays” on page 11-3

The values in a duration array represent elapsed times in units of fixed length, such as hours,
minutes, and seconds. You can create elapsed times in terms of fixed-length (24-hour) days and fixed-
length (365.2425-day) years.

You can add, subtract, sort, compare, concatenate, and plot duration arrays.

When you use duration arrays with code generation, adhere to these restrictions.

Define Duration Arrays for Code Generation
For code generation, use the duration function to create duration arrays. For example, suppose the
input arguments to your MATLAB function are three numeric arrays of arbitrary size whose elements
specify lengths of time as hours, minutes, and seconds. You can create a duration array from these
three input arrays.

function d = foo(h,m,s) %#codegen
 d = duration(h,m,s);
end

You can use the years, days, hours, minutes, seconds, and milliseconds functions to create
duration arrays in units of years, days, hours, minutes, or seconds. For example, you can create an
array of hours from an input numeric array.

function d = foo(h) %#codegen
 d = hours(h);
end

Allowed Operations on Duration Arrays
For code generation, you are restricted to the operations on duration arrays listed in this table.

Operation Example Notes
assignment operator: = d = duration(1:3,0,0);

d(1) = hours(5);

d = duration(1:3,0,0);
d(1) = hours(5);

Code generation does not
support using the assignment
operator = to:

• Delete an element.
• Expand the size of a duration

array.
relational operators: < > <=
>= == ~=

d = duration(1:3,0,0);
tf = d(1) < d(2);

d = duration(1:3,0,0);
tf = d(1) < d(2);

Code generation supports
relational operators.

11 Code Generation for Duration Arrays

11-2

Operation Example Notes
indexing operation d = duration(1:3,0,0);

idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

d = duration(1:3,0,0);
idx = [1 2];
d(idx);
idx = logical([1 1 0]);
d(idx);

Code generation supports
indexing by position, linear
indexing, and logical indexing.

concatenation d1 = duration(1:3,0,0);
d2 = duration(4,30,0);
d = [d1 d2];

d1 = duration(1:3,0,0);
d2 = duration(4,30,0);
d = [d1 d2];

Code generation supports
concatenation of duration
arrays.

MATLAB Toolbox Functions That Support Duration Arrays
For code generation, you can use duration arrays with these MATLAB toolbox functions:

• abs
• cat
• ceil
• colon
• cummax
• cummin
• cumsum
• ctranspose
• datevec
• days
• diff
• duration
• eps
• eq
• floor
• ge
• gt
• hms
• horzcat
• hours
• interp1
• intersect
• iscolumn

 Code Generation for Duration Arrays

11-3

• isempty
• isequal
• isequaln
• isfinite
• isinf
• ismatrix
• ismember
• isnan
• isreal
• isrow
• isscalar
• issorted
• issortedrows
• isvector
• ldivide
• le
• length
• linspace
• lt
• max
• mean
• median
• milliseconds
• min
• minus
• minutes
• mldivide
• mode
• mrdivide
• mod
• mtimes
• ndims
• ne
• nnz
• numel
• permute
• plus
• repmat
• rdivide

11 Code Generation for Duration Arrays

11-4

• rem
• reshape
• seconds
• setdiff
• setxor
• sign
• size
• sort
• sortrows
• std
• sum
• times
• transpose
• uminus
• union
• unique
• uplus
• vertcat
• years

See Also

More About
• “Define Duration Array Inputs” on page 11-6
• “Duration Array Limitations for Code Generation” on page 11-8

 Code Generation for Duration Arrays

11-5

Define Duration Array Inputs
You can define duration array inputs at the command line or in the MATLAB Coder app.
Programmatic specification of duration input types by using preconditioning (assert statements) is
not supported.

Define Duration Array Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Duration Array Input” on page 11-6
• “Provide a Duration Array Type” on page 11-6
• “Provide a Constant Duration Array Input” on page 11-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Duration Array Input

Use the -args option:

D = duration(1:3,0,0);
codegen myFunction -args {D}

Provide a Duration Array Type

To provide a type for a duration array to codegen:

1 Define a duration array. For example:

D = duration(1:3,0,0);
2 Create a type from D.

t = coder.typeof(D);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant Duration Array Input

To specify that a duration array input is constant, use coder.Constant with the -args option:

D = duration(1:3,0,0);
codegen myFunction -args {coder.Constant(C)}

Define Duration Array Inputs in the MATLAB Coder App
Use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

11 Code Generation for Duration Arrays

11-6

Representation of Duration Arrays
A coder type object for a duration array describes the object and its properties. Use coder.typeof
or pass duration as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

tType = coder.newtype('duration')

A representation of an empty duration variable is stored in coder type object tType.

tType =

 matlab.coder.type.DurationType
 1x1 duration
 Format : 1x8 char

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize duration Properties by Editing Object Properties

You can resize most objects by editing the object properties. You can resize duration objects, its
properties and create arrays within the properties.

For a duration coder object, you can resize the object properties:

t = duration((1:3),0,0);
tType = coder.typeof(t)
tType.Format = 'DD/MM/YYYY'

This code resizes the Format property to be a 1x10 char property.

tType =

 matlab.coder.type.DurationType
 1x3 duration
 Format : 1x10 char

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
duration | coder.Constant | coder.typeof

More About
• “Code Generation for Duration Arrays” on page 11-2
• “Duration Array Limitations for Code Generation” on page 11-8

 Define Duration Array Inputs

11-7

Duration Array Limitations for Code Generation
When you create duration arrays in MATLAB code that you intend for code generation, you must
specify the durations by using the duration, years, days, hours, minutes, seconds, or
milliseconds functions. See “Dates and Time”.

For duration arrays, code generation does not support the following inputs and operations:

• Text inputs. For example, specifying a character vector as the input argument produces an error.

function d = foo() %#codegen
 d = duration('01:30:00');
end

• Growth by assignment. For example, assigning a value beyond the end of an array produces an
error.

function d = foo() %#codegen
 d = duration(1:3,0,0);
 d(4) = hours(4);
end

• Deleting an element. For example, assigning an empty array to an element produces an error.

function d = foo() %#codegen
 d = duration(1:3,0,0);
 d(1) = [];
end

• Converting duration values to text by using the char, cellstr, or string functions.

Limitations that apply to classes also apply to duration arrays. For more information, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

See Also
duration | years | days | hours | minutes | seconds | milliseconds

More About
• “Code Generation for Duration Arrays” on page 11-2
• “Define Duration Array Inputs” on page 11-6

11 Code Generation for Duration Arrays

11-8

Code Generation for Tables

• “Code Generation for Tables” on page 12-2
• “Define Table Inputs” on page 12-5
• “Table Limitations for Code Generation” on page 12-8

12

Code Generation for Tables

In this section...
“Define Tables for Code Generation” on page 12-2
“Allowed Operations on Tables” on page 12-2
“MATLAB Toolbox Functions That Support Tables” on page 12-3

The table data type is a data type suitable for column-oriented or tabular data that is often stored as
columns in a text file or in a spreadsheet. Tables consist of rows and column-oriented variables. Each
variable in a table can have a different data type and a different size with one restriction: each
variable must have the same number of rows. For more information, see “Tables”.

When you use tables with code generation, adhere to these restrictions.

Define Tables for Code Generation
For code generation, use the table function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows and a cell array that has
variable names. You can create a table that contains these arrays as table variables.

function T = foo(A,B,C,vnames) %#codegen
 T = table(A,B,C,'VariableNames',vnames);
end

You can use the array2table, cell2table, and struct2table functions to convert arrays, cell
arrays, and structures to tables. For example, you can convert an input cell array to a table.

function T = foo(C,vnames) %#codegen
 T = cell2table(C,'VariableNames',vnames);
end

For code generation, you must supply table variable names when you create a table. Table variable
names do not have to be valid MATLAB identifiers. The names must be composed of ASCII characters,
but can include any ASCII characters (such as commas, dashes, and space characters).

Allowed Operations on Tables
For code generation, you are restricted to the operations on tables listed below.

Operation Example Notes
assignment operator: = T = table(A,B,C,'VariableNames',vnames);

T{:,1} = D;

T = table(A,B,C,'VariableNames',vnames);
T{:,1} = D;

Code generation does not
support using the assignment
operator = to:

• Delete a variable or a row.
• Add a variable or a row.

12 Code Generation for Tables

12-2

Operation Example Notes
indexing operation T = table(A,B,C,'VariableNames',vnames);

T(1:5,1:3);

T = table(A,B,C,'VariableNames',vnames);
T(1:5,1:3);

Code generation supports
indexing by position, variable or
row name, and logical indexing.

Code generation supports:

• Table indexing with smooth
parentheses, ().

• Content indexing with curly
braces, {}.

• Dot notation to access a
table variable.

concatenation T1 = table(A,B,C,'VariableNames',vnames);
T2 = table(D,E,F,'VariableNames',vnames);
T = [T1 ; T2];

T1 = table(A,B,C,'VariableNames',vnames);
T2 = table(D,E,F,'VariableNames',vnames);
T = [T1 ; T2];

Code generation supports table
concatenation.

• For vertical concatenation,
tables must have variables
that have the same names in
the same order.

• For horizontal concatenation,
tables must have the same
number of rows. If the tables
have row names, then they
must have the same row
names in the same order.

MATLAB Toolbox Functions That Support Tables
For code generation, you can use tables with these MATLAB toolbox functions:

• addvars
• array2table
• cat
• cell2table
• convertvars
• height
• horzcat
• innerjoin
• intersect
• isempty
• ismember
• issortedrows
• join
• mergevars

 Code Generation for Tables

12-3

• movevars
• ndims
• numel
• outerjoin
• removevars
• renamevars
• rows2vars
• setdiff
• setxor
• size
• sortrows
• splitvars
• stack
• struct2table
• table
• table2array
• table2cell
• table2struct
• union
• unique
• unstack
• varfun
• vertcat
• width

See Also

More About
• “Define Table Inputs” on page 12-5
• “Table Limitations for Code Generation” on page 12-8

12 Code Generation for Tables

12-4

Define Table Inputs
You can define table inputs at the command line or in the MATLAB Coder app. Programmatic
specification of table input types by using preconditioning (assert statements) is not supported.

Define Table Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Table Input” on page 12-5
• “Provide a Table Type” on page 12-5
• “Provide a Constant Table Input” on page 12-5

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Table Input

Use the -args option:

T = table(A,B,C,'VariableNames',vnames);
codegen myFunction -args {T}

Provide a Table Type

To provide a type for a table to codegen:

1 Define a table. For example:

T = table(A,B,C,'VariableNames',vnames);
2 Create a type from T.

t = coder.typeof(T);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant Table Input

To specify that a table input is constant, use coder.Constant with the -args option:

T = table(A,B,C,'VariableNames',vnames);
codegen myFunction -args {coder.Constant(T)}

Define Table Inputs in the MATLAB Coder App
Use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

 Define Table Inputs

12-5

Representation of Tables
A coder type object for a table describes the object and its properties. Use coder.typeof or pass
table as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

A = [1 2 3]';
B = [4 5 6]';
C = [7 8 9]';
t = table(A,B,C);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType =

 matlab.coder.type.TableType
 3x3 table
 Data : 1x3 homogeneous cell
 Description : 1x0 char
 UserData : 0x0 double
 DimensionNames : {'Row'} {'Variables'}
 VariableNames : {'A'} {'B'} {'C'}
 VariableDescriptions : 1x3 homogeneous cell
 VariableUnits : 1x3 homogeneous cell
 VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
 RowNames : 0x0 homogeneous cell

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a table coder object, you can resize the object properties:

A = [1 2 3]';
B = [4 5 6]';
C = [7 8 9]';
t = table(A,B,C);
tType = coder.typeof(t)
tType.Description = coder.resize(tType.Description,[1 12],[0 1])

This code resizes the Description property to be a 1x:12 char property which has an upper bound
of 12.

tType =

 matlab.coder.type.TableType
 3x3 table
 Data : 1x3 homogeneous cell

12 Code Generation for Tables

12-6

 Description : 1x:12 char
 UserData : 0x0 double
 DimensionNames : {'Row'} {'Variables'}
 VariableNames : {'A'} {'B'} {'C'}
 VariableDescriptions : 1x3 homogeneous cell
 VariableUnits : 1x3 homogeneous cell
 VariableContinuity : 1x3 matlab.internal.coder.tabular.Continuity
 RowNames : 0x0 homogeneous cell

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
table | coder.Constant | coder.typeof

More About
• “Code Generation for Tables” on page 12-2
• “Table Limitations for Code Generation” on page 12-8

 Define Table Inputs

12-7

Table Limitations for Code Generation
If you create tables, modify them, or use table functions in MATLAB code that you intend for code
generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to tables. For more information on class limitations, see “MATLAB Classes
Definition for Code Generation” on page 15-2.

Creating Tables Limitations
If your MATLAB code creates tables, then code generation has these limitations.

Inputs for Table Creation Limitations
Any inputs • Table variable names do not have to be valid

MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Table created from input arrays • You must specify variables names by using the
'VariableNames' name-value argument
when creating tables from input arrays by
using the table, array2table, or
cell2table functions.

Table created with preallocated variables • You do not have to specify the
'VariableNames' argument when you
preallocate a table by using the table
function and the 'Size' name-value
argument.

• You can specify only the following data types
by using the 'VariableTypes' name-value
argument:

• 'double'
• 'single'
• 'doublenan' or 'doubleNaN'
• 'singlenan' or 'singleNaN'
• 'int8', 'int16', 'int32', or 'int64'
• 'uint8', 'uint16', 'uint32', or

'uint64'
• 'logical'
• 'duration'
• 'cellstr'
• 'char'

Modifying Tables Limitations
If your MATLAB code modifies data in a table or its properties, then code generation has these
limitations.

12 Code Generation for Tables

12-8

Table Operation or Property Limitations
VariableNames, RowNames, DimensionNames,
or UserData properties

• You cannot change the VariableNames,
RowNames, DimensionNames, or UserData
properties of a table after you create it.

You can specify the 'VariableNames',
'RowNames', and 'DimensionNames' input
arguments when you create a table. These
input arguments specify the properties.

Table indices that specify variables as input
arguments to generated code

• To pass table indices that specify variables as
input arguments into generated code, first
make the indices constant by using the
coder.Constant function. If table indices
are not constant, then indexing into variables
produces an error.

Custom metadata • You cannot add custom metadata to a table.
The addprop and rmprop functions are not
supported.

Assignments that change size of table • You cannot change the size of a table by
assignments. For example, adding a new row
produces an error.

function T = foo() %#codegen
 T = table((1:3)',(1:3)','VariableNames',{'Var1','Var2'});
 T(4,2) = 5;
end

Deleting a row or a variable also produces an
error.

Vertical concatenation • When you vertically concatenate tables, they
must have the same variable names in the
same order. In MATLAB, the variable names
must be the same but can be in different
orders in the tables.

Horizontal concatenation • When you horizontally concatenate tables and
the tables have row names, they must have
the same row names in the same order. In
MATLAB, the row names must be the same
but can be in different orders in the tables.

Table variables that are N-D cell arrays • If two tables have variables that are N-D cell
arrays, then the tables cannot be vertically
concatenated.

• You cannot use curly braces to extract data
from multiple table variables that are N-D cell
arrays because this operation is horizontal
concatenation.

 Table Limitations for Code Generation

12-9

Using Table Functions Limitations
If your MATLAB code uses the functions listed in the table, then code generation has these
limitations.

Function Limitations
convertvars • Function handles are not supported.

• The second and third input arguments (vars
and dataType) must be constant.

• You cannot specify dataType as 'cell',
'cellstr', or 'char'.

innerjoin • In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'

• Nested tables are not supported.
intersect

setdiff

setxor

union

• These functions support unsorted tables in all
cases. You do not have to specify the
'stable' option.

issortedrows • The input argument vars must be constant.
• If any table variables have multiple columns,

then those variables must have fixed widths.

12 Code Generation for Tables

12-10

Function Limitations
join • In general, input tables cannot have nonkey

variables with the same names. However, you
can join subsets of the input tables if you
specify the name-value arguments:

• 'KeepOneCopy', where you list variables
to take from the left input table only.

• 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
table or the right input table, but not both.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'
• 'KeepOneCopy'

• Nested tables are not supported.
movevars • The input argument vars cannot contain

duplicate variable names.

 Table Limitations for Code Generation

12-11

Function Limitations
outerjoin • Input tables cannot have key variables with

the same names unless the value of
'MergeKeys' is true (logical 1).

• In general, the input tables cannot have any
nonkey variables with the same names.
However, you can join subsets of the input
tables if you specify the 'LeftVariables'
and 'RightVariables' name-value
arguments. Specify these arguments so that
no variable name appears in both
'LeftVariables' and 'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'MergeKeys'
• 'LeftVariables'
• 'RightVariables'
• 'Type'

• Nested tables are not supported.
rows2vars • The input table cannot be variable-size.

• The 'VariableNamesSource' name-value
argument is not supported.

• The value of the 'DataVariables' name-
value argument must be constant.

• The value of the 'VariableNamingRule'
name-value argument must be constant.

• If you assign row names to the input table,
then the vector of row names must be
constant.

sortrows • The input argument vars must be constant.
• If tblA has a variable that is a cell array of

character vectors with multiple columns, then
you cannot sort the table using the values in
that variable.

splitvars • The value of the 'NewVariableNames'
name-value argument must be constant.

• The variables that are split cannot have a
variable number of columns.

12 Code Generation for Tables

12-12

Function Limitations
stack • The second input argument, vars, must be

constant.
• The values of the 'ConstantVariables',

'NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

unstack • The 'NewDataVariableNames' name-value
argument must be specified. Its value must be
constant.

• The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

• If you specify grouping variables and constant
variables, then they must be constant.

• If you specify an aggregation function, then it
must be constant.

• If a variable of the input table is a cell array of
character vectors, then unstack fills empty
cells in the corresponding output variable with
1-by-0 character arrays in the generated code.
In MATLAB, unstack fills such gaps with 0-
by-0 character arrays.

• The unstack function does not support code
generation when the input table has a variable
that is a heterogeneous cell array that cannot
be converted to a homogeneous cell array.

• If the input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction' is
'unique'. But the unique function does
not support cell arrays.

 Table Limitations for Code Generation

12-13

Function Limitations
varfun • The function handle input, func, must be

constant.
• While function handles can be inputs to

varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” on page 17-2.

• The values for all name-value arguments must
be constant.

• The 'ErrorHandler' name-value argument
is not supported for code generation.

• Variable-size input arguments are not
supported.

• Grouping variables cannot have duplicate
values in generated code.

• You cannot specify the value of
'OutputFormat' as 'cell' if you specify
the 'GroupingVariables' name-value
argument and the function returns a different
data type for each variable specified by
'InputVariables'.

• If you specify groups and the number of
groups is not known at compile time, and that
number is zero, then empty double variables
in the output might have sizes of 1-by-0 in
generated code. In MATLAB, such variables
have sizes of 0-by-0.

See Also
array2table | cell2table | struct2table | table

More About
• “Code Generation for Tables” on page 12-2
• “Define Table Inputs” on page 12-5

12 Code Generation for Tables

12-14

Code Generation for Timetables

• “Code Generation for Timetables” on page 13-2
• “Define Timetable Inputs” on page 13-6
• “Timetable Limitations for Code Generation” on page 13-9

13

Code Generation for Timetables

In this section...
“Define Timetables for Code Generation” on page 13-2
“Allowed Operations on Timetables” on page 13-2
“MATLAB Toolbox Functions That Support Timetables” on page 13-3

The timetable data type is a data type suitable for tabular data with time-stamped rows. Like
tables, timetables consist of rows and column-oriented variables. Each variable in a timetable can
have a different data type and a different size with one restriction: each variable must have the same
number of rows.

The row times of a timetable are time values that label the rows. You can index into a timetable by
row time and variable. To index into a timetable, use smooth parentheses () to return a subtable or
curly braces {} to extract the contents. You can refer to variables and to the vector of row times by
their names. For more information, see “Timetables”.

When you use timetables with code generation, adhere to these restrictions.

Define Timetables for Code Generation
For code generation, use the timetable function. For example, suppose the input arguments to your
MATLAB function are three arrays that have the same number of rows (A, B, and C), a datetime or
duration vector containing row times (D), and a cell array that has variable names (vnames). You
can create a timetable that contains these arrays as timetable variables.

function TT = foo(A,B,C,D,vnames) %#codegen
 TT = table(A,B,C,'RowTimes',D,'VariableNames',vnames);
end

To convert arrays and tables to timetables, use the array2timetable and table2timetable
functions. For example, you can convert an input M-by-N matrix to a timetable, where each column of
the matrix becomes a variable in the timetable. Assign row times by using a duration vector.

function TT = foo(A,D,vnames) %#codegen
 TT = array2timetable(A,'RowTimes',D,'VariableNames',vnames);
end

For code generation, you must supply timetable variable names when you create a timetable.
Timetable variable names do not have to be valid MATLAB identifiers. The names must be composed
of ASCII characters, but can include any ASCII characters (such as commas, dashes, and space
characters).

The row times can have either the datetime or duration data type.

Allowed Operations on Timetables
For code generation, you are restricted to the operations on timetables listed in this table.

13 Code Generation for Timetables

13-2

Operation Example Notes
Assignment operator: = TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);

TT{:,1} = X;

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT{:,1} = X;

Code generation does not
support using the assignment
operator = to:

• Delete a variable or a row.
• Add a variable or a row.

Indexing operation D = seconds(1:10);
TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT(seconds(3:7),1:3);

D = seconds(1:10);
TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
TT(seconds(3:7),1:3);

Code generation supports
indexing by position, variable or
row time, and logical indexing.
Also, you can index using
objects created by using the
timerange or withtol
functions.

Code generation supports:

• Timetable indexing with
smooth parentheses, ().

• Content indexing with curly
braces, {}.

• Dot notation to access a
timetable variable.

Concatenation TT1 = timetable(A,B,C,'RowTimes',D1,'VariableNames',vnames);
TT2 = timetable(D,E,F,'RowTimes',D2,'VariableNames',vnames);
TT = [TT1 ; TT2];

TT1 = timetable(A,B,C,'RowTimes',D1,'VariableNames',vnames);
TT2 = timetable(D,E,F,'RowTimes',D2,'VariableNames',vnames);
TT = [TT1 ; TT2];

Code generation supports
timetable concatenation.

• For vertical concatenation,
timetables must have
variables that have the same
names in the same order.

• For horizontal concatenation,
timetables must have the
same number of rows. They
also must have the same row
times in the same order.

MATLAB Toolbox Functions That Support Timetables
For code generation, you can use timetables with these MATLAB toolbox functions:

• addvars
• array2timetable
• cat
• convertvars
• height
• horzcat
• innerjoin

 Code Generation for Timetables

13-3

• intersect
• isempty
• ismember
• isregular
• issorted
• issortedrows
• join
• mergevars
• movevars
• ndims
• numel
• outerjoin
• removevars
• renamevars
• rows2vars
• retime
• setdiff
• setxor
• size
• sortrows
• splitvars
• stack
• synchronize
• table2timetable
• timerange
• timetable
• timetable2table
• union
• unique
• unstack
• varfun
• vertcat
• width
• withtol

See Also

More About
• “Define Timetable Inputs” on page 13-6

13 Code Generation for Timetables

13-4

• “Timetable Limitations for Code Generation” on page 13-9

 Code Generation for Timetables

13-5

Define Timetable Inputs
You can define timetable inputs at the command line or in the MATLAB Coder app. Programmatic
specification of timetable input types by using preconditioning (assert statements) is not supported.

Define Timetable Inputs at the Command Line
Use one of these procedures:

• “Provide an Example Timetable Input” on page 13-6
• “Provide a Timetable Type” on page 13-6
• “Provide a Constant Timetable Input” on page 13-6

Alternatively, if you have a test file that calls your entry-point function with example inputs, you can
determine the input types by using coder.getArgTypes.

Provide an Example Timetable Input

Use the -args option:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
codegen myFunction -args {TT}

Provide a Timetable Type

To provide a type for a timetable to codegen:

1 Define a timetable. For example:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
2 Create a type from T.

t = coder.typeof(TT);
3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Provide a Constant Timetable Input

To specify that a timetable input is constant, use coder.Constant with the -args option:

TT = timetable(A,B,C,'RowTimes',D,'VariableNames',vnames);
codegen myFunction -args {coder.Constant(TT)}

Define Timetable Inputs in the MATLAB Coder App
Use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14

13 Code Generation for Timetables

13-6

Representation of Timetables
A coder type object for a timetable describes the object and its properties. Use coder.typeof or
pass timetable as a string scalar to coder.newtype.

The coder type object displays a succinct description of the object properties while excluding internal
state values. Nonconstant properties display their type and size, while constant properties display
only their values. For example:

t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t)

The representation of variable t is stored in coder type object tType.

tType =

 matlab.coder.type.RegularTimetableType
 5x2 timetable
 Data : 1x2 homogeneous cell
 Description : 1x0 char
 UserData : 0x0 double
 DimensionNames : {'Time'} {'Variables'}
 VariableNames : {'Var1'} {'Var2'}
 VariableDescriptions : 1x2 homogeneous cell
 VariableUnits : 1x2 homogeneous cell
 VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
 StartTime : 1x1 matlab.coder.type.DurationType
 SampleRate : 1x1 double
 TimeStep : 1x1 matlab.coder.type.DurationType

Define a regular timetable by specifying the SampleRate or TimeStep. You can also define an
irregular timetable by specifying the RowTimes. For example:

t1 = timetable((1:3)','RowTimes',seconds(1:3));
t1Type = coder.typeof(t)

The representation of irregular table t1 is stored in coder type object t1Type.

t1Type =

 matlab.coder.type.TimetableType
 3x1 timetable
 Data : 1x1 homogeneous cell
 Description : 1x0 char
 UserData : 0x0 double
 DimensionNames : {'Time'} {'Variables'}
 VariableNames : {'Var1'}
 VariableDescriptions : 1x1 homogeneous cell
 VariableUnits : 1x1 homogeneous cell
 VariableContinuity : 1x1 matlab.internal.coder.tabular.Continuity
 RowTimes : 3x1 matlab.coder.type.DurationType

If your workflow requires the legacy representation of coder type objects, use the getCoderType
function on the variable that has the new representation of your class or object. See “Legacy
Representation of Coder Type Objects” on page 4-15.

 Define Timetable Inputs

13-7

Resize Object Properties by Using coder.resize

You can resize most objects by using coder.resize. You can resize objects, its properties and create
arrays within the properties.

For a timetable coder object, you can resize the object properties:

t = timetable((1:5)',(11:15)','SampleRate',1);
tType = coder.typeof(t);
tType.UserData = coder.resize(tType.UserData,[10 1],[1 0])

This code resizes the UserData property to be a :10x1 double property. The first dimension is
upper-bound at10.

tType =

 matlab.coder.type.RegularTimetableType
 5x2 timetable
 Data : 1x2 homogeneous cell
 Description : 1x0 char
 UserData : :10x1 double
 DimensionNames : {'Time'} {'Variables'}
 VariableNames : {'Var1'} {'Var2'}
 VariableDescriptions : 1x2 homogeneous cell
 VariableUnits : 1x2 homogeneous cell
 VariableContinuity : 1x2 matlab.internal.coder.tabular.Continuity
 StartTime : 1x1 matlab.coder.type.DurationType
 SampleRate : 1x1 double
 TimeStep : 1x1 matlab.coder.type.DurationType

You can also resize the object by using coder.resize. See “Edit and Represent Coder Type Objects
and Properties” on page 4-14.

See Also
timetable | coder.Constant | coder.typeof

More About
• “Code Generation for Timetables” on page 13-2
• “Timetable Limitations for Code Generation” on page 13-9

13 Code Generation for Timetables

13-8

Timetable Limitations for Code Generation
If you create timetables, modify them, or use timetable functions in MATLAB code that you intend for
code generation, then code generation has limitations described in the next sections. Limitations that
apply to classes also apply to timetables. For more information on class limitations, see “MATLAB
Classes Definition for Code Generation” on page 15-2.

Creating Timetables Limitations
If your MATLAB code creates timetables, then code generation has these limitations.

Inputs for Timetable Creation Limitations
Any inputs • The name of the first dimension of a timetable

is 'Time' unless you specify it by using the
'DimensionNames' name-value argument.

The name of the first dimension is also the
name of the vector of row times, which you
can refer to by using dot notation.

• To create a regular timetable when the
'SampleRate', 'StartTime', or
'TimeStep' name-value arguments are
passed in by an entry point function, first use
the coder.Constant function to make the
values constant. If you do not make them
constant, then the row times are considered to
be irregular.

• If you create a regular timetable, and you
attempt to set irregular row times, then an
error is produced.

• If you create an irregular timetable, then it
remains irregular even if you set its sample
rate or time step.

• Timetable variable names do not have to be
valid MATLAB identifiers. The names must be
composed of ASCII characters, which can
include commas, dashes, and space
characters.

Timetable created from input arrays • You must specify variables names by using the
'VariableNames' name-value argument
when creating timetables from input arrays by
using the timetable or array2timetable
functions.

 Timetable Limitations for Code Generation

13-9

Inputs for Timetable Creation Limitations
Timetable created with preallocated variables • You do not have to specify the

'VariableNames' argument when you
preallocate a timetable by using the
timetable function and the 'Size' name-
value argument.

• You can specify only the following data types
by using the 'VariableTypes' name-value
argument:

• 'double'
• 'single'
• 'doublenan' or 'doubleNaN'
• 'singlenan' or 'singleNaN'
• 'int8', 'int16', 'int32', or 'int64'
• 'uint8', 'uint16', 'uint32', or

'uint64'
• 'logical'
• 'datetime'
• 'duration'
• 'cellstr'
• 'char'

Modifying Timetables Limitations
If your MATLAB code modifies data in a timetable, its row times, or its properties, then code
generation has these limitations.

Timetable Operation or Property Limitations
VariableNames, DimensionNames, or
UserData properties

• After you create a timetable, you cannot
change the VariableNames,
DimensionNames, or UserData properties.

When you create a timetable, you can specify
the 'VariableNames', 'DimensionNames',
and 'RowTimes' input arguments to set the
properties having those names.

13 Code Generation for Timetables

13-10

Timetable Operation or Property Limitations
Timetable indices as input arguments to
generated code

• To pass timetable indices that specify
variables into generated code as input
arguments, first use the coder.Constant
function to make the indices into the second
dimension of the timetable constant. If indices
into the second dimension are not constant,
then indexing into variables produces an
error.

• If a timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is nonconstant with
a variable number of rows.

• If a regular timetable has row times that are
duration values, and you index into it by
using either duration values or an object
produced by the timerange or withtol
functions, then the output is considered to be
irregular.

Custom metadata • You cannot add custom metadata to a
timetable. The addprop and rmprop
functions are not supported.

Assignments that change size of timetable • You cannot change the size of a timetable by
assignments. For example, this call to add a
new row produces an error.

function TT = foo() %#codegen
 TT = timetable((1:3)',(1:3)','RowTimes',seconds([0,5,10]),...
 'VariableNames',{'Var1','Var2'});
 TT{4,:} = [5,5];
end

Deleting a row or a variable by assignment
also produces an error.

• You cannot add a new row by using a new row
time in an assignment. For example, this call
to add a new row by using a new row time
instead of a numeric index does not produce
an error, but also does not add the new row.

function TT = foo() %#codegen
 TT = timetable((1:3)',(1:3)','RowTimes',seconds([0,5,10]),...
 'VariableNames',{'Var1','Var2'});
 TT{seconds(15),:} = [5,5];
end

 Timetable Limitations for Code Generation

13-11

Timetable Operation or Property Limitations
Vertical concatenation • When you vertically concatenate timetables,

they must have the same variable names in
the same order. In MATLAB, the variable
names must be the same but can be in
different orders in the timetables.

Horizontal concatenation • When you horizontally concatenate timetables,
they must have the same row times in the
same order. In MATLAB, the row times must
be the same but can be in different orders in
the timetables.

Timetable variables that are N-D cell arrays • If two timetables have variables that are N-D
cell arrays, then you cannot vertically
concatenate the timetables.

• You cannot use curly braces to extract data
from multiple timetable variables that are N-D
cell arrays because this operation is horizontal
concatenation.

Using Timetable Functions Limitations
If your MATLAB code uses the functions listed in the table, then code generation has these
limitations.

Function Limitations
convertvars • Function handles are not supported.

• The second and third input arguments (vars
and dataType) must be constant.

• You cannot specify dataType as 'cell',
'cellstr', or 'char'.

13 Code Generation for Timetables

13-12

Function Limitations
innerjoin • In general, the input timetables cannot have

any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'

• Nested timetables are not supported.
intersect

setdiff

setxor

union

• These functions support unsorted timetables
in all cases. You do not have to specify the
'stable' option.

isregular • Use coder.Constant to make the input
argument timeComponent constant.

• The input argument timeComponent cannot
be a calendar unit. If you specify it, then its
value must be 'time'.

issortedrows • The input argument vars must be constant.
• If any timetable variables have multiple

columns, then those variables must have fixed
widths.

 Timetable Limitations for Code Generation

13-13

Function Limitations
join • In general, input timetables cannot have

nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the name-value
arguments:

• 'KeepOneCopy', where you list variables
to take from the left input timetable only.

• 'LeftVariables' and
'RightVariables', where you list
variables to take from either the left input
timetable or the right input timetable, but
not both.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'LeftVariables'
• 'RightVariables'
• 'KeepOneCopy'

• Nested timetables are not supported.
movevars • The input argument vars cannot contain

duplicate variable names.

13 Code Generation for Timetables

13-14

Function Limitations
outerjoin • Input timetables cannot have key variables

with the same names unless the value of
'MergeKeys' is true (logical 1).

• In general, the input timetables cannot have
any nonkey variables with the same names.
However, you can join subsets of the input
timetables if you specify the
'LeftVariables' and 'RightVariables'
name-value arguments. Specify these
arguments so that no variable name appears
in both 'LeftVariables' and
'RightVariables'.

• The values of these name-value arguments
must be constant:

• 'Keys'
• 'LeftKeys'
• 'RightKeys'
• 'MergeKeys'
• 'LeftVariables'
• 'RightVariables'
• 'Type'

• Nested timetables are not supported.
retime

synchronize

• The row times of the output timetable are
considered to be irregular, even when
synchronized to row times that have a regular
time step.

• The 'makima' interpolation method is not
supported.

• If the VariableContinuity properties of
the input timetables are not constant, then
this function ignores them.

• The 'weekly', 'monthly', and
'quarterly' time steps are not supported.

• If the input timetables have row times that
are datetime values, then the 'daily'
and 'yearly' time steps also are not
supported.

sortrows • The input argument vars must be constant.
• If tblA has a variable that is a cell array of

character vectors with multiple columns, then
you cannot sort the timetable using the values
in that variable.

 Timetable Limitations for Code Generation

13-15

Function Limitations
splitvars • The value of the 'NewVariableNames'

name-value argument must be constant.
• The variables that are split cannot have a

variable number of columns.
stack • The second input argument, vars, must be

constant.
• The values of the 'ConstantVariables',

'NewDataVariableName', and
'IndexVariableName' name-value
arguments must be constant.

timerange • The input argument unitOfTime is not
supported.

13 Code Generation for Timetables

13-16

Function Limitations
unstack • The 'NewDataVariableNames' name-value

argument must be specified. Its value must be
constant.

• The vars and ivars input arguments (data
variables and indicator variables) must be
constant.

• If you specify grouping variables and constant
variables, then they must be constant.

• If you specify an aggregation function, then it
must be constant.

• If the input is a timetable with regular row
times and you specify grouping variables that
do not include the row times, then the output
timetable might have irregular row times.
Even though the intervals between output row
times might look the same, the output
timetable considers the vector of row times to
be irregular.

• If a variable of the input timetable is a cell
array of character vectors, then unstack fills
empty cells in the corresponding output
variable with 1-by-0 character arrays in the
generated code. In MATLAB, unstack fills
such gaps with 0-by-0 character arrays.

• The unstack function does not support code
generation when the input timetable has a
variable that is a heterogeneous cell array
that cannot be converted to a homogeneous
cell array.

• If the input has a variable that is a
homogeneous cell array, or that can be
converted to one, then the
'AggregationFunction' name-value
argument must be specified. The default
value of 'AggregationFunction' is
'unique'. But the unique function does
not support cell arrays.

 Timetable Limitations for Code Generation

13-17

Function Limitations
varfun • The function handle input, func, must be

constant.
• While function handles can be inputs to

varfun itself, they cannot be inputs to your
entry point functions. Specify func within the
code meant for code generation. For more
information, see “Function Handle Limitations
for Code Generation” on page 17-2.

• The values for all name-value arguments must
be constant.

• The 'ErrorHandler' name-value argument
is not supported for code generation.

• Variable-size input arguments are not
supported.

• If you specify 'GroupingVariables', then
the output is always an irregular timetable.

• Grouping variables cannot have duplicate
values in generated code.

• You cannot specify the value of
'OutputFormat' as 'cell' if you specify
the 'GroupingVariables' name-value
arguments and the function returns a different
data type for each variable specified by
'InputVariables'.

• If you specify groups and the number of
groups is not known at compile-time, and that
number turns out to be zero, then empty
double variables in the output might have
sizes of 1-by-0 in generated code. In MATLAB,
such variables have sizes of 0-by-0.

See Also
array2timetable | table2timetable | timetable

More About
• “Code Generation for Timetables” on page 13-2
• “Define Timetable Inputs” on page 13-6

13 Code Generation for Timetables

13-18

Code Generation for Enumerated Data

• “Code Generation for Enumerations” on page 14-2
• “Customize Enumerated Types in Generated Code” on page 14-7

14

Code Generation for Enumerations
Enumerations represent a fixed set of named values. Enumerations help make your MATLAB code
and generated C/C++ code more readable. For example, the generated code can test equality with
code such as if (x == Red) instead of using strcmp.

For code generation, when you use enumerations, adhere to these restrictions:

• Calls to methods of enumeration classes are not supported.
• Passing strings or character vectors to constructors of enumerations is not supported.
• The enumeration class must derive from one of these base types: int8, uint8, int16, uint16,

or int32. See “Define Enumerations for Code Generation” on page 14-2.
• You can use only a limited set of operations on enumerations. See “Allowed Operations on

Enumerations” on page 14-4.
• Use enumerations with functions that support enumerated types for code generation. See

“MATLAB Toolbox Functions That Support Enumerations” on page 14-5.

Define Enumerations for Code Generation
For code generation, the enumeration class must derive from one of these base types: int8, uint8,
int16, uint16, or int32. For example:

classdef PrimaryColors < int32
 enumeration
 Red(1),
 Blue(2),
 Yellow(4)
 end
end

You can use the base type to control the size of an enumerated type in generated C/C++ code. You
can:

• Represent an enumerated type as a fixed-size integer that is portable to different targets.
• Reduce memory usage.
• Interface with legacy code.
• Match company standards.

Representation of Enumerated Type in Generated Code

The representation of the enumerated type in generated C/C++ code depends on the following:

• The base type of the MATLAB enumeration
• The target language (C or C++)
• If the target language is C++, the target language standard (C++03 or C++11)

Base Type is Native Integer Type

If the base type is the native integer type for the target platform (for example, int32), the code
generator produces a C/C++ enumerated type. Consider this MATLAB enumerated type definition:

14 Code Generation for Enumerated Data

14-2

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end
end

If you generate C code or C++03 code, the generated enumeration is:

enum LEDcolor
{
 GREEN = 1,
 RED
};

If you generate C++11 code, the generated code contains an enumeration class (by default) that
explicitly defines the underlying type:

enum class LEDcolor : int
{
 GREEN = 1,
 RED
};

Base Type is Different from the Native Integer Type

Suppose that built-in integer base type for the enumeration is different from the native integer type
for the target platform. For example, consider this MATLAB enumerated type definition:

classdef LEDcolor < int16
 enumeration
 GREEN(1),
 RED(2)
 end
end

• If you generate C code, the code generator produces a typedef statement for the enumerated
type and #define statements for the enumerated values. For example, the enumerated type
definition LEDcolor produces this C code:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

• If you generate C++03 code, the enumeration members are converted to constants. These
constants belong to the namespace that contains the enumeration type definition in the generated
C++ code.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++ code is placed inside the namespace pkg:

namespace pkg {
typedef short LEDcolor;

// enum pkg_LEDcolor
const LEDcolor GREEN{1};
const LEDcolor RED{2};

 Code Generation for Enumerations

14-3

}
• C++11 allows you to specify the underlying type of an enumeration, just like MATLAB does. If you

generate C++11 code, the MATLAB enumeration class is converted to a C++ enumeration class
(by default) that explicitly defines the underlying type.

For example, suppose that you place the enumerated type definition LEDcolor inside the package
pkg. The default behavior of the code generator is to convert MATLAB packages to C++
namespaces. The generated C++11 code is placed inside the namespace pkg:

namespace pkg {
enum class LEDcolor : short
{
 GREEN = 1, // Default value
 RED
};

}

The C/C++ type in the typedef statement or the underlying type of the C++11 enumeration
depends on:

• The integer sizes defined for the production hardware in the hardware implementation object or
the project settings. See coder.HardwareImplementation.

• The setting that determines the use of built-in C types or MathWorks typedefs in the generated
code. See “Specify Data Types Used in Generated Code” on page 27-24 and “Mapping MATLAB
Types to Types in Generated Code” on page 34-15.

Generate C++11 Code That Contains Ordinary C Enumerations

You can change the default behavior of the code generator to produce ordinary C enumerations in the
generated C++11 code. Do one of the following:

• In the code generation configuration object, set the CppGenerateEnumClass property to false.
• In the MATLAB Coder app, in the Generate step, on the Code Appearance tab, clear the

Generate C++ enum class from MATLAB enumeration check box.

To instruct the code generator to produce ordinary C enumeration for a particular MATLAB
enumeration class in your code, include the static method generateEnumClass that returns false
in the implementation of that MATLAB enumeration class. See “Customize Enumerated Types in
Generated Code” on page 14-7.

Allowed Operations on Enumerations
For code generation, you are restricted to the operations on enumerations listed in this table.

Operation Example Notes
assignment operator: = —

14 Code Generation for Enumerated Data

14-4

Operation Example Notes
relational operators: < > <=
>= == ~=

xon == xoff Code generation does not
support using == or ~= to test
equality between an
enumeration member and a
string array, a character array,
or a cell array of character
arrays.

cast operation double(LEDcolor.RED) —
conversion to character array or
string

y = char(LEDcolor.RED);
y1 = cast(LEDcolor.RED,'char');
y2 = string(LEDcolor.RED);

• You can convert only
compile-time scalar valued
enumerations. For example,
this code runs in MATLAB,
but produces an error in
code generation:
y2 = string(repmat(LEDcolor.RED,1,2));

• The code generator
preserves enumeration
names when the conversion
inputs are constants. For
example, consider this
enumerated type definition:
classdef AnEnum < int32
 enumeration
 zero(0),
 two(2),
 otherTwo(2)
 end
end

Generated code produces
"two" for
y = string(AnEnum.two)

and "otherTwo" for
y = string(AnEnum.two)

indexing operation m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

—

control flow statements: if,
switch, while

if state == sysMode.ON
 led = LEDcolor.GREEN;
else
 led = LEDcolor.RED;
end

—

MATLAB Toolbox Functions That Support Enumerations
For code generation, you can use enumerations with these MATLAB toolbox functions:

• cast
• cat
• char
• circshift

 Code Generation for Enumerations

14-5

• enumeration
• fliplr
• flipud
• histc
• intersect
• ipermute
• isequal
• isequaln
• isfinite
• isinf
• ismember
• isnan
• issorted
• length
• permute
• repmat
• reshape
• rot90
• setdiff
• setxor
• shiftdim
• sort
• sortrows
• squeeze
• string
• union
• unique

See Also

More About
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page 27-131
• “Customize Enumerated Types in Generated Code” on page 14-7

14 Code Generation for Enumerated Data

14-6

Customize Enumerated Types in Generated Code
For code generation, to customize an enumeration, in the static methods section of the class
definition, include customized versions of the methods listed in this table.

Method Description Default Value
Returned or Specified

When to Use

getDefaultValue Returns the default
enumerated value.

First value in the
enumeration class
definition.

For a default value that
is different than the first
enumeration value,
provide a
getDefaultValue
method that returns the
default value that you
want. See “Specify a
Default Enumeration
Value” on page 14-8.

getHeaderFile Specifies the file that
defines an externally
defined enumerated
type.

'' To use an externally
defined enumerated
type, provide a
getHeaderFile
method that returns the
path to the header file
that defines the type. In
this case, the code
generator does not
produce the class
definition. See “Specify
a Header File” on page
14-8

addClassNameToEnumNames Specifies whether the
class name becomes a
prefix in the generated
code.

false — prefix is not
used.

If you want the class
name to become a prefix
in the generated code,
set the return value of
the
addClassNameToEnum
Names method to true.
See “Include Class
Name Prefix in
Generated Enumerated
Type Value Names” on
page 14-9.

Note When generating
C++11 enumeration
classes, the code
generator ignores this
static method.

 Customize Enumerated Types in Generated Code

14-7

Method Description Default Value
Returned or Specified

When to Use

generateEnumClass Specifies whether to
generate C++11
enumeration classes

true — enumeration
classes are generated in
C++11 code

When generating C+
+11 code, to instruct
the code generator to
produce ordinary C
enumeration for a
particular MATLAB
enumeration, set the
return value of
generateEnumClass
method to false. See
“Generate C++11 Code
Containing Ordinary C
Enumeration” on page
14-10.

Specify a Default Enumeration Value
If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

• Generated MEX reports an error.
• Generated C/C++ code replaces the value of the variable with the enumerated type default value.

Unless you specify otherwise, the default value for an enumerated type is the first value in the
enumeration class definition. To specify a different default value, add your own getDefaultValue
method to the methods section. In this example, the first enumeration member value is
LEDcolor.GREEN, but the getDefaultValue method returns LEDcolor.RED:

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods (Static)
 function y = getDefaultValue()
 y = LEDcolor.RED;
 end
 end
end

Specify a Header File
To specify that an enumerated type is defined in an external file, provide a customized
getHeaderFile method. This example specifies that LEDcolor is defined in the external file
my_LEDcolor.h.

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)

14 Code Generation for Enumerated Data

14-8

 end

 methods(Static)
 function y=getHeaderFile()
 y='my_LEDcolor.h';
 end
 end
end

You must provide my_LEDcolor.h. For example:

enum LEDcolor
{
 GREEN = 1,
 RED
};
typedef enum LEDcolor LEDcolor;

If you place the MATLAB enumeration LEDcolor inside the package pkg and generate C++ code,
code generation preserves the name of this enumeration and places it inside the namespace pkg in
the generated code. Therefore, in the header file that you provide, you must define this enumeration
inside the namespace pkg.

Include Class Name Prefix in Generated Enumerated Type Value
Names
By default, the generated enumerated type value name does not include the class name prefix. For
example:

enum LEDcolor
{
 GREEN = 1,
 RED
};

typedef enum LEDcolor LEDcolor;

To include the class name prefix, provide an addClassNameToEnumNames method that returns true.
For example:

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods(Static)
 function y = addClassNameToEnumNames()
 y=true;
 end
 end
end

In the generated type definition, the enumerated value names include the class prefix LEDcolor.

enum LEDcolor
{

 Customize Enumerated Types in Generated Code

14-9

 LEDcolor_GREEN = 1,
 LEDcolor_RED
};

typedef enum LEDcolor LEDcolor;

Generate C++11 Code Containing Ordinary C Enumeration
When you generate C++11 code, your MATLAB enumeration class is converted to a C++11
enumeration class. For example:

enum class MyEnumClass16 : short
{
 Orange = 0, // Default value
 Yellow,
 Pink
};

To generate an ordinary C enumeration instead, provide a generateEnumClass method that returns
false. For example:

classdef MyEnumClass16 < int16
 enumeration
 Orange(0),
 Yellow(1),
 Pink(2)
 end

 % particular enum opting out
 methods(Static)
 function y = generateEnumClass()
 y = false;
 end
 end
end

Now the generated C++11 code contains an ordinary C enumeration.

enum MyEnumClass16 : short
{
 Orange = 0, // Default value
 Yellow,
 Pink
};

See Also

More About
• Modifying Superclass Methods and Properties
• “Code Generation for Enumerations” on page 14-2

14 Code Generation for Enumerated Data

14-10

Code Generation for MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Classes That Support Code Generation” on page 15-7
• “Generate Code for MATLAB Value Classes” on page 15-8
• “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
• “Code Generation for Handle Class Destructors” on page 15-15
• “Class Does Not Have Property” on page 15-18
• “Passing By Reference Not Supported for Some Properties” on page 15-20
• “Handle Object Limitations for Code Generation” on page 15-21
• “System Objects in MATLAB Code Generation” on page 15-24
• “Specify Objects as Inputs at the Command Line” on page 15-27
• “Specify Objects as Inputs in the MATLAB Coder App” on page 15-30
• “Work Around Language Limitation: Code Generation Does Not Support Object Arrays”

on page 15-33

15

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use classes differently than
when running your code in the MATLAB environment.

What’s Different More Information
Restricted set of language features. “Language Limitations” on page 15-2
Restricted set of code generation features. “Code Generation Features Not Compatible with

Classes” on page 15-3
Definition of class properties. “Defining Class Properties for Code Generation”

on page 15-3
Use of handle classes. “Generate Code for MATLAB Handle Classes and

System Objects” on page 15-12

“Code Generation for Handle Class Destructors”
on page 15-15

“Handle Object Limitations for Code Generation”
on page 15-21

Global variables containing MATLAB handle
objects are not supported for code generation.

N/A

Inheritance from built-in MATLAB classes is not
supported.

“Inheritance from Built-In MATLAB Classes Not
Supported” on page 15-6

Language Limitations
Although code generation support is provided for common features of classes such as properties and
methods, there are a number of advanced features which are not supported, such as:

• Events
• Listeners
• Arrays of objects
• Recursive data structures

• Linked lists
• Trees
• Graphs

• Nested functions in constructors
• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and subsindex
methods. Code generation does not support classes that have their own definitions of these
methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty array of the
class. Code generation does not support this method.

15 Code Generation for MATLAB Classes

15-2

• The following MATLAB handle class methods:

• addlistener
• eq
• findobj
• findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with Classes
• You can generate code for entry-point MATLAB functions that use classes, but you cannot

generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by executing:

codegen ClassNameA
• A handle class object cannot be an entry-point function input or output.
• A value class object can be an entry-point function input or output. However, if a value class object

contains a handle class object, then the value class object cannot be an entry-point function input
or output. A handle class object cannot be an entry-point function input or output.

• Code generation does not support global variables that are handle classes.
• Code generation does not support multiple outputs from constructors.
• Code generation does not support assigning an object of a value class into a nontunable property.

For example, obj.prop=v; is invalid when prop is a nontunable property and v is an object
based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• You cannot pass a MATLAB class to coder.ceval. You can pass class properties to

coder.ceval.
• If a property has a get method, a set method, or validators, or is a System object property with

certain attributes, then you cannot pass the property by reference to an external function. See
“Passing By Reference Not Supported for Some Properties” on page 15-20.

• If an object has duplicate property names and the code generator tries to constant-fold the object,
code generation can fail. The code generator constant-folds an object when it is used with
coder.Constant or coder.const, or when it is an input to or output from a constant-folded
extrinsic function.

Duplicate property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you do when running your code
in the MATLAB environment:

 MATLAB Classes Definition for Code Generation

15-3

• MEX functions report errors that result from property validation. Standalone C/C++ code reports
these errors only if you enable run-time error reporting. See “Generate Standalone C/C++ Code
That Detects and Reports Run-Time Errors” on page 29-20. Before you generate standalone C/C+
+ code, it is a best practice to test property validation by running a MEX function over the full
range of input values.

• After defining a property, do not assign it an incompatible type. Do not use a property before
attempting to grow it.

When you define class properties for code generation, consider the same factors that you take into
account when defining variables. In the MATLAB language, variables can change their class, size,
or complexity dynamically at run time so you can use the same variable to hold a value of varying
class, size, or complexity. C and C++ use static typing. Before using variables, to determine their
type, the code generator requires a complete assignment to each variable. Similarly, before using
properties, you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generator assumes that it is
undefined at the beginning of the constructor. The code generator does not assign an empty
matrix as the default.

• If the property does not have an initial value and the code generator cannot determine that the
property is assigned prior to first use, the software generates a compilation error.

• For System objects, if a nontunable property is a structure, you must completely assign the
structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = 'a';
mySystemObject.nonTunableProperty.fieldB = 'b';

• coder.varsize is not supported for class properties.
• If the initial value of a property is an object, then the property must be constant. To make a

property constant, declare the Constant attribute in the property block. For example:

classdef MyClass
 properties (Constant)
 p1 = MyClass2;
 end
end

• MATLAB computes class initial values at class loading time before code generation. If you use
persistent variables in MATLAB class property initialization, the value of the persistent variable
computed when the class loads belongs to MATLAB; it is not the value used at code generation
time. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true (1).

• Variable-size properties:

• Code generation supports upper-bounded and unbounded variable-size properties for both
value and handle classes.

• To generate unbounded variable-size class properties, enable dynamic memory allocation.

15 Code Generation for MATLAB Classes

15-4

• To make a variable-size class property, make two sequential assignments of a class property,
one to a scalar and the next to an array.
classdef varSizeProp1 < handle
 properties
 prop
 varProp
 end
end

function extFunc(n)
 obj = varSizeProp1;
 % Assign a scalar value to the property.
 obj.prop = 1;
 obj.varProp = 1;
 % Assign an array to the same property to make it variable-sized.
 obj.prop = 1:98;
 obj.varProp = 1:n;
end

In the preceding code, the first assignment to prop and varProp is scalar, and their second
assignment is to an array with the same base type. The size of prop has an upper bound of 98,
making it an upper-bounded, variable-size property.

If n is unknown at compile time, obj.varProp is an unbounded variable-size property. If it is
known, it is an upper-bounded, variable-size class property.

• If the class property is initialized with a variable-size array, the property is variable-size.
classdef varSizeProp2
 properties
 prop
 end
 methods
 function obj = varSizeProp2(inVar)
 % Assign incoming value to local variable
 locVar = inVar;

 % Declare the local variable to be a variable-sized column
 % vector with no size limit
 coder.varsize('locVar',[inf 1],[1 0]);

 % Assign value
 obj.prop = locVar;
 end
 end
end

In the preceding code, inVar is passed to the class constructor and stored in locVar. locVar
is modified to be variable-size by coder.varsize and assigned to the class property
obj.prop, which makes the property variable-size.

• If the input to the function call varSizeProp2 is variable-size, coder.varsize is not
required.

function z = constructCall(n)
 z = varSizeProp2(1:n);
end

• If the value of n is unknown at compile-time and has no specified bounds, z.prop is an
unbounded variable-size class property.

• If the value of n is unknown at compile-time and has specified bounds, z.prop is an upper-
bounded variable-size class property.

• If a property is constant and its value is an object, you cannot change the value of a property of
that object. For example, suppose that:

• obj is an object of myClass1.

 MATLAB Classes Definition for Code Generation

15-5

• myClass1 has a constant property p1 that is an object of myClass2.
• myClass2 has a property p2.

Code generation does not support the following code:

obj.p1.p2 = 1;

Inheritance from Built-In MATLAB Classes Not Supported
You cannot generate code for classes that inherit from built-in MATLAB classes. For example, you
cannot generate code for the following class:

classdef myclass < double

An exception to this rule is the MATLAB enumeration class. You can generate code for enumeration
classes that inherit from built-in MATLAB classes. See “Code Generation for Enumerations” on page
14-2.

15 Code Generation for MATLAB Classes

15-6

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined System objects. Your
class can have multiple methods and properties and can inherit from multiple classes.

To generate code for: Example:
Value classes “Generate Code for MATLAB Value Classes” on

page 15-8
Handle classes including user-defined System
objects

“Generate Code for MATLAB Handle Classes and
System Objects” on page 15-12

For more information, see:

• “Role of Classes in MATLAB”
• “MATLAB Classes Definition for Code Generation” on page 15-2

 Classes That Support Code Generation

15-7

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then view the generated
code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY
 properties
 centerX;
 centerY;
 end
 properties (Dependent = true)
 area;
 end
 methods
 function out = get.area(obj)
 out = obj.getarea();
 end
 function obj = Shape(centerX,centerY)
 obj.centerX = centerX;
 obj.centerY = centerY;
 end
 end
 methods(Abstract = true)
 getarea(obj);
 end
 methods(Static)
 function d = distanceBetweenShapes(shape1,shape2)
 xDist = abs(shape1.centerX - shape2.centerX);
 yDist = abs(shape1.centerY - shape2.centerY);
 d = sqrt(xDist^2 + yDist^2);
 end
 end
end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code as
Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side
 properties
 side;
 end
 methods
 function obj = Square(side,centerX,centerY)
 obj@Shape(centerX,centerY);
 obj.side = side;
 end
 function Area = getarea(obj)
 Area = obj.side^2;
 end
 end
end

15 Code Generation for MATLAB Classes

15-8

3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the code as
Rhombus.m.

classdef Rhombus < Shape
 properties
 diag1;
 diag2;
 end
 methods
 function obj = Rhombus(diag1,diag2,centerX,centerY)
 obj@Shape(centerX,centerY);
 obj.diag1 = diag1;
 obj.diag2 = diag2;
 end
 function Area = getarea(obj)
 Area = 0.5*obj.diag1*obj.diag2;
 end
 end
end

4 Write a function that uses this class.

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape, and supporting files in
the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 To see the Rhombus class definition, on the MATLAB Source pane, under Rhombus.m, click

Rhombus. The Rhombus class constructor is highlighted.
8 Click the Variables tab. You see that the variable obj is an object of the Rhombus class. To see

its properties, expand obj.

 Generate Code for MATLAB Value Classes

15-9

9 In the MATLAB Source pane, click Call Tree.

The Call Tree view shows that use_shape calls the Rhombus constructor and that the Rhombus
constructor calls the Shape constructor.

10 In the code pane, in the Rhombus class constructor, move your pointer to this line:

obj@Shape(centerX,centerY)

The Rhombus class constructor calls the Shape method of the base Shape class. To view the
Shape class definition, in obj@Shape, double-click Shape.

15 Code Generation for MATLAB Classes

15-10

 Generate Code for MATLAB Value Classes

15-11

Generate Code for MATLAB Handle Classes and System Objects
This example shows how to generate code for a user-defined System object and then view the
generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from matlab.System.
Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

 methods (Access=protected)
 % stepImpl method is called by the step method
 function y = stepImpl(~,x)
 y = x+1;
 end
 end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen
 p = AddOne();
 y = p.step(x);
end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even if no errors
or warnings occur. The -args option specifies that the testAddOne function takes one scalar
double input.

4 Click the View report link.
5 In the MATLAB Source pane, click testAddOne. To see information about the variables in

testAddOne, click the Variables tab.

15 Code Generation for MATLAB Classes

15-12

6 To view the class definition for addOne, in the MATLAB Source pane, click AddOne.

 Generate Code for MATLAB Handle Classes and System Objects

15-13

See Also

More About
• “Code Generation for Handle Class Destructors” on page 15-15

15 Code Generation for MATLAB Classes

15-14

Code Generation for Handle Class Destructors
You can generate code for MATLAB code that uses delete methods (destructors) for handle classes.
To perform clean-up operations, such as closing a previously opened file before an object is
destroyed, use a delete method. The generated code calls the delete method at the end of an
object's lifetime, even if execution is interrupted by a run-time error. When System objects are
destroyed, delete calls the release method, which in turn calls the user-defined releaseImpl.
For more information on when to define a delete method in a MATLAB code, see “Handle Class
Destructor”.

Guidelines and Restrictions
When you write the MATLAB code, adhere to these guidelines and restrictions:

• Code generation does not support recursive calls of the delete method. Do not create an object
of a certain class inside the delete method for the same class. This usage might cause a
recursive call of delete and result in an error message.

• The generated code always calls the delete method, when an object goes out of scope. Code
generation does not support explicit calls of the delete method.

• Initialize all properties of MyClass that the delete method of MyClass uses either in the
constructor or as the default property value. If delete tries to access a property that has not
been initialized in one of these two ways, the code generator produces an error message.

• Suppose a property prop1 of MyClass1 is itself an object (an instance of another class
MyClass2). Initialize all properties of MyClass2 that the delete method of MyClass1 uses.
Perform this initialization either in the constructor of MyClass2 or as the default property value.
If delete tries to access a property of MyClass2 that has not been initialized in one of these two
ways, the code generator produces an error message. For example, define the two classes
MyClass1 and MyClass2:

classdef MyClass1 < handle
 properties
 prop1
 end
 methods
 function h = MyClass1(index)
 h.prop1 = index;
 end
 function delete(h)
 fprintf('h.prop1.prop2 is: %1.0f\n',h.prop1.prop2);
 end
 end
end

classdef MyClass2 < handle
 properties
 prop2
 end
end

Suppose you try to generate code for this function:

function MyFunction
obj2 = MyClass2;

 Code Generation for Handle Class Destructors

15-15

obj1 = MyClass1(obj2); % Assign obj1.prop1 to the input (obj2)
end

The code generator produces an error message because you have not initialized the property
obj2.prop2 that the delete method displays.

Behavioral Differences of Objects in Generated Code and in MATLAB
The behavior of objects in the generated code can be different from their behavior in MATLAB in
these situations:

• The order of destruction of several independent objects might be different in MATLAB than in the
generated code.

• The lifetime of objects in the generated code can be different from their lifetime in MATLAB.
MATLAB calls the delete method when an object can no longer be reached from any live
variable. The generated code calls the delete method when an object goes out of scope. In some
situations, this difference causes delete to be called later on in the generated code than in
MATLAB. For example, define the class:

classdef MyClass < handle
 methods
 function delete(h)
 global g
 % Destructor displays current value of global variable g
 fprintf('The global variable is: %1.0f\n',g);
 end
 end
end

Run the function:

function MyFunction
global g
g = 1;
obj = MyClass;
obj = MyClass;
% MATLAB destroys the first object here
g = 2;
% MATLAB destroys the second object here
% Generated code destroys both objects here
end

The first object can no longer be reached from any live variable after the second instance of obj
= MyClass in MyFunction. MATLAB calls the delete method for the first object after the
second instance of obj = MyClass in MyFunction and for the second object at the end of the
function. The output is:

The global variable is: 1
The global variable is: 2

In the generated code, both delete method calls happen at the end of the function when the two
objects go out of scope. Running MyFunction_mex results in a different output:

The global variable is: 2
The global variable is: 2

15 Code Generation for MATLAB Classes

15-16

• In MATLAB, persistent objects are automatically destroyed when they cannot be reached from
any live variable. In the generated code, you have to call the terminate function explicitly to
destroy the persistent objects.

• The generated code does not destroy partially constructed objects. If a handle object is not fully
constructed at run time, the generated code produces an error message but does not call the
delete method for that object. For a System object, if there is a run-time error in setupImpl, the
generated code does not call releaseImpl for that object.

MATLAB does call the delete method to destroy a partially constructed object.

See Also

More About
• “Generate Code for MATLAB Handle Classes and System Objects” on page 15-12
• “System Objects in MATLAB Code Generation” on page 15-24

 Code Generation for Handle Class Destructors

15-17

Class Does Not Have Property
If a MATLAB class has a method, mymethod, that returns a handle class with a property, myprop, you
cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
 properties
 myprop
 end
 methods
 function this = MyClass
 this.myprop = MyClass2;
 end
 function y = mymethod(this)
 y = this.myprop;
 end
 end
end

classdef MyClass2 < handle
 properties
 aa
 end
end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB, the
assignment h.mymethod().aa = 12; changes the property of that object. Code generation does
not support this assignment.

Solution
Rewrite the code to return the object and then assign a value to a property of the object.

function foo

h = MyClass;

b=h.mymethod();
b.aa=12;

15 Code Generation for MATLAB Classes

15-18

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2

 Class Does Not Have Property

15-19

Passing By Reference Not Supported for Some Properties
The code generator does not support passing a property by reference to an external function for
these types of properties:

• A property with a get method or a set method.
• A property that uses validation functions.
• A System object property with an attribute, such as Logical or PositiveInteger, that

constrains or modifies the property value.

Instead of passing a property by reference, save the property value in a temporary variable. Then,
pass the temporary variable by reference to the external function. After the external function call,
assign the temporary variable to the property. For example:

tmp = myObj.prop;
coder.ceval('myFcn', coder.ref(tmp));
myObj.prop = tmp;

The assignment after the coder.ceval call validates or modifies the property value according to the
property access methods, validation functions, or attributes.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

More About
• “Call Custom C/C++ Code from the Generated Code” on page 34-2
• “MATLAB Classes Definition for Code Generation” on page 15-2

15 Code Generation for MATLAB Classes

15-20

Handle Object Limitations for Code Generation
The code generator statically determines the lifetime of a handle object. When you use handle
objects, this static analysis has certain restrictions.

With static analysis the generated code can reuse memory rather than rely on a dynamic memory
management scheme, such as reference counting or garbage collection. The code generator can
avoid dynamic memory allocation and run-time automatic memory management. These generated
code characteristics are important for some safety-critical and real-time applications.

For limitations, see:

• “A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside a Loop” on page 15-
21

• “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object” on page 15-22

The code generator analyzes whether all variables are defined prior to use. Undefined variables or
data types cause an error during code generation. In certain circumstances, the code generator
cannot determine if references to handle objects are defined. See “References to Handle Objects Can
Appear Undefined” on page 15-23.

A Variable Outside a Loop Cannot Refer to a Handle Object Allocated
Inside a Loop
Consider the handle class mycls and the function usehandle1.

classdef mycls < handle
 properties
 prop
 end

 methods
 function obj = mycls(x)
 obj.prop = x;
 end
 end
end

function y = usehandle1
p = mycls(0); % Instance of mycls with prop value 10 created

for i = 1:10
 p = mycls(i); % Handle object allocated inside loop
end

y = p.prop; % Handle object referenced outside loop
end

If you try to generate code for the usehandle1 function, the code generator produces an error. The
error occurs because:

• A handle object is allocated inside the for loop. The variable p.prop refers to this handle object.
• Outside the loop, the variable x refers to the property prop handle object.

 Handle Object Limitations for Code Generation

15-21

A Handle Object That a Persistent Variable Refers To Must Be a
Singleton Object
If a persistent variable refers to a handle object, the code generator allows only one instance of the
object during the program’s lifetime. The object must be a singleton object. To create a singleton
handle object, enclose statements that create the object in the if isempty() guard for the
persistent variable.

For example, consider the class mycls and the function usehandle2. The code generator reports an
error for usehandle2 because p.prop refers to the mycls object that the statement inner =
mycls creates. This statement creates a mycls object for each invocation of usehandle2.

classdef mycls < handle
 properties
 prop
 end
end

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
inner = mycls;
inner.prop = x;
if isempty(p)
 p = mycls;
 p.prop = inner;
end

If you move the statements inner = mycls and inner.prop = x inside the if isempty() guard,
code generation succeeds. The statement inner = mycls executes only once during the program’s
lifetime.

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
if isempty(p)
 inner = mycls;
 inner.prop = x;
 p = mycls;
 p.prop = inner;
end

Consider the function usehandle3. The code generator reports an error for usehandle3 because
the persistent variable p refers to the mycls object that the statement myobj = mycls creates. This
statement creates a mycls object for each invocation of usehandle3.

function usehandle3(x)
assert(isa(x, 'double'));
myobj = mycls;
myobj.prop = x;
doinit(myobj);
disp(myobj.prop);
function doinit(obj)
persistent p;
if isempty(p)
 p = obj;
end

15 Code Generation for MATLAB Classes

15-22

If you make myobj persistent and enclose the statement myobj = mycls inside an if isempty()
guard, code generation succeeds. The statement myobj = mycls executes only once during the
program’s lifetime.

function usehandle3(x)
assert(isa(x, 'double'));
persistent myobj;
if isempty(myobj)
 myobj = mycls;
end

doinit(myobj);

function doinit(obj)
persistent p;
if isempty(p)
 p = obj;
end

References to Handle Objects Can Appear Undefined
Consider the function refHandle that copies a handle object property to another object. The
function uses a simple handle class and value class. In MATLAB, the function runs without error.

function [out1, out2, out3] = refHandle()
 x = myHandleClass;
 y = x;
 v = myValueClass();
 v.prop = x;
 x.prop = 42;
 out1 = x.prop;
 out2 = y.prop;
 out3 = v.prop.prop;
end

classdef myHandleClass < handle
 properties
 prop
 end
end

classdef myValueClass
 properties
 prop
 end
end

During code generation, an error occurs:

Property 'v.prop.prop' is undefined on some execution paths.

Three variables reference the same memory location: x, y, and v.prop. The code generator
determines that x.prop and y.prop share the same value. The code generator cannot determine
that the handle object property v.prop.prop shares its definition with x.prop and y.prop. To
avoid the error, define v.prop.prop directly.

 Handle Object Limitations for Code Generation

15-23

System Objects in MATLAB Code Generation
In this section...
“Usage Rules and Limitations for System Objects for Generating Code” on page 15-24
“System Objects in codegen” on page 15-26
“System Objects in the MATLAB Function Block” on page 15-26
“System Objects in the MATLAB System Block” on page 15-26
“System Objects and MATLAB Compiler Software” on page 15-26

You can generate C/C++ code in MATLAB from your system that contains System objects by using
MATLAB Coder. You can generate efficient and compact code for deployment in desktop and
embedded systems and accelerate fixed-point algorithms.

Usage Rules and Limitations for System Objects for Generating Code
The following usage rules and limitations apply to using System objects in code generated from
MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by embedding the
object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• Initialize all System objects properties that releaseImpl uses before the end of setupImpl.
• You cannot initialize System objects properties with other MATLAB class objects as default values

in code generation. You must initialize these properties in the constructor.

Inputs and Outputs

• System objects accept a maximum of 1024 inputs. A maximum of eight dimensions per input is
supported.

• The data type of the inputs should not change.
• The complexity of the inputs should not change.
• If you want the size of inputs to change, verify that support for variable-size is enabled. Code

generation support for variable-size data also requires that variable-size support is enabled. By
default in MATLAB, support for variable-size data is enabled.

• System objects predefined in the software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation Operating Point option for any System object in a

MATLAB Function block.
• Do not pass a System object as an example input argument to a function being compiled with

codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in interpreted

mode) using the coder.extrinsic function. System objects returned from extrinsic functions
and scope System objects that automatically become extrinsic can be used as inputs to another
extrinsic function. But, these functions do not generate code.

15 Code Generation for MATLAB Classes

15-24

Properties

• In MATLAB System blocks, you cannot use variable-size for discrete state properties of System
objects. Private properties can be variable-size.

• Objects cannot be used as default values for properties.
• You can only assign values to nontunable properties once, including the assignment in the

constructor.
• Nontunable property values must be constant.
• For fixed-point inputs, if a tunable property has dependent data type properties, you can set

tunable properties only at construction time or after the object is locked.
• For getNumInputsImpl and getNumOutputsImpl methods, if you set the return argument from

an object property, that object property must have the Nontunable attribute.

Global Variables

• Global variables are allowed in a System object, unless you are using that System object in
Simulink via the MATLAB System block. See “Generate Code for Global Data” on page 27-88.

Methods

• Code generation support is available only for these System object methods:

• get
• getNumInputs
• getNumOutputs
• isDone (for sources only)
• isLocked
• release
• reset
• set (for tunable properties)
• step

• For System objects that you define, code generation support is available only for these methods:

• getDiscreteStateImpl
• getNumInputsImpl
• getNumOutputsImpl
• infoImpl
• isDoneImpl
• isInputDirectFeedthroughImpl
• outputImpl
• processTunedPropertiesImpl
• releaseImpl — Code is not generated automatically for this method. To release an object,

you must explicitly call the release method in your code.
• resetImpl
• setupImpl

 System Objects in MATLAB Code Generation

15-25

• stepImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

System Objects in codegen
You can include System objects in MATLAB code in the same way you include any other elements. You
can then compile a MEX file from your MATLAB code by using the codegen command, which is
available if you have a MATLAB Coder license. This compilation process, which involves a number of
optimizations, is useful for accelerating simulations. See “Get Started with MATLAB Coder” and
“MATLAB Classes” for more information.

Note Most, but not all, System objects support code generation. Refer to the particular object’s
reference page for information.

System Objects in the MATLAB Function Block
Using the MATLAB Function block, you can include any System object and any MATLAB language
function in a Simulink model. This model can then generate embeddable code. System objects
provide higher-level algorithms for code generation than do most associated blocks. For more
information, see “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
(Simulink).

System Objects in the MATLAB System Block
Using the MATLAB System block, you can include in a Simulink model individual System objects that
you create with a class definition file. The model can then generate embeddable code. For more
information, see “MATLAB System Block” (Simulink).

System Objects and MATLAB Compiler Software
MATLAB Compiler software supports System objects for use inside MATLAB functions. The compiler
product does not support System objects for use in MATLAB scripts.

See Also

More About
• “Generate Code That Uses Row-Major Array Layout” on page 38-4

15 Code Generation for MATLAB Classes

15-26

Specify Objects as Inputs at the Command Line
If you generate code by using codegen, to specify the type of an input that is a value class object, you
can provide an example object with the -args option.

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

2 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

3 Create an object of the class.

rect_obj = myRectangle(4,5)

rect_obj =

 myRectangle with properties:

 length: 4
 width: 5

4 Pass the example object to codegen by using the -args option.

codegen getarea -args {rect_obj} -report

In the code generation report, you see that r has the same properties, length and width, as the
example object rect_object. The properties have the same size and type as they do in the
example object, rect_object.

Instead of providing an example object, you can create a type for an object of the value class, and
then provide the type with the -args option.

 Specify Objects as Inputs at the Command Line

15-27

1 Create an object of the class:

rect_obj = myRectangle(4,5)

rect_obj =

 myRectangle with properties:

 length: 4
 width: 5

2 To create a type for an object of myRectangle that has the same property types as rect_obj,
use coder.typeof.

coder.typeof creates a coder.ClassType object that defines a type for a class.

t= coder.typeof(rect_obj)

t =

coder.ClassType
 1×1 myRectangle
 length: 1×1 double
 width : 1×1 double

3 Pass the type to codegen by using the -args option.

codegen getarea -args {t} -report

After you create a type for a value class, you can change the types of the properties. For example, to
make the properties of t 16-bit integers:

t.Properties.length = coder.typeof(int16(1))
t.Properties.width = coder.typeof(int16(1))

You can also add or delete properties. For example, to add a property newprop:

t.Properties.newprop = coder.typeof(int16(1))

Consistency Between coder.ClassType Object and Class Definition File
When you generate code, the properties of the coder.ClassType object that you pass to codegen
must be consistent with the properties in the class definition file. If the class definition file has
properties that your code does not use, the coder.ClassType object does not have to include those
properties. The code generator removes properties that you do not use.

Limitations for Using Objects as Entry-Point Function Inputs
Entry-point function inputs that are objects have these limitations:

• An object that is an entry-point function input must be an object of a value class. Objects of handle
classes cannot be entry-point function inputs. Therefore, a value class that contains a handle class
cannot be an entry-point function input.

• An object cannot be a global variable.
• If an object has duplicate property names, you cannot use it with coder.Constant. Duplicate

property names occur in an object of a subclass in these situations:

15 Code Generation for MATLAB Classes

15-28

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

See Also
coder.ClassType

More About
• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Specify Objects as Inputs in the MATLAB Coder App” on page 15-30

 Specify Objects as Inputs at the Command Line

15-29

Specify Objects as Inputs in the MATLAB Coder App
In the MATLAB Coder app, to specify the type of an input that is a value class object:

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

2 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

3 In the app, create a project for getarea. On the Define Input Types page, specify the type of
the object in one of these ways:

• Automatically define a value class input type on page 15-30.
• Provide an Example Object on page 15-30.

Automatically Define an Object Input Type
• Write a test file getarea_test that creates an object of the myRectangle class and passes it to

getarea. For example:

rect_obj = myRectangle(4,5);
rect_area = getarea(rect_obj);
disp(rect_area);

• In the app, on the Define Input Types page, specify the test file getarea_test.
• Click Autodefine Input Types.

Provide an Example
If you provide an object of the value class, the app uses the sizes and types of the properties of the
example object.

1 In MATLAB, define an object of the value class myRectangle.

rect_obj = myRectangle(4,5)

15 Code Generation for MATLAB Classes

15-30

2 In the app, on the Define Input Types page, click Let me enter input or global types
directly.

3 Click the field to the right of the input parameter r.
4 Select Define by Example.
5 Enter rect_obj or select it from the list of workspace variables.

The app determines the properties and their sizes and types from the example object.

Alternatively, you can provide the name of the value class, myRectangle, or a coder.ClassType
object for that class. To define a coder.ClassType object, use coder.typeof. For example:

1 In MATLAB, define a coder.ClassType object that has the same properties as rect_obj.

t = coder.typeof(rect_obj)
2 In the app, provide t as the example.

To change the size or type of a property, click the field to the right of the property.

Consistency Between the Type Definition and Class Definition File
When you generate code, the properties that you define in the app must be consistent with the
properties in the class definition file. If the class definition file has properties that your code does not
use, your type definition in the app does not have to include those properties. The code generator
removes properties that your code does not use.

Limitations for Using Objects as Entry-Point Function Inputs
Entry-point function inputs that are objects have these limitations:

• An object that is an entry-point function input must be an object of a value class. Objects of handle
classes cannot be entry-point function inputs. Therefore, a value class that contains a handle class
cannot be an entry-point function input.

• An object cannot be a global variable.
• If an object has duplicate property names, you cannot use it with coder.Constant. Duplicate

property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a property.

For information about when MATLAB allows duplicate property names, see “Subclassing Multiple
Classes”.

 Specify Objects as Inputs in the MATLAB Coder App

15-31

See Also
coder.ClassType

More About
• “Automatically Define Input Types by Using the App” on page 24-4
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Specify Objects as Inputs at the Command Line” on page 15-27
• “MATLAB Classes Definition for Code Generation” on page 15-2

15 Code Generation for MATLAB Classes

15-32

Work Around Language Limitation: Code Generation Does Not
Support Object Arrays

Issue
In certain situations, your MATLAB algorithm uses an array of objects that are instances of the same
class. But code generation does not support object arrays. When attempting to generate code for
such MATLAB code, you get this or a similar error message:

Code generation does not support object arrays.

Possible Solutions
Use Cell Array of Objects

Code generation supports cell arrays of objects. In your MATLAB code, represent the collection of
objects by using a cell array instead of an array.

For example, suppose that your MATLAB algorithm uses the class Square:

classdef Square
 properties(Access = private)
 side
 end

 methods(Access = public)
 function obj = Square(side)
 obj.side = side;
 end

 function area = calculateArea(obj)
 area = obj.side^2;
 end
 end
end

The function addAreas constructs and uses a 1-by-3 array of Square objects:

function y = addAreas(n)
obj = Square(0);
collection = [obj obj obj]; % collection is an array

for i = 1:numel(collection)
 collection(i) = Square(n + i);
end

y = 0;
for i = 1:numel(collection)
 y = y + collection(i).calculateArea;
end
end

Attempt to generate a MEX function for addAreas. Code generation fails because the local variable
collection is an object array.

 Work Around Language Limitation: Code Generation Does Not Support Object Arrays

15-33

codegen addAreas -args 0 -report

??? Code generation does not support object arrays.

Error in ==> addAreas Line: 3 Column: 14
Code generation failed: View Error Report

Redefine collection to be a cell array instead. Modify the code to use cell array indexing to index
into collection. Name the modified function addAreas_new.

function y = addAreas_new(n)
obj = Square(0);
collection = {obj obj obj}; % collection is a cell array

for i = 1:numel(collection)
 collection{i} = Square(n + i);
end

y = 0;
for i = 1:numel(collection)
 y = y + collection{i}.calculateArea;
end
end

Attempt to generate a MEX function for addAreas_new. Code generation succeeds and produces
addAreas_new_mex.

codegen addAreas_new -args 0 -report

Code generation successful: View report

Verify that addAreas_new and addAreas_new_mex have the same runtime behavior.

disp([addAreas_new(0) addAreas_new_mex(0)])

14 14

For Assignment with Nonscalar Indexing, Use Curly Braces and deal

Suppose that your original MATLAB code performs assignment to the array of objects by using
nonscalar indexing. For example, you might add this line after the first for loop in the addAreas
function:

collection(1:2) = [Square(10) Square(20)];

In the modified function addAreas_new, index into the corresponding cell array by using curly
braces {} and perform assignment by using the deal function. Replace the above line by:

[collection{1:2}] = deal(Square(10),Square(20));

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “What Is a Cell Array?”

15 Code Generation for MATLAB Classes

15-34

Generating C++ Classes

16

Generate C++ Classes for MATLAB Classes
When you generate C++ code, the default behavior of the code generator produces C++ classes for
the classes in your MATLAB code. These include all MATLAB classes such as value classes, handle
classes, and system objects.

You can change the default behavior of the code generator to produce structures for MATLAB classes.
To change the default behavior, do one of the following:

• In a code configuration object, set TargetLang to 'C++' and CppPreserveClasses to false.
• In the MATLAB Coder app, in the Generate step, set Language to C++. In the project build

settings, on the Code Appearance tab, clear the Generate C++ classes from MATLAB classes
check box.

These examples illustrate certain rules that the code generator follows when mapping MATLAB
classes to C++ classes.

Example: Generate Code for a Handle Class That Has Private and
Public Members
Define a MATLAB handle class MyClass:

classdef MyClass < handle
 properties
 publicProp = 1;
 end
 properties(Access = private)
 privateProp
 end
 methods
 function obj = MyClass(value)
 obj.privateProp = value;
 end
 function publicMethod(obj,value)
 obj.privateMethod(value);
 end
 function res = calculateSomeValue(obj)
 res = obj.publicProp*obj.privateProp;
 end
 end
 methods (Access = private)
 function privateMethod(obj,value)
 obj.publicProp = obj.publicProp + value;
 obj.privateProp = obj.privateProp + obj.doubleThisValue(value);
 end
 end
 methods(Static)
 function res = doubleThisValue(val)
 res = 2 * val;
 end
 end
end

Define a MATLAB function foo that uses MyClass:

16 Generating C++ Classes

16-2

function out = foo(x,y)
obj = MyClass(x);
obj.publicMethod(y);
out = obj.calculateSomeValue;
end

Generate a static C++ library for foo. Specify the input argument to be a double scalar. Set the code
generation configuration property InlineBetweenUserFunctions to 'Readability'.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.InlineBetweenUserFunctions = 'Readability';
codegen -config cfg foo -args {0,0} -report

Code generation successful: View report

Open the code generation report and inspect the generated code. The file MyClass.h contains the
definition of the generated C++ class MyClass:

class MyClass
{
 public:
 MyClass *init(double value);
 void publicMethod(double value);
 static double doubleThisValue(double val);
 double calculateSomeValue() const;
 double publicProp;
 private:
 double privateProp;
};

This is the code generated for the function foo:

double foo(double x, double y)
{
 MyClass obj;
 obj.init(x);
 obj.publicMethod(y);
 return obj.calculateSomeValue();
}

This table lists some of the rules that the code generator follows when generating C++ classes and
the corresponding snippets from the code generated for MyClass.

Rule Code Snippet
The class constructor in MATLAB is mapped onto
an init method. When an instance of the class is
created, the generated code explicitly calls the
init method.

The file MyClass.cpp contains the definition of
init.

MyClass *MyClass::init(double value)
{
 MyClass *obj;
 obj = this;
 obj->publicProp = 1.0;
 obj->privateProp = value;
 return obj;
}

 Generate C++ Classes for MATLAB Classes

16-3

Rule Code Snippet
In most cases, if a class member is set as private
in MATLAB, it is also set as private in the
generated C++ code.

In certain situations, inlining a public method in
the generated C++ code changes a private
property in the your MATLAB code to a public
property in the generated code and breaks data
encapsulation. For example, suppose that a public
method myMethod that uses a private property
prop of the object is called by an entry-point
function. If myMethod is inlined in the generated
code, the property prop must be visible from
outside the object and changed to a public
property.

To limit this occurrence, the code generator uses
a special inlinig rule for public methods in this
situation:

• If the code configuration property
InlineBetweenUserFunctions or the
equivalent code generation setting Inline
between user functions in the MATLAB
Coder app is set to 'Readability', the code
generator does not inline the public method
calls that appear outside the class definition.

In these situations, the same inlining rules apply
to both ordinary functions and public methods:

• The body of the function or the method
contains an explicit
coder.inline('always') or
coder.inline('never') directive. This
directive gets the highest precedence.

• You set the code configuration property
InlineBetweenUserFunctions or the
equivalent code generation setting Inline
between user functions in the MATLAB
Coder app to 'Never', 'Speed', or
'Always'.

• A call to a method appears inside another
method of the same class.

See “Control Inlining to Fine-Tune Performance
and Readability of Generated Code” on page 35-
9.

The definition of the generated C++ class
MyClass is:

class MyClass
{
 public:
 MyClass *init(double value);
 void publicMethod(double value);
 static double doubleThisValue(double val);
 double calculateSomeValue() const;
 double publicProp;
 private:
 double privateProp;
};

The visibility of all data and member functions is
preserved between MATLAB and the generated
code.

The private method privateMethod does not
appear in this definition. privateMethod is
inlined in the definition of publicMethod (see in
the file MyClass.cpp) :

void MyClass::publicMethod(double value)
{
 this->publicProp += value;
 this->privateProp += MyClass::doubleThisValue((value));
}

16 Generating C++ Classes

16-4

Rule Code Snippet
Static methods in MATLAB are mapped onto
static C++ methods.

The generated code for the static method
doubleThisValue has this signature:

static double doubleThisValue(double val);

Methods that do not mutate the object are
marked with the const qualifier in the generated
code.

The public method calculateSomeValue does
not mutate the object. The generated method has
this signature:

double calculateSomeValue() const;

Additional Usage Notes and Limitations
These are some additional usage notes and limitations for generating C++ classes from MATLAB
classes:

• The class prototype for MyClass is contained in the header file MyClass.h. The implementations
of the methods of the class are contained in the file MyClass.cpp.

• In the generated code, class hierarchies are flattened. For example, suppose that in your MATLAB
code, class B inherits from class A. In the generated C++ code, classes B and A have no
inheritance relationship between them. In the generated code, all properties and methods of class
A are reproduced in the definition of class B.

• When a MATLAB class uses different types for its properties, the code generator produces a
separate C++ class for each type usage.

• If a MATLAB class member has different GetAccess and SetAccess attributes, the
corresponding member of the generated class has the more permissive of the two attributes. For
example, if a property prop has the attributes (GetAccess = public, SetAccess =
private), prop is defined to be a public property in the generated code.

• While attempting to generate standalone code that contains C++ classes for MATLAB classes, you
might get a warning message if both of these conditions are true:

• You choose to generate reentrant code by enabling the MultiInstanceCode parameter in a
code configuration object or by enabling the Generate re-entrant code parameter in the
MATLAB Coder app.

• The destructor of a class in your MATLAB code has a persistent variable or calls another
function that declares and uses a persistent variable.

In such situations, to generate code that contains C++ classes for MATLAB classes, disable the
MultiInstanceCode or the Generate re-entrant code parameter.

See Also
coder.CodeConfig | coder.EmbeddedCodeConfig | coder.MexCodeConfig

More About
• “Creating a Simple Class”
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “System Objects in MATLAB Code Generation” on page 15-24

 Generate C++ Classes for MATLAB Classes

16-5

• “Control Inlining to Fine-Tune Performance and Readability of Generated Code” on page 35-9

16 Generating C++ Classes

16-6

Code Generation for Function Handles

17

Function Handle Limitations for Code Generation
When you use function handles in MATLAB code intended for code generation, adhere to the
following restrictions:

Do not use the same bound variable to reference different function handles

In some cases, using the same bound variable to reference different function handles causes a
compile-time error. For example, this code does not compile:

function y = foo(p)
x = @plus;
if p
 x = @minus;
end
y = x(1, 2);

Do not pass function handles to or from coder.ceval

You cannot pass function handles as inputs to or outputs from coder.ceval. For example, suppose
that f and str.f are function handles:

f = @sin;
str.x = pi;
str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);
coder.ceval('foo', f);
coder.ceval('foo', str);

Do not associate a function handle with an extrinsic function

You cannot create a function handle that references an extrinsic MATLAB function.

Do not pass function handles to or from extrinsic functions

You cannot pass function handles to or from feval and other extrinsic MATLAB functions.

Do not pass function handles to or from entry-point functions

You cannot pass function handles as inputs to or outputs from entry-point functions. For example,
consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as inputs. plotFcn
attempts to call the function referenced by the fhandle with the input data and plot the results.
However, this code generates a compilation error. The error indicates that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB function to specify
properties of inputs.

17 Code Generation for Function Handles

17-2

See Also

More About
• “Use the coder.extrinsic Construct” on page 20-9

 Function Handle Limitations for Code Generation

17-3

Code Generation for Deep Learning
Arrays

• “Code Generation for dlarray” on page 18-2
• “dlarray Limitations for Code Generation” on page 18-12

18

Code Generation for dlarray

In this section...
“Define dlarray for Code Generation” on page 18-2
“dlarray Object Functions with Code Generation Support” on page 18-3
“Deep Learning Toolbox Functions with dlarray Code Generation Support” on page 18-4
“MATLAB Functions with dlarray Code Generation Support” on page 18-4

A deep learning array stores data with optional data format labels for custom training loops, and
enables functions to compute and use derivatives through automatic differentiation. To learn more
about custom training loops, automatic differentiation, and deep learning arrays, see “Deep Learning
Custom Training Loops” (Deep Learning Toolbox).

Code generation supports both formatted and unformatted deep learning arrays. dlarray objects
containing gpuArrays are also supported for code generation. When you use deep learning arrays
with CPU and GPU code generation, adhere to these restrictions:

Define dlarray for Code Generation
For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB.

There are two possibilities:

Note For code generation, the dlarray input to the predict method of the dlnetwork object must
be single data type.

Design 1 (Not recommended)

In this design example, the input and output to the entry-point function, foo are of dlarray types.
This type of entry-point function is not recommended for code generation because in MATLAB,
dlarray enforces the order of labels 'SCBTU'. This behavior is replicated for MEX code generation.
However, for standalone code generation such as static, dynamic libraries, or executables, the data
format follows the specification of the fmt argument of the dlarray object. As a result, if the input
or output of an entry-point function is a dlarray object and its order of labels is not 'SCBTU', then
the data layout will be different between the MATLAB environment and standalone code.

function dlOut = foo(dlIn)

persistent dlnet;
if isempty(dlnet)
 dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlOut = predict(dlnet, dlIn);

end

18 Code Generation for Deep Learning Arrays

18-2

Design 2 (Recommended)

In this design example, the input and output to foo are of primitive datatypes and the dlarray
object is created within the function. The extractdata method of the dlarray object returns the
data in the dlarray dlA as the output of foo. The output a has the same data type as the underlying
data type in dlA.

When compared to Design 1, this entry-point design has the following advantages:

• Easier integration with standalone code generation workflows such as static, dynamic libraries, or
executables.

• The data format of the output from the extractdata function has the same order ('SCBTU') in
both the MATLAB environment and the generated code.

• Improves performance for MEX workflows.
• Simplifies Simulink workflows using MATLAB Function blocks as Simulink does not natively

support dlarray objects.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
 dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

To see an example of dlnetwork and dlarray usage with MATLAB Coder, see “Generate Digit
Images Using Variational Autoencoder on Intel CPUs” on page 39-139.

dlarray Object Functions with Code Generation Support
For code generation, you are restricted to the deep learning array object functions listed in this table.

dims Dimension labels for dlarray
extractdata Extract data from dlarray
finddim Find dimensions with specified label
stripdims Remove dlarray labels

 Code Generation for dlarray

18-3

Deep Learning Toolbox Functions with dlarray Code Generation
Support
Deep Learning Operations

Function Description
fullyconnect The fully connect operation multiplies the input

by a weight matrix and then adds a bias vector.
sigmoid The sigmoid activation operation applies the

sigmoid function to the input data.
softmax The softmax activation operation applies the

softmax function to the channel dimension of the
input data.

MATLAB Functions with dlarray Code Generation Support
Unary Element-wise Functions

Function Notes and Limitations
abs The output dlarray has the same data format as

the input dlarray.
atan2 The output dlarray has the same data format as

the input dlarray.cos
cosh
cot
csc
exp
log • The output dlarray has the same data format

as the input dlarray.
• Because dlarray does not support complex

numbers, the input dlarray must have
nonnegative values.

sec The output dlarray has the same data format as
the input dlarray.sign

sin
sinh
sqrt • The output dlarray has the same data format

as the input dlarray.
• Because dlarray does not support complex

numbers, the input dlarray must have
nonnegative values.

tan The output dlarray has the same data format as
the input dlarray.tanh

18 Code Generation for Deep Learning Arrays

18-4

Function Notes and Limitations
uplus, +
uminus, -

Binary Element-wise Operators

Function Notes and Limitations
minus, - If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

plus, +
power, .^
rdivide, ./
times, .*

Reduction Functions

Function Notes and Limitations
mean • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.
• If the input dlarray is on the GPU, the

'native' option is not supported.
prod • The output dlarray has the same data format

as the input dlarray.
• The 'omitnan' option is not supported.

sum

Extrema Functions

Function Notes and Limitations
ceil The output dlarray has the same data format as

the input dlarray.
eps • The output dlarray has the same data format

as the input dlarray.
• Use eps(ones(‘like’, x)) to get a scalar

epsilon value based on the data type of a
dlarray x.

fix The output dlarray has the same data format as
the input dlarray.

floor The output dlarray has the same data format as
the input dlarray.

max • When you find the maximum or minimum
elements of a single dlarray, the output
dlarray has the same data format as the
input dlarray.

 Code Generation for dlarray

18-5

Function Notes and Limitations
min • When you find the maximum or minimum

elements between two formatted dlarray
inputs, the output dlarray has a combination
of both of their data formats. The function
uses implicit expansion to combine the inputs.
For more information, see “Implicit Expansion
with Data Formats” (Deep Learning Toolbox).

• The index output argument is not traced and
cannot be used with automatic differentiation.
For more information, see “Use Automatic
Differentiation In Deep Learning Toolbox”
(Deep Learning Toolbox).

round • Only the syntax Y = round(X) is supported.
• The output dlarray has the same data format

as the input dlarray.

Other Math Operations

Function Notes and Limitations
colon, : • The supported operations are:

• a:b
• a:b:c

For information on indexing into a dlarray,
see “Indexing” (Deep Learning Toolbox).

• All inputs must be real scalars. The output
dlarray is unformatted.

mtimes, * • One input can be a formatted dlarray only
when the other input is an unformatted scalar.
In this case, the output dlarray has the same
data format as the formatted dlarray input.

• Multiplying a dlarray with a non-dlarray
sparse matrix is supported only when both
inputs are non-scalar.

pagemtimes • One input can be a formatted dlarray only
when the other input is unformatted, with
scalar pages. In this case, the output dlarray
has the same data format as the formatted
dlarray input.

• For code generation, each transpose option of
pagemtimes must be constant.

18 Code Generation for Deep Learning Arrays

18-6

Logical Operations

Function Notes and Limitations
and, & If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

eq, == If the two dlarray inputs are formatted, then
the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

ge, >=
gt, >
le, <=
lt, <
ne, ~=
or, | If the two dlarray inputs are formatted, then

the output dlarray is formatted with a
combination of both of their data formats. The
function uses implicit expansion to combine the
inputs. For more information, see “Implicit
Expansion with Data Formats” (Deep Learning
Toolbox).

xor

Size Manipulation Functions

Function Notes and Limitations
reshape The output dlarray is unformatted, even if the

input dlarray is formatted.

For code generation, the size dimensions must be
fixed size.

squeeze Two-dimensional dlarray objects are unaffected
by squeeze. If the input dlarray is formatted,
the function removes dimension labels belonging
to singleton dimensions. If the input dlarray has
more than two dimensions and its third and
above dimensions are singleton, then the function
discards these dimensions and their labels.

Transposition Operations

Function Notes and Limitations
ctranspose, ' If the input dlarray is formatted, then the labels

of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

 Code Generation for dlarray

18-7

Function Notes and Limitations
permute If the input dlarray is formatted, then the

permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

ipermute If the input dlarray is formatted, then the
permutation must be among only those
dimensions that have the same label. The
function performs permutations implicitly, and
permutes directly only if necessary for other
operations.

For code generation, the dimension order must
be fixed size.

transpose, .' If the input dlarray is formatted, then the labels
of both dimensions must be the same. The
function performs transposition implicitly, and
transposes directly only if necessary for other
operations.

Concatenation Functions

Function Notes and Limitations
cat The dlarray inputs must have matching formats

or be unformatted. Mixed formatted and
unformatted inputs are supported. If any
dlarray inputs are formatted, then the output
dlarray is formatted with the same data format.

For code generation, the dimension order to cat
function must be fixed size.

horzcat
vertcat

18 Code Generation for Deep Learning Arrays

18-8

Conversion Functions

Function Notes and Limitations
cast • cast(dlA,newdatatype) copies the data in

the dlarray dlA into a dlarray of the
underlying data type newdatatype. The
newdatatype option must be 'double',
'single', or 'logical'. The output
dlarray is formatted with the same data
format as dlA.

• cast(A,'like',Y) returns an array of the
same type as Y. If Y is a dlarray, then the
output is a dlarray that has the same
underlying data type as Y. If Y is on the GPU,
then the output is on the GPU. If both A and Y
are dlarray objects, then the output
dlarray is formatted with the same data
format as the input A.

double The output is a dlarray that contains data of
type double.

logical The output is a dlarray that contains data of
type logical.

single The output is a dlarray that contains data of
type single.

Comparison Functions

Function Notes and Limitations
isequal • The syntax with more than two input

arguments is not supported.
• Two dlarray inputs are equal if the numeric

data they represent are equal and if they both
are either formatted with the same data
format or unformatted.

isequaln • The syntax with more than two input
arguments is not supported.

• Two dlarray inputs are equal if the numeric
data they represent are equal (treating NaNs
as equal) and if they both are either formatted
with the same data format or unformatted.

Data Type and Value Identification Functions

Function Notes and Limitations
isfloat The software applies the function to the

underlying data of an input dlarray.islogical
isnumeric

 Code Generation for dlarray

18-9

Function Notes and Limitations
isreal Because dlarray does not support complex

numbers, this function always returns true for a
dlarray input.

Size Identification Functions

Function Notes and Limitations
iscolumn This function returns true for a dlarray that is

a column vector, where each dimension except
the first is a singleton. For example, a 3-by-1-by-1
dlarray is a column vector.

ismatrix This function returns true for dlarray objects
with only two dimensions and for dlarray
objects where each dimension except the first
two is a singleton. For example, a 3-by-4-by-1
dlarray is a matrix.

isrow This function returns true for a dlarray that is
a row vector, where each dimension except the
second is a singleton. For example, a 1-by-3-by-1
dlarray is a row vector.

isscalar N/A
isvector This function returns true for a dlarray that is

a row vector or column vector. Note that
isvector does not consider a 1-by-1-by-3
dlarray to be a vector.

length N/A
ndims If the input dlarray dlX is formatted, then

ndims(dlX) returns the number of dimension
labels, even if some of the labeled dimensions are
trailing singleton dimensions.

numel N/A
size If the input dlarray dlX is formatted, then

size(dlX) returns a vector of length equal to
the number of dimension labels, even if some of
the labeled dimensions are trailing singleton
dimensions.

Creator Functions

Function Notes and Limitations
false Only the 'like' syntax is supported for

dlarray.inf
nan
ones
rand

18 Code Generation for Deep Learning Arrays

18-10

Function Notes and Limitations
true
zeros

Indexing

Code generation supports indexing dlarray objects and exhibits the following behaviors:

• If you set dlY(idx1,...,idxn) = dlX, then dlY and dlX must be assignment compatible.

• Size of the data must not change. Out-of-bounds assignment operation is not supported.
• The assignment statement cannot add or drop U labels.

• Code generation does not support deleting of parts of a dlarray object by using dlX(idx1,
…,idxn) = [].

See Also
Objects
dlarray | dlnetwork

Related Examples
• “Generate Digit Images Using Variational Autoencoder on Intel CPUs” on page 39-139

More About
• “dlarray Limitations for Code Generation” on page 18-12
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)
• “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)

 Code Generation for dlarray

18-11

dlarray Limitations for Code Generation
In this section...
“Recommended Usage” on page 18-12
“Limitations” on page 18-12

Recommended Usage
For code generation, use the dlarray function to create deep learning arrays. For example, suppose
you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB as shown in this code.

function a = foo(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
 dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

Limitations
For deep learning arrays, code generation has the following limitations:

• The data format argument of the dlarray object must be a compile-time constant. For example,

function out = foo()

dlA = dlarray(ones(5,4),'SSC'); %fmt 'SSC' is constant
 .
 .
 .
end

• The data input to the dlarray object must be fixed-size. For example, the dlarray dlA is not
supported as A is variable-sized.

function dlA = foo()

A = ones(5,4);
coder.varsize('A') %'A' is variable sized.

dlA = dlarray(A, 'SSC'); % Error: not supported.

end

• Code generation does not support creating a dlarray type object by using the coder.typeof
function with upper bound size and variable dimensions specified. For example,

18 Code Generation for Deep Learning Arrays

18-12

function dlA = foo()

A = dlarray(ones(5,4),'SC');
A_type = coder.typeof(A,[5 10],[1 0]); % Error: not supported.

end

Code generation supports use of coder.typeof without the size arguments. For example,

A = dlarray(ones(5,4),'SC');
A_type = coder.typeof(A);

• The code generation report does not display the size of the dlarray object. The size is always
displayed as 1x1.

• In MATLAB, dlarray enforces the order of labels 'SCBTU'. This enforcement eliminates
ambiguous semantics in operations, which implicitly match labels between inputs. This behavior is
mimicked during MEX code generation. However, for standalone code generation such as static,
dynamic libraries, or executables, the data format follows the specification of the fmt argument of
the dlarray object. As a result, if the input or output of an entry-point function is a dlarray
object and its order of labels is not 'SCBTU', then the data layout will be different between the
MATLAB environment and standalone code.

For example, consider a function foo with a dlarray object as an output.

function dlA = foo()
rng default
dlA = dlarray(rand(5,4), 'BC');

end

In MATLAB, dlA is 4(C)-by-5(B).

dlA =

 4(C) × 5(B) dlarray

 0.8147 0.9058 0.1270 0.9134 0.6324
 0.0975 0.2785 0.5469 0.9575 0.9649
 0.1576 0.9706 0.9572 0.4854 0.8003
 0.1419 0.4218 0.9157 0.7922 0.9595

For standalone code generation, dlA is 5(B)-by-4(C).
• For code generation, the dlarray input to the predict method of the dlnetwork object must be

single data type.

See Also
Objects
dlarray | dlnetwork

 dlarray Limitations for Code Generation

18-13

Related Examples
• “Generate Digit Images Using Variational Autoencoder on Intel CPUs” on page 39-139

More About
• “Code Generation for dlarray” on page 18-2
• “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
• “Train Network Using Custom Training Loop” (Deep Learning Toolbox)
• “Make Predictions Using dlnetwork Object” (Deep Learning Toolbox)

18 Code Generation for Deep Learning Arrays

18-14

Defining Functions for Code Generation

• “Code Generation for Variable Length Argument Lists” on page 19-2
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 19-3
• “Code Generation for Anonymous Functions” on page 19-6
• “Code Generation for Nested Functions” on page 19-7

19

Code Generation for Variable Length Argument Lists
When you use varargin and varargout for code generation, there are these restrictions:

• If you use varargin to define an argument to an entry-point function, the code generator
produces the function with a fixed number of arguments. This fixed number of arguments is based
on the number of arguments that you specify when you generate code.

• You cannot write to varargin. If you want to write to input arguments, copy the values into a
local variable.

• To index into varargin and varargout, use curly braces {}, not parentheses ().
• The code generator must be able to determine the value of the index into varargin or

varargout.

See Also

More About
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 37-14
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 19-

3

19 Defining Functions for Code Generation

19-2

Specify Number of Entry-Point Function Input or Output
Arguments to Generate

You can control the number of input or output arguments in a generated entry-point function. From
one MATLAB function, you can generate entry-point functions that have different signatures.

Control Number of Input Arguments
If your entry-point function uses varargin, specify the properties for the arguments that you want in
the generated function.

Consider this function:

function [x, y] = myops(varargin)
%#codegen
if (nargin > 1)
 x = varargin{1} + varargin{2};
 y = varargin{1} * varargin{2};
else
 x = varargin{1};
 y = -varargin{1};
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

If you use the MATLAB Coder app:

1 On the Define Input Types page, click Let me enter input or global types directly.
2 To add an argument, in the variables table, to the right of varargin, click .

3 Specify the properties for each argument.

If you generate code by using codegen, you can also control the number of input arguments when
the MATLAB function does not use varargin.

 Specify Number of Entry-Point Function Input or Output Arguments to Generate

19-3

Consider this function:

function [x, y] = myops(a,b)
%#codegen
if (nargin > 1)
 x = a + b;
 y = a * b;
else
 x = a;
 y = -a;
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

Control the Number of Output Arguments
If you generate code by using codegen, you can specify the number of output arguments by using the
-nargout option.

Consider this function:

function [x, y] = myops(a,b)
%#codegen
x = a + b;
y = a * b;
end

Generate a function that has one output argument.

codegen myops -args {2 3} -nargout 1 -report

You can also use -nargout to specify the number of output arguments for an entry-point function
that uses varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)
%#codegen
varargout{1} = a + b;
varargout{2} = a * b;
end

Generate code for one output argument.

codegen myops -args {2 3} -nargout 1 -report

If you use the MATLAB Coder app, to specify the number of outputs when a function returns
varargout or to generate fewer outputs than the function defines:

1 On the Define Input Types page, define the input types manually or by using Autodefine Input
Types.

2 In Number of outputs, select the number.

19 Defining Functions for Code Generation

19-4

See Also

More About
• “Code Generation for Variable Length Argument Lists” on page 19-2
• “Specify Properties of Entry-Point Function Inputs” on page 27-43

 Specify Number of Entry-Point Function Input or Output Arguments to Generate

19-5

Code Generation for Anonymous Functions
You can use anonymous functions in MATLAB code intended for code generation. For example, you
can generate code for the following MATLAB code that defines an anonymous function that finds the
square of a number.

sqr = @(x) x.^2;
a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB function that
evaluates an expression over a range of values. For example, this MATLAB code uses an anonymous
function to create the input to the fzero function:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0);

Anonymous Function Limitations for Code Generation
Anonymous functions have the code generation limitations of value classes and cell arrays.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Cell Array Limitations for Code Generation” on page 9-8
• “Parameterizing Functions”

19 Defining Functions for Code Generation

19-6

Code Generation for Nested Functions
You can generate code for MATLAB functions that contain nested functions. For example, you can
generate code for the function parent_fun, which contains the nested function child_fun.

function parent_fun
x = 5;
child_fun

 function child_fun
 x = x + 1;
 end

end

Nested Function Limitations for Code Generation
When you generate code for nested functions, you must adhere to the code generation restrictions for
value classes, cell arrays, and handle classes. You must also adhere to these restrictions:

• If the parent function declares a persistent variable, it must assign the persistent variable before
it calls a nested function that uses the persistent variable.

• A nested recursive function cannot refer to a variable that the parent function uses.
• If a nested function refers to a structure variable, you must define the structure by using struct.
• If a nested function uses a variable defined by the parent function, you cannot use

coder.varsize with the variable in either the parent or the nested function.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 15-2
• “Handle Object Limitations for Code Generation” on page 15-21
• “Cell Array Limitations for Code Generation” on page 9-8
• “Code Generation for Recursive Functions” on page 20-14

 Code Generation for Nested Functions

19-7

Calling Functions for Code Generation

• “Resolution of Function Calls for Code Generation” on page 20-2
• “Resolution of File Types on Code Generation Path” on page 20-5
• “Compilation Directive %#codegen” on page 20-7
• “Use MATLAB Engine to Execute a Function Call in Generated Code” on page 20-8
• “Code Generation for Recursive Functions” on page 20-14
• “Force Code Generator to Use Run-Time Recursion” on page 20-17
• “Avoid Duplicate Functions in Generated Code” on page 20-20

20

Resolution of Function Calls for Code Generation
From a MATLAB function, you can call local functions, supported toolbox functions, and other
MATLAB functions. MATLAB resolves function names for code generation as follows:

20 Calling Functions for Code Generation

20-2

 Resolution of Function Calls for Code Generation

20-3

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 20-4.
• Attempts to compile functions unless the code generator determines that it should not compile

them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to be extrinsic by
using the construct coder.extrinsic, as described in “Use the coder.extrinsic Construct” on
page 20-9. During simulation, the code generator produces code for the call to an extrinsic
function, but does not generate the internal code for the function. Therefore, simulation can run
only on platforms where MATLAB software is installed. During standalone code generation, the
code generator attempts to determine whether the extrinsic function affects the output of the
function in which it is called — for example by returning mxArrays to an output variable. If the
output does not change, code generation proceeds, but the extrinsic function is excluded from the
generated code. Otherwise, compilation errors occur.

The code generator detects calls to many common visualization functions, such as plot, disp,
and figure. The software treats these functions like extrinsic functions but you do not have to
declare them extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File Types on Code
Generation Path” on page 20-5

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path contains the
toolbox functions supported for code generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this path.

MATLAB applies the same dispatcher rules when searching each path (see “Function Precedence
Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a customized version. A file on the
code generation path shadows a file of the same name on the MATLAB path.

For more information on how to add additional folders to the code generation path, see “Paths and
File Infrastructure Setup” on page 27-76.

20 Calling Functions for Code Generation

20-4

Resolution of File Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

 Resolution of File Types on Code Generation Path

20-5

20 Calling Functions for Code Generation

20-6

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function after the function signature to indicate
that you intend to generate code for the MATLAB algorithm. Adding this directive instructs the
MATLAB Code Analyzer to help you diagnose and fix violations that would result in errors during
code generation.

function y = my_fcn(x) %#codegen

....

Note The %#codegen directive is not necessary for MATLAB Function blocks. Code inside a MATLAB
Function block is always intended for code generation. The %#codegen directive, or the absence of it,
does not change the error checking behavior.

 Compilation Directive %#codegen

20-7

Use MATLAB Engine to Execute a Function Call in Generated
Code

When processing a call to a function foo in your MATLAB code, the code generator finds the
definition of foo and generates code for its body. In some cases, you might want to bypass code
generation and instead use the MATLAB engine to execute the call. Use coder.extrinsic('foo')
to declare that calls to foo do not generate code and instead use the MATLAB engine for execution.
In this context, foo is referred to as an extrinsic function. This functionality is available only when
the MATLAB engine is available during execution. Examples of such situations include execution of
MEX functions, Simulink simulations, or function calls at the time of code generation (also known as
compile time).

If you generate standalone code for a function that calls foo and includes
coder.extrinsic('foo'), the code generator attempts to determine whether foo affects the
output. If foo does not affect the output, the code generator proceeds with code generation, but
excludes foo from the generated code. Otherwise, the code generator produces a compilation error.

Including the coder.extrinsic('foo') directive inside a certain MATLAB function declares all
calls to foo inside that MATLAB function as extrinsic. Alternatively, you might want to narrow the
scope of extrinsic declaration to just one call to foo. See “Call MATLAB Functions Using feval” on
page 20-11.

When To Declare a Function as Extrinsic
These are some common situations in which you might consider declaring a MATLAB function as
extrinsic:

20 Calling Functions for Code Generation

20-8

• The function performs display or logging actions. Such functions are useful primarily during
simulation and are not used in embedded systems.

• In your MEX execution or Simulink simulation, you want to use a MATLAB function that is not
supported for code generation. This workflow does not apply to non-simulation targets.

• You instruct the code generator to constant fold a function call by using coder.const. In such
situations, the function is called only during code generation when the MATLAB engine is
available for executing the call.

Use the coder.extrinsic Construct
To declare a function foo as extrinsic, include this statement in your MATLAB code.

coder.extrinsic('foo')

When declaring functions as extrinsic for code generation, adhere to these rules:

• Declare the function as extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.
• Assign the return value of an extrinsic function to a known type. See “Working with mxArrays” on

page 20-11.

For additional information and examples, see coder.extrinsic.

The code generator automatically treats many common MATLAB visualization functions, such as
plot, disp, and figure, as extrinsic. You do not have to explicitly declare them as extrinsic
functions by using coder.extrinsic. For example, you might want to call plot to visualize your
results in the MATLAB environment. If you generate a MEX function from a function that calls plot,
and then run the generated MEX function, the code generator dispatches calls to the plot function
to the MATLAB engine. If you generate a library or executable, the generated code does not contain
calls to the plot function.

If you generate MEX or standalone C/C++ code by using MATLAB Coder, the code generation report
highlights calls from your MATLAB code to extrinsic functions. By inspecting the report, you can
determine which functions are supported only in the MATLAB environment.

 Use MATLAB Engine to Execute a Function Call in Generated Code

20-9

Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the main function
foo. There are two ways to narrow the scope of an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function foo, but the
function min is extrinsic only when called inside the local function mymin.

• Instead of using the coder.extrinsic construct, call the MATLAB function using feval. This
approach is described in the next section.

Extrinsic Declaration for Nonstatic Methods

Suppose that you define a class myClass that has a nonstatic method foo, and then create an
instance obj of this class. If you want to declare the method obj.foo as extrinsic in your MATLAB
code that you intend for code generation, follow these rules:

• Write the call to foo as a function call. Do not write the call by using the dot notation.
• Declare foo to be extrinsic by using the syntax coder.extrinsic('foo').

For example, define myClass as:

classdef myClass
 properties
 prop = 1
 end
 methods
 function y = foo(obj,x)
 y = obj.prop + x;
 end
 end
end

Here is an example MATLAB function that declares foo as extrinsic.

function y = myFunction(x) %#codegen
coder.extrinsic('foo');
obj = myClass;

20 Calling Functions for Code Generation

20-10

y = foo(obj,x);
end

Nonstatic methods are also known as ordinary methods. See “Define Class Methods and Functions”.

Additional Uses

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output during simulation without generating
unnecessary code.

• Make your code self-documenting and easier to debug. You can scan the source code for
coder.extrinsic statements to isolate calls to MATLAB functions, which can potentially create
and propagate mxArrays. See “Working with mxArrays” on page 20-11.

Call MATLAB Functions Using feval
To narrow the scope of extrinsic declaration to just one function call, use the function feval. feval
is automatically interpreted as an extrinsic function during code generation. So, you can use feval
to call functions that you want to execute in the MATLAB environment, rather than compile to
generated code.

Consider this example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min',N,D);

Because feval is extrinsic, the statement feval('min',N,D) is evaluated by MATLAB, not
compiled, which has the same result as declaring the function min extrinsic for just this one call. By
contrast, the function rat is extrinsic throughout the function foo.

The code generator does not support the use of feval to call local functions or functions that are
located in a private folder.

Working with mxArrays
The run-time output of an extrinsic function is an mxArray, also known as a MATLAB array. The only
valid operations for mxArrays are:

• Storing an mxArray in a variable.
• Passing an mxArray to an extrinsic function.
• Returning an mxArray from a function back to MATLAB.
• Converting an mxArray to a known type at run time. Assign the mxArray to a variable whose type

is already defined by a prior assignment. See the following example.

To use an mxArray returned by an extrinsic function in other operations (for example, returning it
from a MATLAB Function block to Simulink execution), you must first convert it to a known type.

If the input arguments of a function are mxArrays, the code generator automatically treats the
function as extrinsic.

 Use MATLAB Engine to Execute a Function Call in Generated Code

20-11

Convert mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is defined. At
run time, the mxArray is converted to the type of the variable that it is assigned to. If the data in the
mxArray is not consistent with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N,D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns two
mxArrays representing the numerator N and denominator D of the rational fraction approximation of
pi. You can pass these mxArrays to another MATLAB function, in this case, min. Because the inputs
passed to min are mxArrays, the code generator automatically treats min as an extrinsic function. As
a result, min returns an mxArray.

While generating a MEX function by using MATLAB Coder, you can directly assign this mxArray
returned by min to the output y because the MEX function returns its output to MATLAB.

codegen foo

Code generation successful.

But if you put foo in a MATLAB Function block in a Simulink model and then update or run the
model, you get this error:

Function output 'y' cannot be an mxArray in this context.
Consider preinitializing the output variable with a known type.

This error occurs because returning an mxArray back to Simulink is not supported. To fix this issue,
define y to be the type and size of the value that you expect min to return, in this case, a scalar
double:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

In this example, the output of the extrinsic function min affects the output y of the entry-point
function foo for which you are generating code. If you attempt to generate standalone code (for
example, a static library) for foo, the code generator is unable to ignore the extrinsic function call
and produces a code generation error.

codegen -config:lib foo

??? The extrinsic function 'min' is not available for standalone code generation. It must be eliminated for stand-alone code to be
generated. It could not be eliminated because its outputs appear to influence the calling function. Fix this error by not using
'min' or by ensuring that its outputs are unused.

Error in ==> foo Line: 4 Column: 5
Code generation failed: View Error Report

Error using codegen

20 Calling Functions for Code Generation

20-12

Restrictions on Using Extrinsic Functions
The full MATLAB run-time environment is not supported during code generation. Therefore, the
following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller workspace, do not work
during code generation. Such functions include:

• dbstack
• evalin
• assignin
• save

• Functions in generated code can produce unpredictable results if your extrinsic function performs
these actions at run time:

• Changes folders
• Changes the MATLAB path
• Deletes or adds MATLAB files
• Changes warning states
• Changes MATLAB preferences
• Changes Simulink parameters

• The code generator does not support the use of coder.extrinsic to call functions that are
located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local functions.
• You can call extrinsic functions with up to 64 inputs and 64 outputs.

See Also
coder.extrinsic | coder.const

 Use MATLAB Engine to Execute a Function Call in Generated Code

20-13

Code Generation for Recursive Functions
To generate code for recursive MATLAB functions, the code generator uses compile-time recursion on
page 20-14 or run-time recursion on page 20-15. You can influence whether the code generator
uses compile-time or run-time recursion by modifying your MATLAB code. See “Force Code Generator
to Use Run-Time Recursion” on page 20-17.

You can disallow recursion on page 20-15 or disable run-time recursion on page 20-15 by modifying
configuration parameters.

When you use recursive functions in MATLAB code that is intended for code generation, you must
adhere to certain restrictions. See “Recursive Function Limitations for Code Generation” on page 20-
16.

Compile-Time Recursion
With compile-time recursion, the code generator creates multiple versions of a recursive function in
the generated code. The inputs to each version have values or sizes that are customized for that
version. These versions are known as function specializations. You can tell that the code generator
used compile-time recursion by looking at the code generation report or the generated C code. Here
is an example of compile-time recursion in the report.

Sometimes, the function specializations do not appear in the C/C++ code because of optimizations.
For example, consider this function:

function y = foo()
%#codegen
 x = 10;
 y = sub(x);
end

function y = sub(x)
coder.inline('never');
if x > 1
 y = x + sub(x-1);
else
 y = x;
end
end

In the code generation report, on the Function List tab, you see the function specializations for
MATLAB function sub.

20 Calling Functions for Code Generation

20-14

However, the C code does not contain the specializations. It contains one function that returns the
value 55.

Run-Time Recursion
With run-time recursion, the code generator produces a recursive function in the generated code. You
can tell that the code generator used run-time recursion by looking at the code generation report or
the generated C code. Here is an example of run-time recursion in the report.

Disallow Recursion
• In a code generation configuration object, set the CompileTimeRecursionLimit configuration

parameter to 0.
• In the MATLAB Coder app, set the value of the Compile-time recursion limit setting to 0.

Disable Run-Time Recursion
Some coding standards, such as MISRA®, do not allow recursion. To increase the likelihood of
generating code that is compliant with MISRA C®, disable run-time recursion.

• In a code generation configuration object, set EnableRuntimeRecursion to false.
• In the MATLAB Coder app, set Enable run-time recursion to No.

 Code Generation for Recursive Functions

20-15

If your code requires run-time recursion and run-time recursion is disabled, you must rewrite your
code so that it uses compile-time recursion or does not use recursion.

Recursive Function Limitations for Code Generation
When you use recursion in MATLAB code that is intended for code generation, follow these
restrictions:

• Assign all outputs of a run-time recursive function before the first recursive call in the function.
• Assign all elements of cell array outputs of a run-time recursive function.
• Inputs and outputs of run-time recursive functions cannot be classes.
• The maximum stack usage on page 35-15 setting is ignored for run-time recursion.

See Also

More About
• “Force Code Generator to Use Run-Time Recursion” on page 20-17
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 37-4
• “Compile-Time Recursion Limit Reached” on page 37-7
• “Configure Build Settings” on page 27-13
• “Code Generation Reports” on page 29-7

20 Calling Functions for Code Generation

20-16

Force Code Generator to Use Run-Time Recursion
When your MATLAB code includes recursive function calls, the code generator uses compile-time or
run-time recursion. With compile-time recursion on page 20-14, the code generator creates multiple
versions of the recursive function in the generated code. These versions are known as function
specializations. With run-time recursion on page 20-15, the code generator produces a recursive
function. If compile-time recursion results in too many function specializations or if you prefer run-
time recursion, you can try to force the code generator to use run-time recursion. Try one of these
approaches:

• “Treat the Input to the Recursive Function as a Nonconstant” on page 20-17
• “Make the Input to the Recursive Function Variable-Size” on page 20-18
• “Assign Output Variable Before the Recursive Call” on page 20-19

Treat the Input to the Recursive Function as a Nonconstant
Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 5;
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

call_recfcn calls recfcn with the value 5 for the second argument. recfcn calls itself recursively
until x is 1. For each recfcn call, the input argument x has a different value. The code generator
produces five specializations of recfcn, one for each call. After you generate code, you can see the
specializations in the code generation report.

To force run-time recursion, in call_recfcn, in the call to recfcn, instruct the code generator to
treat the value of the input argument x as a nonconstant value by using coder.ignoreConst.

 Force Code Generator to Use Run-Time Recursion

20-17

function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(5);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

After you generate code, in the code generation report., you see only one specialization.

Make the Input to the Recursive Function Variable-Size
Consider this code:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. To force the code
generator to use run-time conversion, make the input to mysum variable-size by using
coder.varsize.

function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1

20 Calling Functions for Code Generation

20-18

 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Assign Output Variable Before the Recursive Call
The code generator uses compile-time recursion for this code:

function y = callrecursive(n)
x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x > 1
 y = n + myrecursive(x-1,n-1);

else
 y = n;
end
end

To force the code generator to use run-time recursion, modify myrecursive so that the output y is
assigned before the recursive call. Place the assignment y = n in the if block and the recursive call
in the else block.

function y = callrecursive(n)
x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x == 1
 y = n;
else
 y = n + myrecursive(x-1,n-1);
end
end

See Also
coder.ignoreConst

More About
• “Code Generation for Recursive Functions” on page 20-14
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 37-4
• “Compile-Time Recursion Limit Reached” on page 37-7

 Force Code Generator to Use Run-Time Recursion

20-19

Avoid Duplicate Functions in Generated Code

Issue
You generate code and it contains multiple, duplicate copies of the same functions, with only slight
differences, such as modifications to the function signature. For example, your generated code might
contain functions called foo and b_foo. Duplicate functions can make the generated code more
difficult to analyze and manage.

Cause
Duplicate functions in the generated code are the result of function specializations. The code
generator specializes functions when it detects that they differ at different call sites by:

• Number of input or output variables.
• Type of input or output variables.
• Size of input or output variables.
• Values of input variables.

In some cases, these specializations are necessary for the generated C/C++ code because C/C++
functions do not have the same flexibility as MATLAB functions. In other cases, the code generator
specializes functions to optimize the generated code or because of a lack of information.

Solution
In certain cases, you can alter your MATLAB code to avoid the generation of duplicate functions.

Identify Duplicate Functions by Using Code Generation Report

You can determine whether the code generator created duplicate functions by inspecting the code
generation report or in Simulink, the MATLAB Function report. The report shows a list of the
duplicate functions underneath the entry-point function. For example:

Duplicate Functions Generated for Multiple Input Sizes

If your MATLAB code calls a function multiple times and passes inputs of different sizes, the code
generator can create specializations of the function for each size. To avoid this issue, use

20 Calling Functions for Code Generation

20-20

coder.ignoreSize on the function input. For example, this code uses coder.ignoreSize to avoid
creating multiple copies of the function indexOf:

function [out1, out2] = test1(in)
 a = 1:10;
 b = 2:40;
 % Without coder.ignoreSize duplicate functions are generated
 out1 = indexOf(coder.ignoreSize(a), in);
 out2 = indexOf(coder.ignoreSize(b), in);
end

function index = indexOf(array, value)
 coder.inline('never');
 for i = 1:numel(array)
 if array(i) == value
 index = i;
 return
 end
 end
 index = -1;
 return
end

To generate code, enter:

codegen test1 -config:lib -report -args {1}

Duplicate Functions Generated for Different Input Values

If your MATLAB code calls a function and passes multiple different constant inputs, the code
generator can create specializations of the function for each different constant. In this case, use
coder.ignoreConst to indicate to the code generator not to treat the value as an immutable
constant. For example:

function [out3, out4] = test2(in)
 c = ['a', 'b', 'c'];
 if in > 0
 c(2)='d';
 end
 out3 = indexOf(c, coder.ignoreConst('a'));
 out4 = indexOf(c, coder.ignoreConst('b'));
end

function index = indexOf(array, value)
 coder.inline('never');
 for i = 1:numel(array)
 if array(i) == value
 index = i;
 return
 end
 end
 index = -1;
 return
end

To generate code, enter:

 Avoid Duplicate Functions in Generated Code

20-21

codegen test2 -config:lib -report -args {1}

Duplicate Functions Generated for Different Number of Outputs

If your MATLAB code calls a function and accepts a different number of outputs at different call sites,
the code generator can produce specializations for each call. For example:

[a b] = foo();
c = foo();

To make each call return the same number of outputs and avoid duplicate functions, use the ~
symbol:

[a b] = foo();
[c, ~] = foo();

See Also
coder.ignoreConst | coder.varsize | coder.ignoreSize

More About
• “Code Generation Reports” on page 29-7
• “Force Code Generator to Use Run-Time Recursion” on page 20-17

20 Calling Functions for Code Generation

20-22

Fixed-Point Conversion

• “Detect Unexecuted and Constant-Folded Code” on page 21-2
• “Convert MATLAB Code to Fixed-Point C Code” on page 21-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-17
• “Specify Type Proposal Options” on page 21-29
• “Detect Overflows” on page 21-32
• “Replace the exp Function with a Lookup Table” on page 21-40
• “Replace a Custom Function with a Lookup Table” on page 21-47
• “Enable Plotting Using the Simulation Data Inspector” on page 21-53
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 21-54
• “View and Modify Variable Information” on page 21-64
• “Automated Fixed-Point Conversion” on page 21-67
• “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 21-86
• “Generated Fixed-Point Code” on page 21-88
• “Fixed-Point Code for MATLAB Classes” on page 21-93
• “Automated Fixed-Point Conversion Best Practices” on page 21-95
• “Replacing Functions Using Lookup Table Approximations” on page 21-101
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 21-102
• “Inspecting Data Using the Simulation Data Inspector” on page 21-104
• “Custom Plot Functions” on page 21-106
• “Data Type Issues in Generated Code” on page 21-107

21

Detect Unexecuted and Constant-Folded Code
During the simulation of your test file, the MATLAB Coder app detects unexecuted code or code that
is constant folded. Code that is not executed by the test bench may be unreachable code or dead
code. The app uses the code coverage information when translating your code from floating-point
MATLAB code to fixed-point MATLAB code. Reviewing code coverage results helps you to verify that
your test file is exercising the algorithm adequately.

The app inserts inline comments in the fixed-point code to mark the unexecuted and untranslated
regions. It includes the code coverage information in the generated fixed-point conversion HTML
report. The app editor displays a color-coded bar to the left of the code. This table describes the color
coding.

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

What Is Unexecuted Code?
Unexecuted code is code that is not executed by the test bench during simulation. Unexecuted code
can result from these scenarios:

• Defensive code containing intended corner cases that are not reached
• Human error in the code, resulting in code that cannot be reached by any execution path,

sometimes referred to as unreachable code or dead code
• Inadequate test bench range which does not provide inputs that execute all paths in the code
• Constant folding

Detect Unexecuted Code
This example shows how to detect code in your algorithm that is not executed by the test bench by
using the MATLAB Coder app.

1 In a local writable folder, create the function myFunction.m.

function y = myFunction(u,v)
 %#codegen
 for i = 1:length(u)
 if u(i) > v(i)
 y=bar(u,v);

21 Fixed-Point Conversion

21-2

 else
 tmp = u;
 v = tmp;
 y = baz(u,v);
 end
 end
end

function y = bar(u,v)
 y = u+v;
end

function y = baz(u,v)
 y = u-v;
end

2 In the same folder, create a test file, myFunction_tb.

u = 1:100;
v = 101:200;

myFunction(u,v);
3 From the apps gallery, open the MATLAB Coder app.
4 Set Numeric Conversion to Convert to fixed point.
5 On the Select Source Files page, browse to the myFunction file, and click Open.
6 Click Next. On the Define Input Types page, browse to select the test file that you created,

myFunction_tb. Click Autodefine Input Types.
7 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the myFunction_tb test file and detects no issues.
8 Click Next. On the Convert to Fixed-Point page, click Analyze to simulate the entry-point

functions, gather range information, and get proposed data types.

The color-coded bar on the left side of the edit window indicates whether the code executes. The
code in the first condition of the if-statement does not execute during simulation because u is
never greater than v. The bar function never executes because the if-statement never executes.
These parts of the algorithm are marked with a red bar, indicating that they are not executed by
the test bench.

9 To apply the proposed data types to the function, click Convert .

The MATLAB Coder app generates a fixed-point function, myFunction_fixpt. The generated
fixed-point code contains comments around the pieces of code identified as not being executed by
the test bench. The Validation Results pane proposes that you use a more thorough test bench.

When the MATLAB Coder app detects unexecuted code, consider editing your test file so that
your algorithm is exercised over its full range. If your test file already reflects the full range of
the input variables, consider editing your algorithm to eliminate the unreachable code.

10 Close the MATLAB Coder app.

Fix Unexecuted Code
1 Edit the test file myFunction_tb.m to include a wider range of inputs.

u = 1:100;
v = -50:2:149;

 Detect Unexecuted and Constant-Folded Code

21-3

myFunction(u,v);
2 Reopen the MATLAB Coder app.
3 Using the same function and the edited test file, go through the conversion process again.
4 After you click Analyze, this time the code coverage bar shows that all parts of the algorithm

execute with the new test file input ranges.

To finish the conversion process and convert the function to fixed point, click Convert.

21 Fixed-Point Conversion

21-4

Convert MATLAB Code to Fixed-Point C Code
To convert MATLAB Code to fixed-point C Code using the MATLAB Coder app:

1 Open the MATLAB Coder app.
2 On the Select Source Files page, add the entry-point function from which you want to generate

code.
3 Set Numeric Conversion to Convert to fixed point.
4 Click Next to go to the Define Input Types step. The app analyzes the function for coding issues

and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. If the app does not find
issues, it opens the Define Input Types page.

5 On the Define Input Types page, specify a test file that the app can use to define the input
types.

6 Click Next to go to the Check for Run-Time Issues step.
7 On the Check for Run-Time Issues page, specify a test file that calls your entry-point function.

Alternatively, at the prompt, enter code that calls your entry-point function. The app generates
instrumented MEX. It runs the test file or code that you specified, replacing calls to your entry-
point function with calls to the generated MEX function. If the app finds issues, it provides
warning and error messages. Click a message to highlight the problematic code in a window
where you can edit the code.

8 Click Next to go to the Convert to Fixed Point step.
9 Propose data types based on simulation range data, derived (also known as static) range data, or

both. See “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6 and
“Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-17.

10 To convert the floating-point MATLAB code to fixed-point MATLAB code, click Convert. During
fixed-point conversion, the app validates the build using the proposed fixed-point data types. See
“Validating Types” on page 21-84.

11 Verify the behavior of the fixed-point MATLAB code. See “Testing Numerics” on page 21-85.
12 Click Next to go to the Generate Code step.
13 In the Generate dialog box, set Build source to Fixed-Point. Set the Build type to build a

static or dynamic library, or executable. Set Language to C. Click Generate.

MATLAB Coder generates fixed-point C code for your entry-point MATLAB function.

See Also

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-17

 Convert MATLAB Code to Fixed-Point C Code

21-5

Propose Fixed-Point Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range data using the
MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

21 Fixed-Point Conversion

21-6

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp, step, and
impulse to cover the full intended operating range of the system. The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function ex_2ndOrder_filter to the project, browse to the file
ex_2ndOrder_filter.m, and then click Open. By default, the app saves information and settings
for this project in the current folder in a file named ex_2ndOrder_filter.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

 Propose Fixed-Point Data Types Based on Simulation Ranges

21-7

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and code generation readiness
issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types

1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test file, browse to
ex_2ndOrder_filter_test, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

21 Fixed-Point Conversion

21-8

The app determines from the test file that the input type of x is double(1x256).

 Propose Fixed-Point Data Types Based on Simulation Ranges

21-9

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
ex_2ndOrder_filter_test replacing calls to ex_2ndOrder_filter with calls to the generated
MEX function. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a window where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in your code.
See “View and Modify Variable Information” on page 21-64.

21 Fixed-Point Conversion

21-10

On the Function Replacements tab, the app displays functions that are not supported for fixed-
point conversion. See “Running a Simulation” on page 21-71.

2 Click the Analyze arrow . Verify that Analyze ranges using simulation is selected and that
the test bench file is ex_2ndOrder_filter_test. You can add test files and select to run more
than one test file during the simulation. If you run multiple test files, the app merges the
simulation results.

3 Select Log data for histogram.

By default, the Show code coverage option is selected. This option provides code coverage
information that helps you verify that your test file is testing your algorithm over the intended
operating range.

4 Click Analyze.

The simulation runs and the app displays a color-coded code coverage bar to the left of the
MATLAB code. Review this information to verify that the test file is testing the algorithm
adequately. The dark green line to the left of the code indicates that the code runs every time the
algorithm executes. The orange bar indicates that the code next to it executes only once. This
behavior is expected for this example because the code initializes a persistent variable. If your
test file does not cover all of your code, update the test or add more test files.

 Propose Fixed-Point Data Types Based on Simulation Ranges

21-11

If a value has ... next to it, the value is rounded. Pause over the ... to view the actual value.

The app displays simulation minimum and maximum ranges on the Variables tab. Using the
simulation range data, the software proposes fixed-point types for each variable based on the
default type proposal settings, and displays them in the Proposed Type column. The app enables
the Convert option.

Note You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges. The app uses the manually entered ranges to propose data types. You can
also modify and lock the proposed type.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field.

21 Fixed-Point Conversion

21-12

To modify the proposed data types, either enter the required type into the Proposed Type field
or use the histogram controls. For more information about the histogram, see “Log Data for
Histogram” on page 21-82.

6 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types and
generates the following files in the codegen\ex_2ndOrder_filter\fixpt folder in your local
working folder.

• ex_2ndOrder_filter_fixpt.m — the fixed-point version of ex_2ndOrder_filter.m.
• ex_2ndOrder_filter_wrapper_fixpt.m — this file converts the floating-point data values

supplied by the test file to the fixed-point types determined for the inputs during conversion.
These fixed-point values are fed into the converted fixed-point design,
ex_2ndOrder_filter_fixpt.m.

• ex_2ndOrder_filter_fixpt_report.html — this report shows the generated fixed-point
code and the fixed-point instrumentation results.

• ex_2ndOrder_filter_report.html — this report shows the original algorithm and the
fixed-point instrumentation results.

• ex_2ndOrder_filter_fixpt_args.mat — MAT-file containing a structure for the input
arguments, a structure for the output arguments and the name of the fixed-point file.

If errors or warnings occur during validation, you see them on the Output tab. See “Validating
Types” on page 21-84.

7 In the Output Files list, select ex_2ndOrder_filter_fixpt.m. The app displays the
generated fixed-point code.

 Propose Fixed-Point Data Types Based on Simulation Ranges

21-13

8 Click the Test arrow . Select Log inputs and outputs for comparison plots, and then click
Test.

To test the fixed-point MATLAB code, the app runs the test file that you used to define input
types. Optionally, you can add test files and select to run more than one test file to test numerics.
The software runs both a floating-point and a fixed-point simulation and then calculates the
errors for the output variable y. Because you selected to log inputs and outputs for comparison
plots, the app generates a plot for each input and output. The app docks these plots in a single
figure window.

21 Fixed-Point Conversion

21-14

The app also reports error information on the Verification Output tab. The maximum error is
less than 0.03%. For this example, this margin of error is acceptable.

If the difference is not acceptable, modify the fixed-point data types or your original algorithm.
For more information, see “Testing Numerics” on page 21-85.

9 On the Verification Output tab, the app provides a link to a report that shows the generated
fixed-point code and the proposed type information.

 Propose Fixed-Point Data Types Based on Simulation Ranges

21-15

10 Click Next to go to the Generate Code page.

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to Static
Library.

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting files in the
default subfolder, codegen/lib/ex_2ndOrder_filter.

4 The app displays the generated code for ex_2ndOrder_filter.c. In the generated C code,
variables are assigned fixed-point data types.

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to generated output
files.

21 Fixed-Point Conversion

21-16

Propose Fixed-Point Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static ranges using the MATLAB
Coder app. When you propose data types based on derived ranges you, do not have to provide test
files that exercise your algorithm over its full operating range. Running such test files often takes a
long time. You can save time by deriving ranges instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description
Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

 Propose Fixed-Point Data Types Based on Derived Ranges

21-17

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
 u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else
 y = u_state;
 clip_status = 0;
end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the input and
output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
 data = x_in(ii);
 % call to the dti function
 init_val = 0;
 gain_val = 1;
 upper_limit = 500;
 lower_limit = -500;

 % call to the design that does DTI
 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

21 Fixed-Point Conversion

21-18

figure('Name', [mfilename, '_plot']);
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.');

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function dti to the project, browse to the file dti.m, and then click Open. By
default, the app saves information and settings for this project in the current folder in a file named
dti.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

 Propose Fixed-Point Data Types Based on Derived Ranges

21-19

2 Click Next to go to the Define Input Types step.

The app screens dti.m for code violations and code generation readiness issues. The app does
not find issues in dti.m.

Define Input Types

1 On the Define Input Types page, to add dti_test as a test file, browse to dti_test.m, and
then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of u_in is
double(1x1).

21 Fixed-Point Conversion

21-20

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file dti_test
replacing calls to dti with calls to the generated MEX function. If the app finds issues, it provides
warning and error messages. You can click a message to highlight the problematic code in a window
where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with dti_test,
the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in your code.
For more information, see “View and Modify Variable Information” on page 21-64.

 Propose Fixed-Point Data Types Based on Derived Ranges

21-21

If functions are not supported for fixed-point conversion, the app displays them on the Function
Replacements tab.

2 Click the Analyze arrow .

a Select Analyze ranges using derived range analysis.
b Clear the Analyze ranges using simulation check box.

Design ranges are required to use derived range analysis.

3 On the Convert to Fixed Point page, on the Variables tab, for input u_in, select Static Min
and set it to -1. Set Static Max to 1.

21 Fixed-Point Conversion

21-22

To compute derived range information, at a minimum you must specify static minimum and
maximum values or proposed data types for all input variables.

Note If you manually enter static ranges, these manually entered ranges take precedence over
simulation ranges. The app uses the manually entered ranges to propose data types. You can also
modify and lock the proposed type.

4 Click Analyze.

Range analysis computes the derived ranges and displays them in the Variables tab. Using these
derived ranges, the analysis proposes fixed-point types for each variable based on the default
type proposal settings. The app displays them in the Proposed Type column.

In the dti function, the clip_status output has a minimum value of -2 and a maximum of 2.

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else
 y = u_state;
 clip_status = 0;
end

When you derive ranges, the app analyzes the function and computes these minimum and
maximum values for clip_status.

 Propose Fixed-Point Data Types Based on Derived Ranges

21-23

The app provides a Quick derived range analysis option and the option to specify a timeout in
case the analysis takes a long time. See “Computing Derived Ranges” on page 21-72.

5 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types and
generates the following files in the codegen\dti\fixpt folder in your local working folder:

• dti_fixpt.m — the fixed-point version of dti.m.
• dti_wrapper_fixpt.m — this file converts the floating-point data values supplied by the

test file to the fixed-point types determined for the inputs during conversion. The app feeds
these fixed-point values into the converted fixed-point design, dti_fixpt.m.

• dti_fixpt_report.html — this report shows the generated fixed-point code and the fixed-
point instrumentation results.

• dti_report.html — this report shows the original algorithm and the fixed-point
instrumentation results.

21 Fixed-Point Conversion

21-24

• dti_fixpt_args.mat — MAT-file containing a structure for the input arguments, a
structure for the output arguments and the name of the fixed-point file.

If errors or warnings occur during validation, they show on the Output tab. See “Validating
Types” on page 21-84.

6 In the Output Files list, select dti_fixpt.m. The app displays the generated fixed-point code.
7 Use the Simulation Data Inspector to plot the floating-point and fixed-point results.

a Click the Settings arrow .
b Expand the Plotting and Reporting settings and set Plot with Simulation Data

Inspector to Yes.

c Click the Test arrow . Select Log inputs and outputs for comparison plots. Click Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB
code. Optionally, you can add test files and select to run more than one test file to test
numerics. The software runs both a floating-point and a fixed-point simulation and then
calculates the errors for the output variable y. Because you selected to log inputs and
outputs for comparison plots and to use the Simulation Data Inspector for these plots, the
Simulation Data Inspector opens.

 Propose Fixed-Point Data Types Based on Derived Ranges

21-25

d You can use the Simulation Data Inspector to view floating-point and fixed-point run
information and compare results. For example, to compare the floating-point and fixed-point
values for the output y, select y. Click Compare. Set Baseline to the original run and
Compare to to the converter run. Click Compare.

The Simulation Data Inspector displays a plot of the baseline floating-point run against the
fixed-point run and the difference between them.

21 Fixed-Point Conversion

21-26

8 On the Verification Output tab, the app provides a link to the Fixed_Point Report.

To open the report, click the dti_fixpt_report.html link.
9 Click Next to go to the Generate Code step.

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to Source
Code.

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting files in the
default subfolder, codegen/lib/dti_fixpt.

4 The app displays the generated code for dti_fixpt.c. In the generated C code, variables are
assigned fixed-point data types.

 Propose Fixed-Point Data Types Based on Derived Ranges

21-27

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to generated output
files.

21 Fixed-Point Conversion

21-28

Specify Type Proposal Options
To view type proposal options, in the MATLAB Coder app, on the Convert to Fixed Point page, click
the Settings arrow .

The following options are available.

Basic Type Proposal Settings Values Description
Fixed-point type proposal mode Propose fraction lengths for

specified word length
Use the specified word length
for data type proposals and
propose the minimum fraction
lengths to avoid overflows.

Propose word lengths for
specified fraction length
(default)

Use the specified fraction length
for data type proposals and
propose the minimum word
lengths to avoid overflows.

Default word length 16 (default) Default word length to use when
Fixed-point type proposal
mode is set to Propose
fraction lengths for
specified word lengths

Default fraction length 4 (default) Default fraction length to use
when Fixed-point type
proposal mode is set to
Propose word lengths for
specified fraction
lengths

Advanced Type Proposal Settings Values Description
When proposing types

Note Manually-entered static ranges always
take precedence over simulation ranges.

ignore simulation
ranges

Propose data types based on derived
ranges.

ignore derived ranges Propose data types based on simulation
ranges.

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Propose target container types Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 …). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default) Propose data types with the minimum
word length needed to represent the
value.

 Specify Type Proposal Options

21-29

Advanced Type Proposal Settings Values Description
Optimize whole numbers No Do not use integer scaling for variables

that were whole numbers during
simulation.

Yes (default) Use integer scaling for variables that
were whole numbers during simulation.

Signedness Automatic (default) Proposes signed and unsigned data
types depending on the range
information for each variable.

Signed Propose signed data types.
Unsigned Propose unsigned data types.

Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and maximum
values are adjusted by the percentage
designated by this parameter, allowing
you to specify a range different from
that obtained from the simulation run.
For example, a value of 55 specifies that
you want a range at least 55 percent
larger. A value of -15 specifies that a
range up to 15 percent smaller is
acceptable.

Search paths '' (default) Add paths to the list of paths to search
for MATLAB files. Separate list items
with a semicolon.

fimath Settings Values Description
Rounding method Ceiling Specify the fimath properties

for the generated fixed-point
data types.

The default fixed-point math
properties use the Floor
rounding and Wrap overflow
because they are the default
actions in C. These settings
generate the most efficient code
but might cause problems with
overflow.

After code generation, if
required, modify these settings
to optimize the generated code,
or example, avoid overflow or
eliminate bias, and then rerun
the verification.

Convergent
Floor (default)
Nearest
Round
Zero

Overflow action Saturate
Wrap (default)

Product mode FullPrecision (default)
KeepLSB
KeepMSB
SpecifyPrecision

Sum mode FullPrecision (default)
KeepLSB

21 Fixed-Point Conversion

21-30

fimath Settings Values Description
KeepMSB For more information on

fimath properties, see “fimath
Object Properties” (Fixed-Point
Designer).

SpecifyPrecision

Generated File Settings Value Description
Generated fixed-point file name
suffix

_fixpt (default) Specify the suffix to add to the
generated fixed-point file
names. For example, by default,
if you generate a static library
for a project named test, the
generated files are in the
subfolder codegen\lib
\test_fixpt. The generated
static library is named
test.lib, but the generated C
code files use the suffix, for
example, test_fixpt.c.

Plotting and Reporting
Settings

Values Description

Custom plot function '' (default) Specify the name of a custom
plot function to use for
comparison plots.

Plot with Simulation Data
Inspector

No (default) Specify whether to use the
Simulation Data Inspector for
comparison plots.

Yes

Highlight potential data type
issues

No (default) Specify whether to highlight
potential data types in the
generated html report. If this
option is turned on, the report
highlights single-precision,
double-precision, and expensive
fixed-point operation usage in
your MATLAB code.

Yes

 Specify Type Proposal Options

21-31

Detect Overflows
This example shows how to detect overflows using the MATLAB Coder app. At the numerical testing
stage in the conversion process, you choose to simulate the fixed-point code using scaled doubles.
The app then reports which expressions in the generated code produce values that overflow the fixed-
point data type.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the overflow.m and overflow_test.m files to your local working folder.

Type Name Description
Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)
 if nargin<3, reset = true; end
 persistent z p
 if isempty(z) || reset
 p = 0;
 z = zeros(size(b));
 end
 [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
 y = zeros(size(x));
 nx = length(x);
 nb = length(b);
 for n = 1:nx
 p=p+1; if p>nb, p=1; end
 z(p) = x(n);
 acc = 0;

21 Fixed-Point Conversion

21-32

 k = p;
 for j=1:nb
 acc = acc + b(j)*z(k);
 k=k-1; if k<1, k=nb; end
 end
 y(n) = acc;
 end
end

The overflow_test Function

You use this test file to define input types for b, x, and reset, and, later, to verify the fixed-point
version of the algorithm.

function overflow_test
 % The filter coefficients were computed using the FIR1 function from
 % Signal Processing Toolbox.
 % b = fir1(11,0.25);
 b = [-0.004465461051254
 -0.004324228005260
 +0.012676739550326
 +0.074351188907780
 +0.172173206073645
 +0.249588554524763
 +0.249588554524763
 +0.172173206073645
 +0.074351188907780
 +0.012676739550326
 -0.004324228005260
 -0.004465461051254]';

 % Input signal
 nx = 256;
 t = linspace(0,10*pi,nx)';

 % Impulse
 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain
 % The maximum gain of a filter will occur when the inputs line up with the
 % signs of the filter's impulse response.
 x_max_gain = sign(b)';
 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
 x_max_gain = x_max_gain(1:nx);

 % Sums of sines
 f0=0.1; f1=2;
 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp
 f_chirp = 1/16; % Target frequency
 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];
 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
 y = zeros(size(x));

 Detect Overflows

21-33

 for i=1:size(x,2)
 reset = true;
 y(:,i) = overflow(b,x(:,i),reset);
 end

 test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
 figure(fig)
 clf
 sub_plot = 1;
 font_size = 10;
 for i=1:size(x,2)
 subplot(4,1,sub_plot)
 sub_plot = sub_plot+1;
 plot(t,x(:,i),'c',t,y1(:,i),'k')
 axis('tight')
 xlabel('t','FontSize',font_size);
 title(titles{i},'FontSize',font_size);
 ax = gca;
 ax.FontSize = 10;
 end
 figure(gcf)
end

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function overflow to the project, browse to the file overflow.m, and then
click Open. By default, the app saves information and settings for this project in the current folder in
a file named overflow.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

21 Fixed-Point Conversion

21-34

2 Click Next to go to the Define Input Types step.

The app screens overflow.m for code violations and code generation readiness issues. The app
does not find issues in overflow.m.

Define Input Types

1 On the Define Input Types page, to add overflow_test as a test file, browse to
overflow_test.m, and then click Open.

2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of b is
double(1x12), x is double(256x1), and reset is logical(1x1).

 Detect Overflows

21-35

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
overflow_test replacing calls to overflow with calls to the generated MEX function. If the app
finds issues, it provides warning and error messages. You can click a message to highlight the
problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
overflow_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information — type, size, and complexity — for variables in your code.
For more information, see “View and Modify Variable Information” on page 21-64.

21 Fixed-Point Conversion

21-36

On the Function Replacements tab the app displays functions that are not supported for fixed-
point conversion. See “Running a Simulation” on page 21-71.

2 To view the fimath settings, click the Settings arrow . Set the fimath Product mode and
Sum mode to KeepLSB. These settings model the behavior of integer operations in the C
language.

 Detect Overflows

21-37

3 Click Analyze.

The test file, overflow_test, runs. The app displays simulation minimum and maximum ranges
on the Variables tab. Using the simulation range data, the software proposes fixed-point types
for each variable based on the default type proposal settings, and displays them in the Proposed
Type column.

4 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the entry-point
function.

If errors and warnings occur during validation, the app displays them on the Output tab. See
“Validating Types” on page 21-84.

Test Numerics and Check for Overflows
1 Click the Test arrow . Verify that the test file is overflow_test.m. Select Use scaled

doubles to detect overflows, and then click Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB code.
Because you selected to detect overflows, it also runs the simulation using scaled double versions

21 Fixed-Point Conversion

21-38

of the proposed fixed-point types. Scaled doubles store their data in double-precision floating-
point, so they carry out arithmetic in full range. Because they retain their fixed-point settings,
they can report when a computation goes out of the range of the fixed-point type.

The simulation runs. The app detects an overflow. The app reports the overflow on the Overflow
tab. To highlight the expression that overflowed, click the overflow.

2 Determine whether it was the sum or the multiplication that overflowed.

In the fimath settings, set Product mode to FullPrecision, and then repeat the conversion
and test the fixed-point code again.

The overflow still occurs, indicating that it is the addition in the expression that is overflowing.

 Detect Overflows

21-39

Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in fixed-point
code generated using the MATLAB Coder app.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
 y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = my_fcn(x(itr));
end
plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function my_fcn to the project, browse to the file my_fcn.m, and then click
Open. By default, the app saves information and settings for this project in the current folder in a file
named my_fcn.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

21 Fixed-Point Conversion

21-40

2 Click Next to go to the Define Input Types step.

The app screens my_fcn.m for code violations and code generation readiness issues. The app
opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for fixed-point
conversion. In a later step, you specify a lookup table replacement for this function.

 Replace the exp Function with a Lookup Table

21-41

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add my_fcn_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates an instrumented MEX function. It runs the test file
my_fcn_test replacing calls to my_fcn with calls to the generated MEX function. If the app finds
issues, it provides warning and error messages. You can click a message to highlight the problematic
code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
my_fcn_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.

21 Fixed-Point Conversion

21-42

3 Click Next to go to the Convert to Fixed Point step.

Replace exp Function with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

2 On the Function Replacements tab, right-click the exp function and select Lookup Table.

 Replace the exp Function with a Lookup Table

21-43

The app moves the exp function to the list of functions that it will replace with a Lookup Table.
By default, the lookup table uses linear interpolation and 1000 points. Design Min and Design
Max are set to Auto which means that the app uses the design minimum and maximum values
that it detects by either running a simulation or computing derived ranges.

3 Click the Analyze arrow , select Log data for histogram, and verify that the test file is
my_fcn_test.

4 Click Analyze.

The simulation runs. On the Variables tab, the app displays simulation minimum and maximum
ranges. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column. The app enables the Convert option.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field. The histogram provides range
information and the percentage of simulation range covered by the proposed data type.

21 Fixed-Point Conversion

21-44

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types, and generates a fixed-point version of the entry-point
function, my_fcn_fixpt.m.

2 In the Output Files list, select my_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_exp, for the exp
function.

 Replace the exp Function with a Lookup Table

21-45

The generated fixed-point function, my_fcn_fixpt.m, calls this approximation instead of calling
exp. The fixed-point conversion process infers the ranges for the function and then uses an
interpolated lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by running the test
file.

function y = my_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior
of the original code closely enough, modify the interpolation method or number of points used in
the lookup table. Then, regenerate the code.

21 Fixed-Point Conversion

21-46

Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation function
using the MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn.m which is the function that you want to replace.

function y = custom_fcn(x)
 y = 1./(1+exp(-x));
end

2 Create a wrapper function, call_custom_fcn.m, that calls custom_fcn.m.

function y = call_custom_fcn(x)
 y = custom_fcn(x);
end

3 Create a test file, custom_test.m, that uses call_custom_fcn.

close all
clear all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = call_custom_fcn(x(itr));
end
plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function call_custom_fcn to the project, browse to the file
call_custom_fcn.m, and then click Open. By default, the app saves information and settings for
this project in the current folder in a file named call_custom_fcn.prj.

 Replace a Custom Function with a Lookup Table

21-47

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

2 Click Next to go to the Define Input Types step.

The app screens call_custom_fcn.m for code violations and code generation issues. The app
opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for fixed-point
conversion. You can ignore this warning because you are going to replace custom_fcn, which is
the function that calls exp.

21 Fixed-Point Conversion

21-48

2 Click Next to go to the Define Input Types step.

Define Input Types

1 Add custom_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
custom_test replacing calls to call_custom_fcn with calls to the generated MEX function. If the
app finds issues, it provides warning and error messages. You can click a message to highlight the
problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
custom_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

 Replace a Custom Function with a Lookup Table

21-49

Replace custom_fcn with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

2 Enter the name of the function to replace, custom_fcn, select Lookup Table, and then click
.

The app adds custom_fcn to the list of functions that it will replace with a Lookup Table. By
default, the lookup table uses linear interpolation and 1000 points. The app sets Design Min and
Design Max to Auto which means that app uses the design minimum and maximum values that
it detects by either running a simulation or computing derived ranges.

3 Click the Analyze arrow , select Log data for histogram, and verify that the test file is
call_custom_test.

21 Fixed-Point Conversion

21-50

4 Click Analyze.

The simulation runs. The app displays simulation minimum and maximum ranges on the
Variables tab. Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the Proposed Type
column. The Convert option is now enabled.

5 Examine the proposed types and verify that they cover the full simulation range. To view logged
histogram data for a variable, click its Proposed Type field. The histogram provides range
information and the percentage of simulation range covered by the proposed data type.

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types and generates a fixed-point version of the entry-point
function, call_custom_fcn_fixpt.m.

2 In the Output Files list, select call_custom_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_custom_fcn,
for the custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. By default, the
lookup table uses linear interpolation, 1000 points, and the minimum and maximum values
detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_custom_fcn(x), 0, 16, 16, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior

 Replace a Custom Function with a Lookup Table

21-51

of the original code closely enough, modify the interpolation method or number of points used in
the lookup table and then regenerate code.

21 Fixed-Point Conversion

21-52

Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector (Simulink) with the MATLAB Coder app to inspect and
compare floating-point and fixed-point logged input and output data.

1 On the Convert to Fixed Point page,

Click the Settings arrow .
2 Expand the Plotting and Reporting settings and set Plot with Simulation Data Inspector to

Yes.

3 Click the Test arrow . Select Log inputs and outputs for comparison plots, and then click
Test.

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page 21-
17“Propose Data Types Based on Derived Ranges” (Fixed-Point Designer).

 Enable Plotting Using the Simulation Data Inspector

21-53

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the MATLAB Coder app to use a custom plot function to
compare the behavior of the generated fixed-point code against the behavior of the original floating-
point MATLAB code.

By default, when the Log inputs and outputs for comparison plots option is enabled, the
conversion process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion you might
want to visualize the numerical differences in a view that is more suitable for your application
domain. This example shows how to customize plotting and produce scatter plots at the test numerics
step of the fixed-point conversion.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• MATLAB Coder
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your

local working folder.

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
 b = complex(zeros(1,16));

21 Fixed-Point Conversion

21-54

 h = complex(zeros(1,16));
 h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
 y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
% i) name
% ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
 varName = varInfo.name;
 fcnName = varInfo.functionName;

 % escape the '_'s because plot titles treat these as subscripts
 escapedVarName = regexprep(varName,'_','_');
 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values
 flatFloatVals = floatVals(1:end);
 flatFixedVals = fixedVals(1:end);

 % build Titles
 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];
 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName
 case 'y'
 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 Visualize Differences Between Floating-Point and Fixed-Point Results

21-55

 y_vec = flatFloatVals;
 subplot(1, 2, 1);
 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values
 y_vec = flatFixedVals;
 subplot(1, 2, 2);
 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise
 % Plot only output 'y' for this example, skip the rest
 end

end

function plotScatter(x_vec, y_vec, n, figTitle)
 % plot the last n samples
 x_plot = x_vec(end-n+1:end);
 y_plot = y_vec(end-n+1:end);

 hold on
 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on
 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);
end

Open the MATLAB Coder App

1 Navigate to the folder that contains the files for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function myFilter to the project, browse to the file myFilter.m, and then
click Open.

By default, the app saves information and settings for this project in the current folder in a file named
myFilter.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

21 Fixed-Point Conversion

21-56

2 Click Next to go to the Define Input Types step.

The app screens myFilter.m for code violations and code generation readiness issues. The app
does not find issues in myFilter.m.

Define Input Types

1 On the Define Input Types page, to add myFilterTest as a test file, browse to
myFilterTest.m, and then click Open.

2 Click Autodefine Input Types.

The app determines from the test file that the input type of in is complex(double(1x1)).

 Visualize Differences Between Floating-Point and Fixed-Point Results

21-57

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. myFilter. It runs the test file
myFilterTest replacing calls to myFilter with calls to the generated MEX. If the app finds issues,
it provides warning and error messages. You can click a message to highlight the problematic code in
a window where you can edit the code.

1 Browse to the test file myFiltertest.m.
2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information for variables in your code. For more information, see
“View and Modify Variable Information” on page 21-64“View and Modify Variable Information”
(Fixed-Point Designer).

21 Fixed-Point Conversion

21-58

2 To open the settings dialog box, click the Settings arrow .

a Verify that Default word length is set to 16.
b Under Advanced, set Signedness to Signed
c Under Plotting and Reporting, set Custom plot function to plotDiff.

3 Click the Analyze arrow . Verify that the test file is myFilterTest.
4 Click Analyze.

The test file, myFilterTest, runs and the app displays simulation minimum and maximum
ranges on the Variables tab. Using the simulation range data, the software proposes fixed-point
types for each variable based on the default type proposal settings, and displays them in the
Proposed Type column.

 Visualize Differences Between Floating-Point and Fixed-Point Results

21-59

5 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the entry-point
function.

21 Fixed-Point Conversion

21-60

Test Numerics and View Comparison Plots

1 Click Test arrow , select Log inputs and outputs for comparison plots, and then click
Test.

The app runs the test file that you used to define input types to test the fixed-point MATLAB code.
Because you selected to log inputs and outputs for comparison plots and to use the custom
plotting function, plotDiff.m, for these plots, the app uses this function to generate the
comparison plot. The plot shows that the fixed-point results do not closely match the floating-
point results.

 Visualize Differences Between Floating-Point and Fixed-Point Results

21-61

2 In the settings, increase the DefaultWordLength to 24 and then convert to fixed point again.

The app converts myFilter.m to fixed point and proposes fixed-point data types using the new
default word length.

3 Run the test numerics step again.

The increased word length improves the results. This time, the plot shows that the fixed-point
results match the floating-point results.

21 Fixed-Point Conversion

21-62

 Visualize Differences Between Floating-Point and Fixed-Point Results

21-63

View and Modify Variable Information

View Variable Information
On the Convert to Fixed Point page of the MATLAB Coder app, you can view information about the
variables in the MATLAB functions. To view information about the variables for the function that you
selected in the Source Code pane, use the Variables tab or pause over a variable in the code
window. For more information, see “Viewing Variables” on page 21-80.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or local variables.
• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use Ctrl+F.

Modify Variable Information
If you modify variable information, the app highlights the modified values using bold text. You can
modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information. See
“Promote Sim Min and Sim Max Values” on page 21-65.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information. See
“Promote Sim Min and Sim Max Values” on page 21-65.

Editing this field does not trigger static range analysis, but the app uses the edited values in
subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable during
simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited value in
subsequent analyses.

21 Fixed-Point Conversion

21-64

• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the Proposed Type field.

If you selected to log data for a histogram, the histogram dynamically updates to reflect the
modifications to the proposed type. You can also modify the proposed type in the histogram, see
“Log Data for Histogram” on page 21-82.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and select Reset entire

table.
• To revert the type of a selected variable to the type computed by the app, right-click the field and

select Undo changes.
• To revert changes to variables, right-click the field and select Undo changes for all

variables.
• To clear a static range value, right-click an edited field and select Clear this static range.
• To clear manually entered static range values, right-click anywhere on the Variables tab and

select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
With the MATLAB Coder app, you can promote simulation minimum and maximum values to static
minimum and maximum values. This capability is useful if you have not specified static ranges and
you have simulated the model with inputs that cover the full intended operating range.

 View and Modify Variable Information

21-65

To copy:

• A simulation range for a selected variable, select a variable, right-click, and then select Copy sim
range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max column, and then
select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max column, and
then select Copy sim ranges for all persistent variables.

21 Fixed-Point Conversion

21-66

Automated Fixed-Point Conversion
In this section...
“Automated Fixed-Point Conversion Capabilities” on page 21-67
“Code Coverage” on page 21-67
“Proposing Data Types” on page 21-70
“Locking Proposed Data Types” on page 21-73
“Viewing Functions” on page 21-73
“Viewing Variables” on page 21-80
“Log Data for Histogram” on page 21-82
“Function Replacements” on page 21-84
“Validating Types” on page 21-84
“Testing Numerics” on page 21-85
“Detecting Overflows” on page 21-85

Automated Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the MATLAB Coder app or at
the command line using the codegen function -float2fixed option. You can choose to propose
data types based on simulation range data, derived (also known as static) range data, or both.

You can manually enter static ranges. These manually entered ranges take precedence over
simulation ranges and the app uses them when proposing data types. In addition, you can modify and
lock the proposed type so that the app cannot change it. For more information, see “Locking
Proposed Data Types” on page 21-73.

For a list of supported MATLAB features and functions, see “MATLAB Language Features Supported
for Automated Fixed-Point Conversion” (Fixed-Point Designer).

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm using code
coverage results.

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits that each variable uses.
• Detect overflows.

Code Coverage
By default, the app shows code coverage results. Your test files must exercise the algorithm over its
full operating range so that the simulation ranges are accurate. The quality of the proposed fixed-

 Automated Fixed-Point Conversion

21-67

point data types depends on how well the test files cover the operating range of the algorithm with
the accuracy that you want.

Reviewing code coverage results helps you to verify that your test files are exercising the algorithm
adequately. If the code coverage is inadequate, modify the test files or add more test files to increase
coverage. If you simulate multiple test files in one run, the app displays cumulative coverage.
However, if you specify multiple test files, but run them one at a time, the app displays the coverage
of the file that ran last.

The app displays a color-coded coverage bar to the left of the code.

This table describes the color coding.

21 Fixed-Point Conversion

21-68

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

When you place your cursor over the coverage bar, the color highlighting extends over the code. For
each section of code, the app displays the number of times that the section executes.

 Automated Fixed-Point Conversion

21-69

To verify that your test files are testing your algorithm over the intended operating range, review the
code coverage results.

Coverage Bar
Color

Action

Green If you expect sections of code to execute more frequently than the coverage
shows, either modify the MATLAB code or the test files.

Orange This behavior is expected for initialization code, for example, the initialization
of persistent variables. If you expect the code to execute more than one time,
either modify the MATLAB code or the test files.

Red If the code that does not execute is an error condition, this behavior is
acceptable. If you expect the code to execute, either modify the MATLAB code
or the test files. If the code is written conservatively and has upper and lower
boundary limits, and you cannot modify the test files to reach this code, add
static minimum and maximum values. See “Computing Derived Ranges” on
page 21-72.

Code coverage is on by default. Turn it off only after you have verified that you have adequate test file
coverage. Turning off code coverage can speed up simulation. To turn off code coverage, on the
Convert to Fixed Point page:

1 Click the Analyze arrow .
2 Clear the Show code coverage check box.

Proposing Data Types
In the define input types step, you specify a test file that calls the entry-point function. The app runs
the test file to analyze the code and infer the types for entry-point input arguments.

21 Fixed-Point Conversion

21-70

The app proposes fixed-point data types based on computed ranges and the word length or fraction
length setting. The computed ranges are based on simulation range data, derived range data (also
known as static ranges), or both. If you run a simulation and compute derived ranges, the app merges
the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

Derived range analysis is not supported for non-scalar variables.

You can manually enter static ranges. These manually entered ranges take precedence over
simulation ranges and the app uses them when proposing data types. If you analyze ranges using
derived range analysis alone, you must enter static ranges.

You can modify and lock the proposed type so that the tool cannot change it. For more information,
see “Locking Proposed Data Types” on page 21-73.

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for your entry-point
MATLAB file. If the build completes without errors, the app displays compiled information (type, size,
complexity) for functions and variables in your code. To navigate to local functions, click the

 Automated Fixed-Point Conversion

21-71

Functions tab. If build errors occur, the app provides error messages that link to the line of code that
caused the build issues. You must address these errors before running a simulation. Use the link to
navigate to the offending line of code in the MATLAB editor and modify the code to fix the issue. If
your code uses functions that are not supported for fixed-point conversion, the app displays them on
the Function Replacements tab. See “Function Replacements” on page 21-84.

Before running a simulation, specify the test file or files that you want to run. When you run a
simulation, the app runs the test file, calling the instrumented MEX function. If you modify the
MATLAB design code, the app automatically generates an updated MEX function before running a
test file.

If the test file runs successfully, the simulation minimum and maximum values and the proposed types
are displayed on the Variables tab. If you manually enter static ranges for a variable, the manually
entered ranges take precedence over the simulation ranges. If you manually modify the proposed
types by typing or using the histogram, the data types are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Output tab.

Test files must exercise your algorithm over its full operating range. The quality of the proposed
fixed-point data types depends on how well the test file covers the operating range of the algorithm
with the accuracy that you want. You can add test files and select to run more than one test file
during the simulation. If you run multiple test files, the app merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you can view the
histogram for each variable. For more information, see “Log Data for Histogram” on page 21-82.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to provide
test files that exercise your algorithm over its full operating range. Running such test files often takes
a very long time. The app can compute derived ranges for scalar variables only.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values or proposed data types for all input variables. To improve the analysis, enter as
much static range information as possible for other variables. You can manually enter ranges or
promote simulation ranges to use as static ranges. Manually entered static ranges always take
precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to match this
type. Manually entered data types are locked so that the app cannot modify them. The app uses these
data types to calculate the input minimum and maximum values and to derive ranges for other
variables. For more information, see “Locking Proposed Data Types” on page 21-73.

When you select Compute Derived Ranges, the app runs a derived range analysis to compute static
ranges for variables in your MATLAB algorithm. When the analysis is complete, the static ranges are
displayed on the Variables tab. If the run produces +/-Inf derived ranges, consider defining ranges
for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app performs faster
static analysis. The computed ranges might be larger than necessary. Select this option in cases
where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set a timeout.
When the timeout is reached, the app aborts the analysis.

21 Fixed-Point Conversion

21-72

Locking Proposed Data Types
You can lock proposed data types against changes by the app using one of the following methods:

• Manually setting a proposed data type in the app.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can unlock a type
using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected type.
• Right-clicking and selecting Undo changes for all variables. This action unlocks all locked

proposed types.

Viewing Functions
During the Convert to Fixed Point step of the fixed-point conversion process, you can view a list of
functions in your project in the left pane. This list also includes function specializations and class
methods. When you select a function from the list, the MATLAB code for that function or class
method is displayed in the code window and the variables that they use are displayed on the
Variables tab.

After conversion, the left pane also displays a list of output files including the fixed-point version of
the original algorithm. If your function is not specialized, the app retains the original function name
in the fixed-point file name and appends the fixed-point suffix. For example, here the fixed-point
version of ex_2ndOrder_filter.m is ex_2ndOrder_filter_fixpt.m.

 Automated Fixed-Point Conversion

21-73

Classes

The app displays information for the class and each of its methods. For example, consider a class,
Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.

21 Fixed-Point Conversion

21-74

If you select a method, the app displays only the variables that the method uses.

 Automated Fixed-Point Conversion

21-75

Specializations

If a function is specialized, the app lists each specialization and numbers them sequentially. For
example, consider a function, dut, that calls subfunctions, foo and bar, multiple times with different
input types.

function y = dut(u, v)

tt1 = foo(u);
tt2 = foo([u v]);
tt3 = foo(complex(u,v));

ss1 = bar(u);
ss2 = bar([u v]);
ss3 = bar(complex(u,v));

y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);

end

function y = foo(u)
 y = u * 2;
end

function y = bar(u)

21 Fixed-Point Conversion

21-76

 y = u * 4;
end

If you select the top-level function, the app displays all the variables on the Variables tab.

If you select the tree view, the app also displays the line numbers for the call to each specialization.

 Automated Fixed-Point Conversion

21-77

If you select a specialization, the app displays only the variables that the specialization uses.

21 Fixed-Point Conversion

21-78

In the generated fixed-point code, the number of each fixed-point specialization matches the number
in the Source Code list, which makes it easy to trace between the floating-point and fixed-point
versions of your code. For example, the generated fixed-point function for foo > 1 is named
foo_s1.

 Automated Fixed-Point Conversion

21-79

Viewing Variables
The Variables tab provides the following information for each variable in the function selected in the
Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the variable during

simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in bold.
Editing these fields does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the app.

• Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide static minimum
and maximum values for all input variables. To improve the analysis, enter as much static range
information as possible for other variables.

When you compute derived ranges, the app runs a static analysis to compute static ranges for
variables in your code. When the analysis is complete, the static ranges are displayed. You can edit
the computed results. Edited fields are shown in bold. Editing these fields does not trigger static
range analysis, but the tool uses the edited values in subsequent analyses. You can revert to the
types proposed by the app.

21 Fixed-Point Conversion

21-80

• Whole Number — Whether all values assigned to the variable during simulation are integers.

The app determines whether a variable is always a whole number. You can modify this field. Edited
fields are shown in bold. Editing these fields does not trigger static range analysis, but the app
uses the edited values in subsequent analyses. You can revert to the types proposed by the app.

• The proposed fixed-point data type for the specified word (or fraction) length. Proposed data types
use the numerictype notation. For example, numerictype(1,16,12) denotes a signed fixed-
point type with a word length of 16 and a fraction length of 12. numerictype(0,16,12) denotes
an unsigned fixed-point type with a word length of 16 and a fraction length of 12.

Because the app does not apply data types to expressions, it does not display proposed types for
them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor over a
variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables tab. The app
highlights occurrences in the code and displays only the variable with the specified name on the
Variables tab.

Viewing Information for MATLAB Classes

The app displays:

• Code for MATLAB classes and code coverage for class methods in the code window. Use the
Source Code list on the Convert to Fixed Point page to select which class or class method to
view. If you select a class method, the app highlights the method in the code window.

 Automated Fixed-Point Conversion

21-81

• Information about MATLAB classes on the Variables tab.

Log Data for Histogram
To log data for histograms:

• On the Convert to Fixed Point page, click the Analyze arrow .
• Select Log data for histogram.

21 Fixed-Point Conversion

21-82

• Click Analyze Ranges.

After simulation, to view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

The histogram provides the range of the proposed data type and the percentage of simulation values
that the proposed data type covers. The bit weights are displayed along the X-axis, and the
percentage of occurrences along the Y-axis. Each bin in the histogram corresponds to a bit in the
binary word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the proposed data
type.

 Automated Fixed-Point Conversion

21-83

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window, click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support, the app lists these functions
on the Function Replacements tab. You can choose to replace unsupported functions with a custom
function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function replacement for
a function, the replacement function is used when you build the project. If you do not enter a
replacement, the app uses the type specified in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace argument
patterns.

If code generation readiness screening is disabled, the list of unsupported functions on the Function
Replacements tab can be incomplete or incorrect. In this case, add the functions manually. See
“Code Generation Readiness Screening in the MATLAB Coder App” on page 24-30.

Validating Types
Converting the code to fixed point validates the build using the proposed fixed-point data types. If the
validation is successful, you are ready to test the numerical behavior of the fixed-point MATLAB
algorithm.

If the errors or warnings occur during validation, they are displayed on the Output tab. If errors or
warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to verify that they
are valid.

• On the Function Replacements tab, verify that you have provided function replacements for
unsupported functions.

21 Fixed-Point Conversion

21-84

Testing Numerics
After converting code to fixed point and validating the proposed fixed-point data types, click Test to
verify the behavior of the fixed-point MATLAB algorithm. By default, if you added a test file to define
inputs or run a simulation, the app uses this test file to test numerics. Optionally, you can add test
files and select to run more than one test file. The app compares the numerical behavior of the
generated fixed-point MATLAB code with the original floating-point MATLAB code. If you select to log
inputs and outputs for comparison plots, the app generates an additional plot for each scalar output.
This plot shows the floating-point and fixed-point results and the difference between them. For
nonscalar outputs, only the error information is shown.

After fixed-point simulation, if the numerical results do not meet the accuracy that you want, modify
fixed-point data type settings and repeat the type validation and numerical testing steps. You might
have to iterate through these steps multiple times to achieve the results that you want.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows enables overflow
detection. When this option is selected, the conversion app runs the simulation using scaled double
versions of the proposed fixed-point types. Because scaled doubles store their data in double-
precision floating-point, they carry out arithmetic in full range. They also retain their fixed-point
settings, so they are able to report when a computation goes out of the range of the fixed-point type. .

If the app detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the app also provides overflow information for these
expressions.

See Also

“Detect Overflows” on page 21-32

 Automated Fixed-Point Conversion

21-85

Convert Fixed-Point Conversion Project to MATLAB Scripts
This example shows how to convert a MATLAB Coder project to MATLAB scripts when the project
includes automated fixed-point conversion. You can use the -tocode option of the coder command
to create a pair of scripts for fixed-point conversion and fixed-point code generation. You can use the
scripts to repeat the project workflow in a command-line workflow. Before you convert the project to
the scripts, you must complete the Test step of the fixed-point conversion process.

Prerequisites

This example uses the following files:

• Project file ex_2ndOrder_filter.prj
• Entry-point file ex_2ndOrder_filter.m
• Test bench file ex_2ndOrder_filter_test.m
• Generated fixed-point MATLAB file ex_2ndOrder_filter_fixpt.m

To obtain these files, complete the example “Propose Fixed-Point Data Types Based on Simulation
Ranges” on page 21-6, including these steps:

1 Complete the Test step of the fixed-point conversion process.
2 Configure the project to build a C/C++ static library.

Generate the Scripts

1 Change to the folder that contains the project file ex_2ndOrder_filter.prj.
2 Use the -tocode option of the coder command to convert the project to the scripts. Use the -

script option to specify the file name for the scripts.

coder -tocode ex_2ndOrder_filter -script ex_2ndOrder_filter_script.m

The coder command generates two scripts in the current folder:

ex_2ndOrder_filter_script.m contains the MATLAB commands to:

• Create a code configuration object that has the same settings as the project.
• Run the codegen command to convert the fixed-point MATLAB function

ex_2ndOrder_filter_fixpt to a fixed-point C function.

The fixedPointConverter command generates a script in the current folder.
ex_2ndOrder_filter_script_fixpt.m contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the same fixed-
point conversion settings as the project.

• Run the codegen command to convert the MATLAB function ex_2ndOrder_filter to the
fixed-point MATLAB function ex_2ndOrder_filter_fixpt.

The suffix in the script file name is the generated fixed-point file name suffix specified by the
project file. In this example, the suffix is the default value _fixpt.

The coder command overwrites existing files that have the same names as the generated scripts.
If you omit the -script option, the coder command writes the scripts to the Command Window.

21 Fixed-Point Conversion

21-86

Run Script That Generates Fixed-Point C Code

To run the script that generates fixed-point C code from fixed-point MATLAB code, the fixed-point
MATLAB function specified in the script must be available.

1 Make sure that the fixed-point MATLAB function ex_2ndOrder_filter_fixpt.m is on the
search path.

 addpath c:\coder\ex_2ndOrder_filter\codegen\ex_2ndOrder_filter\fixpt
2 Run the script:

 ex_2ndOrder_filter_script

The code generator creates a C static library with the name ex_2ndOrder_filter_fixpt in
the folder codegen\lib\ex_2ndOrder_filter_fixpt. The variables cfg and ARGS appear in
the base workspace.

Run Script That Generates Fixed-Point MATLAB Code

If you do not have the fixed-point MATLAB function, or if you want to regenerate it, use the script that
generates the fixed-point MATLAB function from the floating-point MATLAB function.

1 Make sure that the current folder contains the entry-point function ex_2ndOrder_filter.m
and the test bench file ex_2ndOrder_filter_test.m.

2 Run the script.

 ex_2ndOrder_filter_script_fixpt

The code generator creates ex_2ndOrder_filter_fixpt.m in the folder codegen
\ex_2ndOrder_filter\fixpt. The variables cfg and ARGS appear in the base workspace.

See Also
coder | codegen | coder.FixPtConfig

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 21-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 21-6
• “Convert MATLAB Coder Project to MATLAB Script” on page 27-35

 Convert Fixed-Point Conversion Project to MATLAB Scripts

21-87

Generated Fixed-Point Code

In this section...
“Location of Generated Fixed-Point Files” on page 21-88
“Minimizing fi-casts to Improve Code Readability” on page 21-88
“Avoiding Overflows in the Generated Fixed-Point Code” on page 21-89
“Controlling Bit Growth” on page 21-89
“Avoiding Loss of Range or Precision” on page 21-90
“Handling Non-Constant mpower Exponents” on page 21-91

Location of Generated Fixed-Point Files
By default, the fixed-point conversion process generates files in a folder named codegen/fcn_name/
fixpt in your local working folder. fcn_name is the name of the MATLAB function that you are
converting to fixed point.

File name Description
fcn_name_fixpt.m Generated fixed-point MATLAB code.

To integrate this fixed-point code into a larger
application, consider generating a MEX-function
for the function and calling this MEX-function in
place of the original MATLAB code.

fcn_name_fixpt_exVal.mat MAT-file containing:

• A structure for the input arguments.
• The name of the fixed-point file.

fcn_name_fixpt_report.html Link to the type proposal report that displays the
generated fixed-point code and the proposed type
information.

fcn_name_report.html Link to the type proposal report that displays the
original MATLAB code and the proposed type
information.

fcn_name_wrapper_fixpt.m File that converts the floating-point data values
supplied by the test file to the fixed-point types
determined for the inputs during the conversion
step. These fixed-point values are fed into the
converted fixed-point function,
fcn_name_fixpt.

Minimizing fi-casts to Improve Code Readability
The conversion process tries to reduce the number of fi-casts by analyzing the floating-point code. If
an arithmetic operation is comprised of only compile-time constants, the conversion process does not
cast the operands to fixed point individually. Instead, it casts the entire expression to fixed point.

21 Fixed-Point Conversion

21-88

For example, here is the fixed-point code generated for the constant expression x = 1/sqrt(2)
when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code
x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

Avoiding Overflows in the Generated Fixed-Point Code
The conversion process avoids overflows by:

• Using full-precision arithmetic unless you specify otherwise.
• Avoiding arithmetic operations that involve double and fi data types. Otherwise, if the word

length of the fi data type is not able to represent the value in the double constant expression,
overflows occur.

• Avoiding overflows when adding and subtracting non fixed-point variables and fixed-point
variables.

The fixed-point conversion process casts non-fi expressions to the corresponding fi type.

For example, consider the following MATLAB algorithm.

% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi(A, B)
 % '1024' is non-fi, cast it
 y = A + 1024;
 % 'size(B, 1)*length(A)' is a non-fi, cast it
 y = A + size(B, 1)*length(A);
end

The generated fixed-point code is:

%#codegen
% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi_fixpt(A, B)
 % '1024' is non-fi, cast it
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(A + fi(1024, 0, 11, 0, fm), 0, 11, 0, fm);
 % 'size(B, 1)*length(A)' is a non-fi, cast it
 y(:) = A + fi(size(B, fi(1, 0, 1, 0, fm))*length(A), 0, 9, 0, fm);
end

Controlling Bit Growth
The conversion process controls bit growth by using subscripted assignments, that is, assignments
that use the colon (:) operator, in the generated code. When you use subscripted assignments,
MATLAB overwrites the value of the left-hand side argument but retains the existing data type and
array size. Using subscripted assignment keeps fixed-point variables fixed point rather than

 Generated Fixed-Point Code

21-89

inadvertently turning them into doubles. Maintaining the fixed-point type reduces the number of type
declarations in the generated code. Subscripted assignment also prevents bit growth which is useful
when you want to maintain a particular data type for the output.

Avoiding Loss of Range or Precision
Avoiding Loss of Range or Precision in Unsigned Subtraction Operations

When the result of the subtraction is negative, the conversion process promotes the left operand to a
signed type.

For example, consider the following MATLAB algorithm.

% A = 1;
% B = 5
function [y,z] = unsigned_subtraction(A,B)
 y = A - B;

 C = -20;
 z = C - B;
end

In the original code, both A and B are unsigned and the result of A-B can be negative. In the
generated fixed-point code, A is promoted to signed. In the original code, C is signed, so does not
require promotion in the generated code.

%#codegen
% A = 1;
% B = 5
function [y,z] = unsigned_subtraction_fixpt(A,B)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
y = fi(fi_signed(A) - B, 1, 3, 0, fm);
C = fi(-20, 1, 6, 0, fm);
z = fi(C - B, 1, 6, 0, fm);
end

function y = fi_signed(a)
coder.inline('always');
if isfi(a) && ~(issigned(a))
 nt = numerictype(a);
 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);
 y = fi(a, new_nt, fimath(a));
else
 y = a;
end
end

Avoiding Loss of Range When Concatenating Arrays of Fixed-Point Numbers

If you concatenate matrices using vertcat and horzcat, the conversion process uses the largest
numerictype among the expressions of a row and casts the leftmost element to that type. This type is
then used for the concatenated matrix to avoid loss of range.

21 Fixed-Point Conversion

21-90

For example, consider the following MATLAB algorithm.

% A = 1, B = 100, C = 1000
function [y, z] = lb_node(A, B, C)
 %% single rows
 y = [A B C];
 %% multiple rows
 z = [A 5; A B; A C];
end

In the generated fixed-point code:

• For the expression y = [A B C], the leftmost element, A, is cast to the type of C because C has
the largest type in the row.

• For the expression [A 5; A B; A C]:

• In the first row, A is cast to the type of C because C has the largest type of the whole
expression.

• In the second row, A is cast to the type of B because B has the larger type in the row.
• In the third row, A is cast to the type of C because C has the larger type in the row.

%#codegen
% A = 1, B = 100, C = 1000
function [y, z] = lb_node_fixpt(A, B, C)
 %% single rows
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi([fi(A, 0, 10, 0, fm) B C], 0, 10, 0, fm);

 %% multiple rows
 z = fi([fi(A, 0, 10, 0, fm) 5; fi(A, 0, 7, 0, fm) B;...
 fi(A, 0, 10, 0, fm) C], 0, 10, 0, fm);
end

Handling Non-Constant mpower Exponents
If the function that you are converting has a scalar input, and the mpower exponent input is not
constant, the conversion process sets the fimath ProductMode to SpecifyPrecision in the
generated code. With this setting , the output data type can be determined at compile time.

For example, consider the following MATLAB algorithm.

% a = 1
% b = 3
function y = exp_operator(a, b)
 % exponent is a constant so no need to specify precision
 y = a^3;
 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
 y = b^a;
end

In the generated fixed-point code, for the expression y = a^3 , the exponent is a constant, so there is
no need to specify precision. For the expression, y = b^a, the exponent is not constant, so the
ProductMode is set to SpecifyPrecision.

 Generated Fixed-Point Code

21-91

%#codegen
% a = 1
% b = 3
function y = exp_operator_fixpt(a, b)
 % exponent is a constant so no need to specify precision
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(a^3, 0, 2, 0, fm);
 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
 y(:) = fi(b, 'ProductMode', 'SpecifyPrecision',...
 'ProductWordLength', 2, 'ProductFractionLength', 0)^a;
end

21 Fixed-Point Conversion

21-92

Fixed-Point Code for MATLAB Classes
In this section...
“Automated Conversion Support for MATLAB Classes” on page 21-93
“Unsupported Constructs” on page 21-93
“Coding Style Best Practices” on page 21-93

Automated Conversion Support for MATLAB Classes
The automated fixed-point conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB classes. It does not
propose data types based on derived ranges for MATLAB classes.

After simulation, the MATLAB Coder app:

• Function list contains class constructors, methods, and specializations.
• Code window displays the objects used in each function.
• Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes” on page 21-81.
• Supports class methods, properties, and specializations. For each specialization of a class,

class_name, the conversion generates a separate class_name_fixpt.m file. For every
instantiation of a class, the generated fixed-point code contains a call to the constructor of the
appropriate specialization.

• Supports classes that have get and set methods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or assigned. The set
methods can be specialized. Sometimes, in the generated fixed-point code, assignment statements
are transformed to function calls.

Unsupported Constructs
The automated conversion process does not support:

• Class inheritance.
• Packages.
• Constructors that use nargin and varargin.

Coding Style Best Practices
When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.
• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle
 properties

 Fixed-Point Code for MATLAB Classes

21-93

 Value = 0;
 end

 properties(Constant)
 MAX_VALUE = 128
 end

 methods
 function out = next(this)
 out = this.Count;
 if this.Value == this.MAX_VALUE
 this.Value = 0;
 else
 this.Value = this.Value + 1;
 end
 end
 end
end

To use the automated fixed-point conversion process, rewrite the class to have a static class that
initializes the constant property MAX_VALUE and a constructor that initializes the property Value.

classdef Counter < handle
 properties
 Value;
 end

 methods(Static)
 function t = MAX_VALUE()
 t = 128;
 end
 end

 methods
 function this = Counter()
 this.Value = 0;
 end
 function out = next(this)
 out = this.Value;
 if this.Value == this.MAX_VALUE
 this.Value = 0;
 else
 this.Value = this.Value + 1;
 end
 end
 end
end

21 Fixed-Point Conversion

21-94

Automated Fixed-Point Conversion Best Practices

In this section...
“Create a Test File” on page 21-95
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 21-96
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page 21-96
“Manage Data Types and Control Bit Growth” on page 21-97
“Convert to Fixed Point” on page 21-97
“Use the Histogram to Fine-Tune Data Type Settings” on page 21-98
“Optimize Your Algorithm” on page 21-98
“Avoid Explicit Double and Single Casts” on page 21-100

Create a Test File
A best practice for structuring your code is to separate your core algorithm from other code that you
use to test and verify the results. Create a test file to call your original MATLAB algorithm and fixed-
point versions of the algorithm. For example, as shown in the following table, you might set up some
input data to feed into your algorithm, and then, after you process that data, create some plots to
verify the results. Since you need to convert only the algorithmic portion to fixed point, it is more
efficient to structure your code so that you have a test file, in which you create your inputs, call your
algorithm, and plot the results, and one (or more) algorithmic files, in which you do the core
processing.

Original code Best Practice Modified code
% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)
 y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input and
verification of results are
intermingled with the algorithm
code.

Fix

Create a test file that is separate
from your algorithm. Put the
algorithm in its own function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
 y = zeros(size(x));
 y(1) = x(1);
 for n=2:length(x)
 y(n) = y(n-1) + x(n);
 end
end

You can use the test file to:

 Automated Fixed-Point Conversion Best Practices

21-95

• Verify that your floating-point algorithm behaves as you expect before you convert it to fixed point.
The floating-point algorithm behavior is the baseline against which you compare the behavior of
the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-point baseline.
• Help you determine initial values for static ranges.

By default, the MATLAB Coder app shows code coverage results. Your test files should exercise the
algorithm over its full operating range so that the simulation ranges are accurate. For example, for a
filter, realistic inputs are impulses, sums of sinusoids, and chirp signals. With these inputs, using
linear theory, you can verify that the outputs are correct. Signals that produce maximum output are
useful for verifying that your system does not overflow. The quality of the proposed fixed-point data
types depends on how well the test files cover the operating range of the algorithm with the accuracy
that you want. Reviewing code coverage results help you verify that your test file is exercising the
algorithm adequately. Review code flagged with a red code coverage bar because this code is not
executed. If the code coverage is inadequate, modify the test file or add more test files to increase
coverage. See “Code Coverage” on page 21-67.

Prepare Your Algorithm for Code Acceleration or Code Generation
The automated conversion process instruments your code and provides data type proposals to help
you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically must comply with code
generation requirements and rules. To view the subset of the MATLAB language that is supported for
code generation, see “Functions and Objects Supported for C/C++ Code Generation” on page 3-2.

To help you identify unsupported functions or constructs in your MATLAB code, add the %#codegen
pragma to the top of your MATLAB file. The MATLAB Code Analyzer flags functions and constructs
that are not available in the subset of the MATLAB language supported for code generation. This
advice appears in real time as you edit your code in the MATLAB editor. For more information, see
“Check Code with the Code Analyzer” on page 25-5. The software provides a link to a report that
identifies calls to functions and the use of data types that are not supported for code generation. For
more information, see “Check Code by Using the Code Generation Readiness Tool” on page 25-7.

Check for Fixed-Point Support for Functions Used in Your Algorithm
The app flags unsupported function calls found in your algorithm on the Function Replacements
tab. For example, if you use the fft function, which is not supported for fixed point, the tool adds an
entry to the table on this tab and indicates that you need to specify a replacement function to use for
fixed-point operations.

21 Fixed-Point Conversion

21-96

You can specify additional replacement functions. For example, functions like sin, cos,and sqrt
might support fixed point, but for better efficiency, you might want to consider an alternative
implementation like a lookup table or CORDIC-based algorithm. The app provides an option to
generate lookup table approximations for continuous and stateless single-input, single-output
functions in your original MATLAB code. See “Replacing Functions Using Lookup Table
Approximations” on page 21-101.

Manage Data Types and Control Bit Growth
The automated fixed-point conversion process automatically manages data types and controls bit
growth. It controls bit growth by using subscripted assignments, that is, assignments that use the
colon (:) operator, in the generated code. When you use subscripted assignments, MATLAB overwrites
the value of the left-hand side argument but retains the existing data type and array size. In addition
to preventing bit growth, subscripted assignment reduces the number of casts in the generated fixed-
point code and makes the code more readable.

Convert to Fixed Point
What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are you
implementing your algorithm in C or HDL? What are your target constraints? The answers to these
questions determine many fixed-point properties such as the available word length, fraction length,
and math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

For more information, see “Specify Type Proposal Options” on page 21-29.

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected before converting it
to fixed point. You can use the same test file to propose fixed-point data types, and to compare fixed-
point results to the floating-point baseline after the conversion. For more information, see “Running a
Simulation” on page 21-71 and “Log Data for Histogram” on page 21-82 .

 Automated Fixed-Point Conversion Best Practices

21-97

Use the Histogram to Fine-Tune Data Type Settings
To fine-tune fixed-point type settings, use the histogram. To log data for histograms, in the app, click
the Analyze arrow and select Log data for histogram.

After simulation and static analysis:

• To view the histogram for a variable, on the Variables tab, click the Proposed Type field for that
variable.

You can view the effect of changing the proposed data types by dragging the edges of the
bounding box in the histogram window to change the proposed data type and selecting or clearing
the Signed option.

• If the values overflow and the range cannot fit the proposed type, the table shows proposed types
in red.

When the tool applies data types, it generates an html report that provides overflow information and
highlights overflows in red. Review the proposed data types.

Optimize Your Algorithm
Use fimath to Get Optimal Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi objects, including
math, rounding, and overflow properties. You can use the fimath ProductMode and SumMode

21 Fixed-Point Conversion

21-98

properties to retain optimal data types for C or HDL. HDL can have arbitrary word length types in the
generated HDL code whereas C requires container types (uint8, uint16, uint32). Use the
Advanced settings, see “Specify Type Proposal Options” on page 21-29.

C

The KeepLSB setting for ProductMode and SumMode models the behavior of integer operations in
the C language, while KeepMSB models the behavior of many DSP devices. Different rounding
methods require different amounts of overhead code. Setting the RoundingMethod property to
Floor, which is equivalent to two's complement truncation, provides the most efficient rounding
implementation. Similarly, the standard method for handling overflows is to wrap using modulo
arithmetic. Other overflow handling methods create costly logic. Whenever possible, set
OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code
Code being compiled

function y = adder(a,b)
 y = a + b;
end

Note In the app, set Default
word length to 16.

Issue

With the default word length set to 16 and the
default fimath settings, additional code is
generated to implement saturation overflow,
nearest rounding, and full-precision
arithmetic.

int adder(short a, short b)
{
 int y;
 int i;
 int i1;
 int i2;
 int i3;
 i = a;
 i1 = b;
 if ((i & 65536) != 0) {
 i2 = i | -65536;
 } else {
 i2 = i & 65535;
 }

 if ((i1 & 65536) != 0) {
 i3 = i1 | -65536;
 } else {
 i3 = i1 & 65535;
 }

 i = i2 + i3;
 if ((i & 65536) != 0) {
 y = i | -65536;
 } else {
 y = i & 65535;
 }

 return y;
}

Fix

To make the generated C code more efficient,
choose fixed-point math settings that match
your processor types.

To customize fixed-point type proposals, use
the app Settings. Select fimath and then set:

int adder(short a, short b)
{
 return a + b;
}

Rounding method Floor

 Automated Fixed-Point Conversion Best Practices

21-99

MATLAB Code Best Practice Generated C Code
Overflow action Wrap
Product mode KeepLSB
Sum mode KeepLSB
Product word length 32
Sum word length 32

HDL

For HDL code generation, set:

• ProductMode and SumMode to FullPrecision
• Overflow action to Wrap
• Rounding method to Floor

Replace Built-in Functions with More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point implementation. For
example, you can replace a built-in function with a Lookup table implementation, or a CORDIC
implementation, which requires only iterative shift-add operations. For more information, see
“Function Replacements” on page 21-84.

Reimplement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing. When your
algorithm requires a division, consider replacing it with one of the following options:

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3) instead of
x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2 instead of x/5.
• If the divisor is not constant, use a temporary variable for the division. Doing so results in a more
efficient data type proposal and, if overflows occur, makes it easier to see which expression is
overflowing.

Eliminate Floating-Point Variables

For more efficient code, the automated fixed-point conversion process eliminates floating-point
variables. The one exception to this is loop indices because they usually become integer types. It is
good practice to inspect the fixed-point code after conversion to verify that there are no floating-point
variables in the generated fixed-point code.

Avoid Explicit Double and Single Casts
For the automated workflow, do not use explicit double or single casts in your MATLAB algorithm to
insulate functions that do not support fixed-point data types. The automated conversion tool does not
support these casts.

Instead of using casts, supply a replacement function. For more information, see “Function
Replacements” on page 21-84.

21 Fixed-Point Conversion

21-100

Replacing Functions Using Lookup Table Approximations
The MATLAB Coder software provides an option to generate lookup table approximations for
continuous and stateless single-input, single-output functions in your original MATLAB code. These
functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and to replace
your own custom functions. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. You can control the interpolation
method and number of points in the lookup table. By adjusting these settings, you can tune the
behavior of replacement function to match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site of the
function that needs replacement.

To use lookup table approximations in a MATLAB Coder project, see “Replace the exp Function with a
Lookup Table” on page 21-40 and “Replace a Custom Function with a Lookup Table” on page 21-47.

To use lookup table approximations in the programmatic workflow, see coder.approximation,
“Replace the exp Function with a Lookup Table” on page 22-19, and “Replace a Custom Function
with a Lookup Table” on page 22-21.

 Replacing Functions Using Lookup Table Approximations

21-101

MATLAB Language Features Supported for Automated Fixed-
Point Conversion

In this section...
“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page 21-102
“MATLAB Language Features Not Supported for Automated Fixed-Point Conversion” on page 21-103

MATLAB Language Features Supported for Automated Fixed-Point
Conversion
Fixed-Point Designer supports the following MATLAB language features in automated fixed-point
conversion:

• N-dimensional arrays
• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Generate Code for Variable-Size Data” on page 27-98). Range

computation for variable–sized data is supported via simulation mode only. Variable-sized data is
not supported for comparison plotting.

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” (Fixed-Point Designer))

• Complex numbers (see “Code Generation for Complex Data” (Fixed-Point Designer))
• Numeric classes (see “Supported Variable Types” (Fixed-Point Designer))
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB” (Fixed-Point

Designer))
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Global variables
• Persistent variables
• Structures, including arrays of structures. Range computation for structures is supported via

simulation mode only.
• Characters

The complete set of Unicode® characters is not supported for code generation. Characters are
restricted to 8 bits of precision in generated code. Because many mathematical operations require
more than 8 bits of precision, it is recommended that you do not perform arithmetic with
characters if you intend to convert your MATLAB algorithm to fixed point.

• MATLAB classes. Range computation for MATLAB classes is supported via simulation mode only.

Automated conversion supports:

• Class properties
• Constructors

21 Fixed-Point Conversion

21-102

• Methods
• Specializations

It does not support class inheritance or packages. For more information, see “Fixed-Point Code for
MATLAB Classes” (Fixed-Point Designer).

• Ability to call functions (see “Resolution of Function Calls for Code Generation” on page 20-2)
• Subset of MATLAB toolbox functions (see “Functions Supported for Code Acceleration or C Code

Generation” (Fixed-Point Designer)).
• Subset of DSP System Toolbox™ System objects.

The DSP System Toolbox System objects supported for automated conversion are:

• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.VariableFractionalDelay

MATLAB Language Features Not Supported for Automated Fixed-Point
Conversion
Fixed-Point Designer does not support the following features in automated fixed-point conversion:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin, varargout, or generation of fewer input or output arguments than an entry-point

function defines
• Dot indexing properties of fixed-point data types.

Avoid using properties of fixed-point types in the code being converted by the Fixed-Point
Converter app, and in MATLAB Function blocks being converted by the Fixed-Point Tool.

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

21-103

Inspecting Data Using the Simulation Data Inspector
In this section...
“What Is the Simulation Data Inspector?” on page 21-104
“Import Logged Data” on page 21-104
“Export Logged Data” on page 21-104
“Group Signals” on page 21-104
“Run Options” on page 21-104
“Create Report” on page 21-105
“Comparison Options” on page 21-105
“Enabling Plotting Using the Simulation Data Inspector” on page 21-105
“Save and Load Simulation Data Inspector Sessions” on page 21-105

What Is the Simulation Data Inspector?
The Simulation Data Inspector allows you to view data logged during the fixed-point conversion
process. You can use it to inspect and compare the inputs and outputs to the floating-point and fixed-
point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data Inspector.

Import Logged Data
Before importing data into the Simulation Data Inspector, you must have previously logged data to
the base workspace or to a MAT-file.

Export Logged Data
The Simulation Data Inspector provides the capability to save data collected by the fixed-point
conversion process to a MAT-file that you can later reload. The format of the MAT-file is different from
the format of a MAT-file created from the base workspace.

Group Signals
You can customize the organization of your logged data in the Simulation Data Inspector Runs pane.
By default, data is first organized by run. You can then organize your data by logged variable or no
hierarchy.

Run Options
You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the run list. To
append new runs to the top of the list, select Add new runs at top.

21 Fixed-Point Conversion

21-104

• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run Options.

Create Report
You can create a report of the runs or comparison plots. Specify the name and location of the report
file. By default, the Simulation Data Inspector overwrites existing files. To preserve existing reports,
select If report exists, increment file name to prevent overwriting.

Comparison Options
To change how signals are matched when runs are compared, specify the Align by and Then by
parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector
To enable the Simulation Data Inspector in the Fixed-Point Conversion tool, see “Enable Plotting
Using the Simulation Data Inspector” on page 21-53.

To enable the Simulation Data Inspector in the programmatic workflow, see “Enable Plotting Using
the Simulation Data Inspector” on page 22-23.

Save and Load Simulation Data Inspector Sessions
If you have data in the Simulation Data Inspector and you want to archive or share the data to view in
the Simulation Data Inspector later, save the Simulation Data Inspector session. When you save a
Simulation Data Inspector session, the MAT-file contains:

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click Subplots and

select the subplot layout.

 Inspecting Data Using the Simulation Data Inspector

21-105

Custom Plot Functions
The Fixed-Point Conversion tool provides a default time series based plotting function. The
conversion process uses this function at the test numerics step to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion you might
want to visualize the numerical differences in a view that is more suitable for your application
domain. For example, plots that show eye diagrams and bit error differences are more suitable in the
communications domain and histogram difference plots are more suitable in image processing
designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point Conversion
tool facilitates custom plotting by providing access to the raw logged input and output data before
and after fixed-point conversion. You supply a custom plotting function to visualize the differences
between the floating-point and fixed-point results. If you specify a custom plot function, the fixed-
point conversion process calls the function for each input and output variable, passes in the name of
the variable and the function that uses it, and the results of the floating-point and fixed-point
simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the algorithm during
the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and then set
Custom plot function to the name of your plot function.

In the programmatic workflow, set the coder.FixPtConfig configuration object PlotFunction
property to the name of your plot function. See “Visualize Differences Between Floating-Point and
Fixed-Point Results” on page 22-24.

21 Fixed-Point Conversion

21-106

Data Type Issues in Generated Code
Within the fixed-point conversion report, you have the option to highlight MATLAB code that results
in double, single, or expensive fixed-point operations. Consider enabling these checks when trying to
achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in the MATLAB Coder App
1 On the Convert to Fixed Point page, to open the Settings dialog box, click the Settings arrow

.
2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.

When conversion is complete, open the fixed-point conversion report to view the highlighting. Click
View report in the Type Validation Output tab.

Enable the Highlight Option at the Command Line
1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property of the configuration object to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles
When trying to achieve a strict-single or fixed-point design, manual inspection of code can be time-
consuming and error prone. This check highlights all expressions that result in a double operation.

For a strict-single precision design, specify a language standard that supports single-precision
implementations. To change the library for a project, during the Generate Code step, in the project
settings dialog box, on the Custom Code tab, set the Language standard to C99 (ISO).

Stowaway Singles
This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations
The expensive fixed-point operations check identifies optimization opportunities for fixed-point code.
It highlights expressions in the MATLAB code that require cumbersome multiplication or division,
expensive rounding, expensive comparison, or multiword operations. For more information on
optimizing generated fixed-point code, see “Tips for Making Generated Code More Efficient” (Fixed-
Point Designer).

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs to a
multiply or divide operation that has word lengths larger than the base integer type of your

 Data Type Issues in Generated Code

21-107

processor. Operations with larger word lengths can be handled in software, but this approach
requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no effort"
rounding. For example, for unsigned integers and two's complement signed integers, shifting right
and dropping the bits is equivalent to rounding to floor. To get results comparable to, or better than,
what you expect from traditional handwritten code, use the floor rounding method. This check
identifies expensive rounding operations in multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do the
comparison. For example, when comparing an unsigned integer to a signed integer, one of the inputs
must first be cast to the signedness of the other before the comparison operation can be performed.
Consider optimizing the data types of the input arguments so that a cast is not required in the
generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or output data
type larger than the largest word size of your processor, the generated code contains multiword
operations. You can avoid multiword operations in the generated code by specifying local fimath
properties for variables. You can also manually specify input and output word lengths of operations
that generate multiword code.

21 Fixed-Point Conversion

21-108

Automated Fixed-Point Conversion
Using Programmatic Workflow

• “Convert MATLAB Code to Fixed-Point C Code” on page 22-2
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 22-4
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 22-9
• “Detect Overflows” on page 22-16
• “Replace the exp Function with a Lookup Table” on page 22-19
• “Replace a Custom Function with a Lookup Table” on page 22-21
• “Enable Plotting Using the Simulation Data Inspector” on page 22-23
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 22-24

22

Convert MATLAB Code to Fixed-Point C Code
This example shows how to generate fixed-point C code from floating-point MATLAB code using the
programmatic workflow.

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name. For example:

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'fun_with_matlab_test';

Configure the Fixed-Point Configuration Object for Type Proposal

The fixed-point conversion software can propose types based on simulation ranges, derived ranges, or
both.

• For type proposal using only simulation ranges, enable the collection and reporting of simulation
range data. By default, derived range analysis is disabled.

fixptcfg.ComputeSimulationRanges = true;

• For type proposal using only derived ranges:

1 Specify the design range for input parameters. For example:

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
2 Enable derived range analysis. Disable collection and reporting of simulation range data.

fixptcfg.ComputeDerivedRanges = true;
fixptcfg.ComputeSimulationRanges = false;

Enable Numerics Testing

Select to run the test file to verify the generated fixed-point MATLAB code.

fixptcfg.TestNumerics = true;

Enable Plotting

Log inputs and outputs for comparison plotting. Select to plot using a custom function or Simulation
Data Inspector. For example, to plot using Simulation Data Inspector:

fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Configure Additional Fixed-Point Configuration Object Properties

Configure additional fixed-point configuration object properties as necessary. For example, define the
default fixed-point word length:

fixptcfg.DefaultWordLength = 16;

Set Up the C Code Generation Configuration Object

Create a code configuration object for generation of a C static library, dynamic library, or executable.
Enable the code generation report. For example:

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-2

cfg = coder.config('lib');
cfg.GenerateReport = true;

Generate Fixed-Point C Code

Use the codegen function to convert the floating-point MATLAB function to fixed-point C code. For
example:

codegen -float2fixed fixptcfg -config cfg fun_with_matlab

View the Type Proposal Report

Click the link to the type proposal report for the entry-point function.

View the Comparison Plots

If you selected to log inputs and outputs for comparison plots, the conversion process generates
comparison plots.

• If you selected to use Simulation Data Inspector for these plots, the Simulation Data Inspector
opens. Use Simulation Data Inspector to view and compare the floating-point and fixed-point run
information.

• If you selected to use a custom plotting function for these plots, the conversion process uses the
custom function to generate the plots.

View the Generated Fixed-Point MATLAB and Fixed-Point C Code

Click the View Report link that follows the type proposal report. To view the fixed-point MATLAB
code, select the function in the MATLAB Source pane. To view the fixed-point C code, select the file
in the Generated Code pane.

See Also
coder.FixptConfig

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 22-4
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 22-9
• “Enable Plotting Using the Simulation Data Inspector” on page 22-23

More About
• “Automated Fixed-Point Conversion” on page 21-67

 Convert MATLAB Code to Fixed-Point C Code

22-3

Propose Fixed-Point Data Types Based on Simulation Ranges
This example shows how to propose fixed-point data types based on simulation range data using the
codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-4

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp, step, and
impulse to cover the full intended operating range of the system. The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'ex_2ndOrder_filter_test';

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Collect Simulation Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function, ex_2ndOrder_filter, to
fixed-point C code. Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeSimulationRanges = true;
fixptcfg.DefaultWordLength = 16;

 Propose Fixed-Point Data Types Based on Simulation Ranges

22-5

% Derive ranges and generate fixed-point code
codegen -float2fixed fixptcfg -config cfg ex_2ndOrder_filter

codegen analyzes the floating-point code. Because you did not specify the input types for the
ex_2ndOrder_filter function, the conversion process infers types by simulating the test file. The
conversion process then derives ranges for variables in the algorithm. It uses these derived ranges to
propose fixed-point types for these variables. When the conversion is complete, it generates a type
proposal report.

View Range Information

Click the link to the type proposal report for the ex_2ndOrder_filter function,
ex_2ndOrder_filter_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the ex_2ndOrder_filter.m function,
ex_2ndOrder_filter_fixpt.m, and a wrapper function that calls ex_2ndOrder_filter_fixpt.
These files are generated in the codegen\ex_2ndOrder_filter\fixpt folder in your local
working folder.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-6

function y = ex_2ndOrder_filter_fixpt(x) %#codegen
 fm = get_fimath();

 persistent z
 if isempty(z)
 z = fi(zeros(2,1), 1, 16, 15, fm);
 end
 % [b,a] = butter(2, 0.25)
 b = fi([0.0976310729378175, 0.195262145875635,...
 0.0976310729378175], 0, 16, 18, fm);
 a = fi([1, -0.942809041582063,...
 0.3333333333333333], 1, 16, 14, fm);

 y = fi(zeros(size(x)), 1, 16, 14, fm);
 for i=1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2) * y(i);
 z(2) = fi_signed(b(3)*x(i)) - a(3) * y(i);
 end
end

function y = fi_signed(a)
 coder.inline('always');
 if isfi(a) && ~(issigned(a))
 nt = numerictype(a);
 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);
 y = fi(a, new_nt, fimath(a));
 else
 y = a;
 end
end

function fm = get_fimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link that follows
the type proposal report.

 Propose Fixed-Point Data Types Based on Simulation Ranges

22-7

The code generation report opens and displays the generated code for
ex_2ndOrder_filter_fixpt.c.

See Also
codegen | coder.FixptConfig

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 21-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 22-9

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-8

Propose Fixed-Point Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static ranges using the codegen
function. The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such test files
often takes a very long time so you can save time by deriving ranges instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description
Function code dti.m Entry-point MATLAB function
Test file dti_test.m MATLAB script that tests dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

 Propose Fixed-Point Data Types Based on Derived Ranges

22-9

% variable to hold state between consecutive calls to this block
persistent u_state
if isempty(u_state)
 u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else
 y = u_state;
 clip_status = 0;
end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

function b = subFunction(a)
b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the input and
output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10)

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
 data = x_in(ii);
 % call to the dti function
 init_val = 0;
 gain_val = 1;
 upper_limit = 500;
 lower_limit = -500;

 % call to the design that does DTI

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-10

 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot'])
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

Specify Design Ranges

Specify design range information for the dti function input parameter u_in.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

Enable Plotting Using the Simulation Data Inspector

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and outputs for
comparison plotting and select to use the Simulation Data Inspector to plot the results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Derive Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function, dti, to fixed-point C code.
Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeDerivedRanges = true;
fixptcfg.ComputeSimulationRanges = false;
fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code
codegen -float2fixed fixptcfg -config cfg dti

 Propose Fixed-Point Data Types Based on Derived Ranges

22-11

codegen analyzes the floating-point code. Because you did not specify the input types for the dti
function, the conversion process infers types by simulating the test file. The conversion process then
derives ranges for variables in the algorithm. It uses these derived ranges to propose fixed-point
types for these variables. When the conversion is complete, it generates a type proposal report.

View Derived Range Information

Click the link to the type proposal report for the dti function, dti_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the dti function, dti_fxpt.m, and a wrapper function
that calls dti_fxpt. These files are generated in the codegen\dti\fixpt folder in your local
working folder.

function [y, clip_status] = dti_fixpt(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-12

% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
fm = get_fimath();

init_val = fi(1, 0, 1, 0, fm);
gain_val = fi(1, 0, 1, 0, fm);
limit_upper = fi(500, 0, 9, 0, fm);
limit_lower = fi(-500, 1, 10, 0, fm);

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
 u_state = fi(init_val+fi(1, 0, 1, 0, fm), 1, 16, 6, fm);
end

% Compute Output
if (u_state > limit_upper)
 y = fi(limit_upper, 1, 16, 6, fm);
 clip_status = fi(-2, 1, 16, 13, fm);
elseif (u_state >= limit_upper)
 y = fi(limit_upper, 1, 16, 6, fm);
 clip_status = fi(-1, 1, 16, 13, fm);
elseif (u_state < limit_lower)
 y = fi(limit_lower, 1, 16, 6, fm);
 clip_status = fi(2, 1, 16, 13, fm);
elseif (u_state <= limit_lower)
 y = fi(limit_lower, 1, 16, 6, fm);
 clip_status = fi(1, 1, 16, 13, fm);
else
 y = fi(u_state, 1, 16, 6, fm);
 clip_status = fi(0, 1, 16, 13, fm);
end

% Update State
tprod = fi(gain_val * u_in, 1, 16, 14, fm);
u_state(:) = y + tprod;
end

function fm = get_fimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end

Compare Floating-Point and Fixed-Point Runs

Because you selected to log inputs and outputs for comparison plots and to use the Simulation Data
Inspector for these plots, the Simulation Data Inspector opens.

You can use the Simulation Data Inspector to view floating-point and fixed-point run information and
compare results. For example, to compare the floating-point and fixed-point values for the output y,
on the Compare tab, select y, and then click Compare Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run against the fixed-point
run and the difference between them.

 Propose Fixed-Point Data Types Based on Derived Ranges

22-13

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link that follows
the type proposal report.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-14

The code generation report opens and displays the generated code for dti_fixpt.c.

See Also
codegen | coder.FixptConfig

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 21-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 22-4

 Propose Fixed-Point Data Types Based on Derived Ranges

22-15

Detect Overflows
This example shows how to detect overflows at the command line. At the numerical testing stage in
the conversion process, the tool simulates the fixed-point code using scaled doubles. It then reports
which expressions in the generated code produce values that would overflow the fixed-point data
type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer

In a local, writable folder, create a function, overflow.

function y = overflow(b,x,reset)
 if nargin<3, reset = true; end
 persistent z p
 if isempty(z) || reset
 p = 0;
 z = zeros(size(b));
 end
 [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
 y = zeros(size(x));
 nx = length(x);
 nb = length(b);
 for n = 1:nx
 p=p+1; if p>nb, p=1; end
 z(p) = x(n);
 acc = 0;
 k = p;
 for j=1:nb
 acc = acc + b(j)*z(k);
 k=k-1; if k<1, k=nb; end
 end
 y(n) = acc;
 end
end

Create a test file, overflow_test.m to exercise the overflow algorithm.

function overflow_test
 % The filter coefficients were computed using the FIR1 function from
 % Signal Processing Toolbox.
 % b = fir1(11,0.25);
 b = [-0.004465461051254
 -0.004324228005260
 +0.012676739550326
 +0.074351188907780
 +0.172173206073645
 +0.249588554524763
 +0.249588554524763

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-16

 +0.172173206073645
 +0.074351188907780
 +0.012676739550326
 -0.004324228005260
 -0.004465461051254]';

 % Input signal
 nx = 256;
 t = linspace(0,10*pi,nx)';

 % Impulse
 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain
 % The maximum gain of a filter will occur when the inputs line up with the
 % signs of the filter's impulse response.
 x_max_gain = sign(b)';
 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
 x_max_gain = x_max_gain(1:nx);

 % Sums of sines
 f0=0.1; f1=2;
 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp
 f_chirp = 1/16; % Target frequency
 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];
 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
 y = zeros(size(x));

 for i=1:size(x,2)
 reset = true;
 y(:,i) = overflow(b,x(:,i),reset);
 end

 test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
 figure(fig)
 clf
 sub_plot = 1;
 font_size = 10;
 for i=1:size(x,2)
 subplot(4,1,sub_plot)
 sub_plot = sub_plot+1;
 plot(t,x(:,i),'c',t,y1(:,i),'k')
 axis('tight')
 xlabel('t','FontSize',font_size);
 title(titles{i},'FontSize',font_size);
 ax = gca;
 ax.FontSize = 10;
 end
 figure(gcf)
end

 Detect Overflows

22-17

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is overflow_test.

fixptcfg.TestBenchName = 'overflow_test';

Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

Set the fimath Product mode and Sum mode to KeepLSB. These settings models the behavior of
integer operations in the C language.

fixptcfg.fimath = ...
['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...
'''Wrap'',''ProductMode'',''KeepLSB'',''SumMode'',''KeepLSB'')'];

Create a code generation configuration object to generate a standalone C static library.

cfg = coder.config('lib');

Convert the floating-point MATLAB function, overflow, to fixed-point C code. You do not need to
specify input types for the codegen command because it infers the types from the test file.

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase reports an overflow.
Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 104%.

Determine if the addition or the multiplication in this expression overflowed. Set the fimath
ProductMode to FullPrecision so that the multiplication will not overflow, and then run the
codegen command again.

fixptcfg.fimath = ['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...
 '''Wrap'',''ProductMode'',''FullPrecision'',''SumMode'',''KeepLSB'')'];
codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase still reports an overflow, indicating that it is the addition in the
expression that is overflowing.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-18

Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in the
generated fixed-point code using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
 y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = my_fcn(x(itr));
end
plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function, using the
default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'my_fcn_test';
fixptcfg.TestNumerics = true;
fixptcfg.DefaultWordLength = 16;
fixptcfg.addApproximation(q);

 Replace the exp Function with a Lookup Table

22-19

Convert to Fixed Point

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_exp, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear interpolation, 1000
points, and the minimum and maximum values detected by running the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of calling exp.

function y = my_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-20

Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation function
using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.

function y = custom_fcn(x)
 y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)
 y = custom_fcn(x);
end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = call_custom_fcn(x(itr));
end
plot(x, y);

Create a function replacement configuration object to approximate custom_fcn. Specify the function
handle of the custom function and set the number of points to use in the lookup table to 50.

q = coder.approximation('Function','custom_fcn',...
 'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable numerics
testing. Associate the function replacement configuration object with the fixed-point configuration
object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'custom_test';
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

 Replace a Custom Function with a Lookup Table

22-21

codegen -float2fixed fixptcfg call_custom_fcn

codegen generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_custom_fcn, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the function and then
uses an interpolated lookup table to replace the function. The lookup table uses 50 points as
specified. By default, it uses linear interpolation and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation instead of
calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the original
MATLAB function. If the behavior of the generated fixed-point code does not match the behavior of
the original code closely enough, modify the interpolation method or number of points used in the
lookup table and then regenerate code.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-22

Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector (Simulink) to inspect and compare floating-point and fixed-
point input and output data logged using the codegen function. At the MATLAB command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs and
outputs for comparison plotting and select to use the Simulation Data Inspector to plot the
results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page 22-9.

 Enable Plotting Using the Simulation Data Inspector

22-23

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the codegen function to use a custom plot function to compare
the behavior of the generated fixed-point code against the behavior of the original floating-point
MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion process
uses a time series based plotting function to show the floating-point and fixed-point results and the
difference between them. However, during fixed-point conversion you might want to visualize the
numerical differences in a view that is more suitable for your application domain. This example shows
how to customize plotting and produce scatter plots at the test numerics step of the fixed-point
conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files to your

local working folder.

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
 b = complex(zeros(1,16));

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-24

 h = complex(zeros(1,16));
 h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
 y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
% i) name
% ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
 varName = varInfo.name;
 fcnName = varInfo.functionName;

 % escape the '_'s because plot titles treat these as subscripts
 escapedVarName = regexprep(varName,'_','_');
 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values
 flatFloatVals = floatVals(1:end);
 flatFixedVals = fixedVals(1:end);

 % build Titles
 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];
 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName
 case 'y'
 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 Visualize Differences Between Floating-Point and Fixed-Point Results

22-25

 y_vec = flatFloatVals;
 subplot(1, 2, 1);
 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values
 y_vec = flatFixedVals;
 subplot(1, 2, 2);
 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise
 % Plot only output 'y' for this example, skip the rest
 end

end

function plotScatter(x_vec, y_vec, n, figTitle)
 % plot the last n samples
 x_plot = x_vec(end-n+1:end);
 y_plot = y_vec(end-n+1:end);

 hold on
 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on
 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);
end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff';
fxptcfg.TestNumerics = true;
fxptcfg.LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You do not
need to specify input types for the codegen command because it infers the types from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The conversion process generates fixed-point code using a default word length of 16 and then runs a
fixed-point simulation by running the myFilterTest.m function and calling the fixed-point version of
myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the custom plotting
function, plotDiff.m, for these plots, the conversion process uses this function to generate the
comparison plot.

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-26

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;
codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-point results
match the floating-point results.

 Visualize Differences Between Floating-Point and Fixed-Point Results

22-27

22 Automated Fixed-Point Conversion Using Programmatic Workflow

22-28

Single-Precision Conversion

• “Generate Single-Precision C Code at the Command Line” on page 23-2
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 23-6
• “Generate Single-Precision MATLAB Code” on page 23-11
• “Choose a Single-Precision Conversion Workflow” on page 23-18
• “Single-Precision Conversion Best Practices” on page 23-19
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 23-22
• “Combining Integers and Double-Precision Numbers” on page 23-24
• “MATLAB Language Features Supported for Single-Precision Conversion” on page 23-25

23

Generate Single-Precision C Code at the Command Line
In this section...
“Prerequisites” on page 23-2
“Create a Folder and Copy Relevant Files” on page 23-2
“Determine the Type of the Input Argument” on page 23-4
“Generate and Run Single-Precision MEX to Verify Numerical Behavior” on page 23-4
“Generate Single-Precision C Code” on page 23-4
“View the Generated Single-Precision C Code” on page 23-4
“View Potential Data Type Issues” on page 23-5

This example shows how to generate single-precision C code from double-precision MATLAB code at
the command line.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);

23 Single-Precision Conversion

23-2

 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

 Generate Single-Precision C Code at the Command Line

23-3

Determine the Type of the Input Argument
To determine the type of the input argument x, use coder.getArgTypes to run the test file
ex_2ndOrder_filter_test.m

types = coder.getArgTypes('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter');

The test file runs and displays the outputs of the filter for each of the input signals.
coder.getArgTypes determines that the input type of x is 1x256 double.

Generate and Run Single-Precision MEX to Verify Numerical Behavior
1 Before you generate single-precision C code, generate a single-precision MEX function that you

can use to verify the behavior of the generated single-precision code. To indicate that you want
the single-precision MEX code, use the -singleC option.

codegen -singleC ex_2ndOrder_filter -args types -report

During MEX generation, the code generator detects single-precision conversion issues. Before
you generate C/C++ code, fix these issues. This example does not have single-precision
conversion issues.

The generated MEX accepts single-precision and double-precision input. You can use the same
test file to run the double-precision MATLAB function and the single-precision MEX function. You
do not have to modify the test file to call the single-precision MEX function.

2 Run the test file ex_2ndOrder_filter_test.m. This file calls the double-precision MATLAB
function ex_2ndOrder_filter.m.

ex_2ndOrder_filter_test
3 The test file runs and displays the outputs of the filter for each of the input signals.
4 Run the test file ex_2ndOrder_filter_test, replacing calls to the double-precision

ex_2ndOrder_filter function with calls to the single-precision ex_2ndOrder_filter_mex
function.

coder.runTest('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter')
5 The test file runs and displays the outputs of the filter for each of the input signals. The single-

precision MEX function produces the same results as the double-precision MATLAB function.

Generate Single-Precision C Code
1 Create a code configuration object for generation of a C static library, dynamic library, or

executable.

cfg = coder.config('lib');
2 To generate single-precision C code, call codegen with the -singleC option. Enable generation

of the code generation report.

codegen -config cfg -singleC ex_2ndOrder_filter -args {types{1}} -report

View the Generated Single-Precision C Code
To view the code generation report for the C code generation, click the View Report link.

23 Single-Precision Conversion

23-4

In the Generated Code pane, click ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

View Potential Data Type Issues
When you generate single-precision code, codegen enables highlighting of potential data type issues
in the code generation report. If codegen cannot remove a double-precision operation, the report
highlights the MATLAB expression that results in the operation.

Click the Code Insights tab. Expand Potential data type issues. The absence of double-precision
operations indicates that no double-precision operations remain.

See Also
codegen | coder.config | coder.getArgTypes | coder.runTest

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 23-6
• “Generate Single-Precision MATLAB Code” on page 23-11

More About
• “Single-Precision Conversion Best Practices” on page 23-19
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 23-22

 Generate Single-Precision C Code at the Command Line

23-5

Generate Single-Precision C Code Using the MATLAB Coder App

In this section...
“Prerequisites” on page 23-6
“Create a Folder and Copy Relevant Files” on page 23-6
“Open the MATLAB Coder App” on page 23-8
“Select the Source Files” on page 23-8
“Enable Single-Precision Conversion” on page 23-8
“Define Input Types” on page 23-9
“Check for Run-Time Issues” on page 23-9
“Generate Single-Precision C Code” on page 23-10
“View the Generated C Code” on page 23-10
“View Potential Data Type Issues” on page 23-10

This example shows how to generate single-precision C code from double-precision MATLAB code by
using the MATLAB Coder app.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

23 Single-Precision Conversion

23-6

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})

 Generate Single-Precision C Code Using the MATLAB Coder App

23-7

 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App
1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select the Source Files
To add the entry-point function ex_2ndOrder_filter to the project, browse to the file
ex_2ndOrder_filter.m, and then click Open. By default, the app saves information and settings
for this project in the current folder in a file named ex_2ndOrder_filter.prj.

Enable Single-Precision Conversion
1 Set Numeric Conversion to Convert to single precision.

23 Single-Precision Conversion

23-8

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and code generation readiness
issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types
1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test file, browse to

ex_2ndOrder_filter_test. Click Open.
2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals. The app
determines that the input type of x is double(1x256).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues
To detect and fix single-precision conversion issues, perform the Check for Run-Time Issues step.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

 Generate Single-Precision C Code Using the MATLAB Coder App

23-9

2 Click Check for Issues.

The app generates a single-precision MEX function from ex_2ndOrder_filter. It runs the test
file ex_2ndOrder_filter_test replacing calls to ex_2ndOrder_filter with calls to the
generated MEX function. If the app finds issues, it provides warning and error messages. Click a
message to highlight the problematic code in a window where you can edit the code. In this
example, the app does not detect issues.

3 Click Next to go to the Generate Code page.

Generate Single-Precision C Code
1 In the Generate dialog box, set Build type to Static Library.
2 Set Language to C.
3 For other settings, use the default values.
4 To generate the code, click Generate.

MATLAB Coder builds the project and generates a C static library and supporting files in the
default subfolder, codegen/lib/ex_2ndOrder_filter.

View the Generated C Code
The app displays the generated code for ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

View Potential Data Type Issues
When you generate single-precision code, the app enables highlighting of potential data type issues in
the code generation report. If the app cannot remove a double-precision operation, the report
highlights the MATLAB expression that results in the operation.

To open the code generation report, click the View Report link.

Click the Code Insights tab. Expand Potential data type issues. The absence of double-precision
operations indicates that no double-precision operations remain.

See Also

Related Examples
• “Generate Single-Precision C Code at the Command Line” on page 23-2

More About
• “Single-Precision Conversion Best Practices” on page 23-19
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 23-22

23 Single-Precision Conversion

23-10

Generate Single-Precision MATLAB Code
This example shows how to generate single-precision MATLAB code from double-precision MATLAB
code. This example shows the single-precision conversion workflow that you use when you want to
see single-precision MATLAB code or use verification options. Optionally, you can also generate
single-precision C/C++ code.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB command line,

enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to your local

working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test.m MATLAB script that tests

ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);

 Generate Single-Precision MATLAB Code

23-11

 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Single-Precision Configuration Object
Create a single-precision configuration object. Specify the test file name. Verify the single-precision
code using the test file. Plot the error between the double-precision code and single-precision code.
Use the default values for the other properties.

scfg = coder.config('single');
scfg.TestBenchName = 'ex_2ndOrder_filter_test';

23 Single-Precision Conversion

23-12

scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

Generate Single-Precision MATLAB Code
To convert the double-precision MATLAB function, ex_2ndOrder_filter, to single-precision
MATLAB code, use the codegen function with the -double2single option.

codegen -double2single scfg ex_2ndOrder_filter

codegen analyzes the double-precision code. The conversion process infers types by running the test
file because you did not specify the input types for the ex_2ndOrder_filter function. The
conversion process selects single-precision types for the double-precision variables. It selects int32
for index variables. When the conversion is complete, codegen generates a type proposal report.

View the Type Proposal Report
To see the types that the conversion process selected for the variables, open the type proposal report
for the ex_2ndOrder_filter function. Click the link ex_2ndOrder_filter_report.html.

The report opens in a web browser. The conversion process converted:

• Double-precision variables to single.
• The index i to int32. The conversion process casts index and dimension variables to int32.

 Generate Single-Precision MATLAB Code

23-13

View Generated Single-Precision MATLAB Code
To view the report for the generation of the single-precision MATLAB code, in the Command Window:

1 Scroll to the Generate Single-Precision Code step. Click the View report link.
2 In the MATLAB Source pane, click ex_2ndOrder_filter_single.

The code generation report displays the single-precision MATLAB code for ex_2ndOrder_filter.

View Potential Data Type Issues
When you generate single-precision code, codegen enables highlighting of potential data type issues
in code generation reports. If codegen cannot remove a double-precision operation, the report
highlights the MATLAB expression that results in the operation. Click the Code Insights tab. The
absence of potential data type issues indicates that no double-precision operations remain.

23 Single-Precision Conversion

23-14

Compare the Double-Precision and Single-Precision Variables
You can see the comparison plots for the input x and output y because you selected to log inputs and
outputs for comparison plots .

 Generate Single-Precision MATLAB Code

23-15

Optionally Generate Single-Precision C Code
If you also want to generate single-precision C code, create a code configuration object for C code
generation. Use this configuration object with the -config option of the codegen function. For
example:

1 Create a code configuration object for generation of a C static library.

cfg = coder.config('lib');
2 Generate the C code. Enable generation of the code generation report.

codegen -double2single scfg -config cfg ex_2ndOrder_filter -report
3 To view the code generation report for the C code generation, click the View Report link.

23 Single-Precision Conversion

23-16

In the Generated Code pane, click ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

When you generate single-precision code, codegen enables highlighting of potential data type
issues in the code generation report. If codegen cannot remove a double-precision operation, the
report highlights the MATLAB expression that results in the operation.

Click the Code Insights tab. Then, expand Potential data type issues. The absence of double-
precision operations indicates that no double-precision operations remain.

See Also
coder.SingleConfig | codegen | coder.config

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 23-6
• “Generate Single-Precision C Code at the Command Line” on page 23-2

More About
• “Single-Precision Conversion Best Practices” on page 23-19
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 23-22

 Generate Single-Precision MATLAB Code

23-17

Choose a Single-Precision Conversion Workflow
The information in the following table helps you to decide which single-precision workflow to use.

Goal Use
You want to generate single-precision C/C++
code in the most direct way using the codegen
function.

codegen with -singleC option. See “Generate
Single-Precision C Code at the Command Line”
on page 23-2.

You want to generate single-precision C/C++
code in the most direct way using the MATLAB
Coder app.

The MATLAB Coder app with Numeric
Conversion set to Convert to single
precision. See “Generate Single-Precision C
Code Using the MATLAB Coder App” on page 23-
6.

You want to generate only single-precision
MATLAB code. You want to see the single-
precision MATLAB code or use verification
options.

codegen with the -double2single option and a
coder.SingleConfig object. See “Generate
Single-Precision MATLAB Code” on page 23-11.

You want to generate single-precision MATLAB
code, and then generate single-precision C/C++
code from the single-precision MATLAB code.

codegen with the -double2single option and a
coder.SingleConfig object. Also, use the -
config object with a code configuration object
for the output type that you want. See “Generate
Single-Precision MATLAB Code” on page 23-11.

23 Single-Precision Conversion

23-18

Single-Precision Conversion Best Practices

In this section...
“Use Integers for Index Variables” on page 23-19
“Limit Use of assert Statements” on page 23-19
“Initialize MATLAB Class Properties in Constructor” on page 23-19
“Provide a Test File That Calls Your MATLAB Function” on page 23-19
“Prepare Your Code for Code Generation” on page 23-20
“Verify Double-Precision Code Before Single-Precision Conversion” on page 23-20
“Best Practices for Generation of Single-Precision C/C++ Code” on page 23-20
“Best Practices for Generation of Single-Precision MATLAB Code” on page 23-21

Use Integers for Index Variables
In MATLAB code that you want to convert to single precision, it is a best practice to use integers for
index variables. However, if the code does not use integers for index variables, when possible single-
precision conversion using codegen with -double2single tries to detect the index variables and
select int32 types for them.

Limit Use of assert Statements
• Do not use assert statements to define the properties of input arguments.
• Do not use assert statements to test the type of a variable. For example, do not use

assert(isa(a, 'double'))

Initialize MATLAB Class Properties in Constructor
Do not initialize MATLAB class properties in the properties block. Instead, use the constructor to
initialize the class properties.

Provide a Test File That Calls Your MATLAB Function
Separate your core algorithm from other code that you use to test and verify the results. Create a test
file that calls your double-precision MATLAB algorithm. You can use the test file to:

• Automatically define properties of the top-level function inputs.
• Verify that the double-precision algorithm behaves as you expect. The double-precision behavior is

the baseline against which you compare the behavior of the single-precision versions of your
algorithm.

• Compare the behavior of the single-precision version of your algorithm to the double-precision
baseline.

For best results, the test file must exercise the algorithm over its full operating range.

 Single-Precision Conversion Best Practices

23-19

Prepare Your Code for Code Generation
MATLAB code that you want to convert to single precision must comply with code generation
requirements. See “MATLAB Programming for Code Generation”.

To help you identify unsupported functions or constructs in your MATLAB code, add the %#codegen
pragma to the top of your MATLAB file. When you edit your code in the MATLAB editor, the MATLAB
Code Analyzer flags functions and constructs that are not supported for code generation. See “Check
Code with the Code Analyzer” on page 25-5. When you use the MATLAB Coder app, the app
screens your code for code generation readiness. At the function line, you can use the Code
Generation Readiness Tool. See “Check Code by Using the Code Generation Readiness Tool” on page
25-7.

Verify Double-Precision Code Before Single-Precision Conversion
Before you begin the single-precision conversion process, verify that you can successfully generate
code from your double-precision MATLAB code. Generate and run a MEX version of your double-
precision MATLAB code so that you can:

• Detect and fix compilation issues.
• Verify that the generated single-precision code behaves the same as the double-precision MATLAB

code.

See “Why Test MEX Functions in MATLAB?” on page 26-2.

Best Practices for Generation of Single-Precision C/C++ Code
When you generate single-precision C/C++ code by using the MATLAB Coder app or codegen with
the -singleC option, follow these best practices:

Use the C99 Standard Math Library

When you generate C/C++ libraries or executables, by default, the code generator uses the C99 (ISO)
standard math library. If you generate single-precision C/C++ code using the C89/C90 (ANSI) library,
the code generator warns you if a function in this library uses double precision. To avoid this
warning, set the language standard to C99 (ISO). See “Warnings from Conversion to Single-Precision
C/C++ Code” on page 23-22.

Cast Large Double Constant to Integer

For a constant greater than 2^24, in your original double-precision MATLAB function, cast the
constant to an integer type that is large enough for the constant value. For example:

a = int32(2^24 + 1);

Generate and Run Single-Precision MEX Before Generating Single-Precision C/C++ Code

Before you generate single-precision C code, generate and run a single-precision MEX version of your
MATLAB code. When you follow this practice, you can detect and fix compiler issues. You can verify
that the single-precision MEX function has the same functionality as the MATLAB code.

If you use codegen with -singleC:

23 Single-Precision Conversion

23-20

1 Generate the single-precision MEX.
2 Call coder.runTest to run your test file, replacing calls to the double-precision MATLAB code

with calls to the single-precision MEX code.

If you use the MATLAB Coder app, perform the Check for Run-Time Issues step with single-
precision conversion enabled.

Best Practices for Generation of Single-Precision MATLAB Code
When you use codegen with the -double2single option to generate single-precision MATLAB
code, follow these best practices:

Use the -args Option to Specify Input Properties

When you generate single-precision MATLAB code, if you specify a test file, you do not have to specify
argument properties with the -args option. In this case, the code generator runs the test file to
determine the properties of the input types. However, running the test file can slow the code
generation. It is a best practice to determine the input properties one time with
coder.getArgTypes. Then, pass the properties to the -args option. For example:

types = coder.getArgTypes('myfun_test', 'myfun');
scfg = coder.config('single');
codegen -double2single scfg -args types myfun -report

When you repeat the code generation in the same MATLAB session, this practice saves you time.

Test Numerics and Log I/O Data

When you use the codegen function with the -double2single option to generate single-precision
MATLAB code, enable numerics testing and I/O data logging for comparison plots. To use numerics
testing, you must provide a test file that calls your MATLAB function. To enable numerics testing and
I/O data logging, create a coder.SingleConfig object. Set the TestBenchName, TestNumerics,
and LogIOForComparisonPlotting properties. For example:

scfg = coder.config('single');
scfg.TestBenchName = 'mytest';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

See Also

More About
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 23-22

 Single-Precision Conversion Best Practices

23-21

Warnings from Conversion to Single-Precision C/C++ Code
When you generate single-precision C/C++ code by using the MATLAB Coder app or codegen with
the -singleC option, you can receive the following warnings.

Function Uses Double-Precision in the C89/C90 Standard
If the language standard is C89/C90, the conversion process warns you when a function uses double-
precision code in the C89/C90 standard.

Consider the function mysine.

function c = mysine(a)
c = sin(a);
end

Generate single-precision code for mysine using the C89/C90 standard.

x = -pi:0.01:pi;
cfg = coder.config('lib');
cfg.TargetLangStandard = 'C89/C90 (ANSI)';
codegen -singleC -config cfg mysine -args {x} -report

codegen warns that sin uses double-precision in the C89/C90 (ANSI) standard.
Warning: The function sin uses double-precision in the C89/C90 (ANSI) standard. For single-precision
code, consider using the C99 (ISO) standard or use your own function.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code Insights tab.
Expand Potential data type issues and then expand Double-precision operations. The report
indicates that mysine has a double-precision operation at line 2 c = sin(a).

To address this warning, use the default language standard, C99 (ISO).

• At the command line:

cfg.TargetLangStandard = 'C99 (ISO)';
• In the app, in the project build settings, on the Custom Code tab, set Language standard to C99

(ISO).

Built-In Function Is Implemented in Double-Precision
Some built-in MATLAB functions are implemented using double-precision operations. The conversion
process warns that the code generated for these functions contains double-precision operations.

Consider the function geterf that calls the built-in function erf.

function y = geterf(x)
y = erf(x);
end

Generate single-precision code for geterf.

codegen -singleC -config:lib -args {1} geterf -report

23 Single-Precision Conversion

23-22

codegen warns that erf is implemented in double precision.

Warning: The builtin function erf is implemented in double-precision. Code generated for this
function will contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code Insights tab.
Expand Potential data type issues and then expand Double-precision operations. The report
indicates that geterf has a double-precision operation at line 2 y = erf(x) .

To address this warning, rewrite your code so that it does not use the function that is implemented in
double precision.

Built-In Function Returns Double-Precision
If a built-in MATLAB function returns a double-precision output, the conversion process generates a
warning.

Consider the function mysum that calls the built-in function sum.

function y = mysum(x)
y = sum(int32(x));
end

Generate single-precision code formysum.

A = 1:10;
codegen -singleC -config:lib -args {A} mysum -report

codegen warns that mysum is implemented in double precision.

Warning: The output of builtin function sum is double-precision and has been cast to
single-precision. The code generated for the builtin function may still contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code Insights tab.
Expand Potential data type issues and then expand Double-precision operations. The report
indicates that mysum has a double-precision operation at line 2 y = sum(int32(x)).

To address this warning, specify that you want the function to return the 'native' class.

(sum(int32(1), 'native')

Using this option causes the function to return the same type as the input.

See Also

More About
• “Single-Precision Conversion Best Practices” on page 23-19

 Warnings from Conversion to Single-Precision C/C++ Code

23-23

Combining Integers and Double-Precision Numbers
MATLAB supports the combination of integers of the same class and scalar double-precision
numbers. MATLAB does not support the combination of integers and single-precision numbers. If you
use the MATLAB Coder app or codegen with the -singleC option to generate single-precision C/C+
+ code, your MATLAB code cannot combine integers and double-precision numbers. Converting an
expression that combines integers and doubles results in an illegal MATLAB expression. To work
around this limitation, cast the numbers so that the types of the numbers match. Either cast the
integer numbers to double-precision or cast the double-precision numbers to the integer class.

For example, consider the function dut that returns the sum of a and b.

function c = dut(a,b)
c = a + b;
end

Generate single-precision code using codegen with the -singleC option. Specify that the first
argument is double and the second argument is int32.

 codegen -singleC -config:lib dut -args {0, int32(2)} -report

Code generation fails. The message suggests that you cast the operands so that they have the same
types.

Rewrite the code so that it cast a to the type of b.

function c = dut(a,b)
c = int32(a) + b;
end

23 Single-Precision Conversion

23-24

MATLAB Language Features Supported for Single-Precision
Conversion

In this section...
“MATLAB Language Features Supported for Single-Precision Conversion” on page 23-25
“MATLAB Language Features Not Supported for Single-Precision Conversion” on page 23-26

MATLAB Language Features Supported for Single-Precision
Conversion
Single-precision conversion supports the following MATLAB language features:

• N-dimensional arrays.
• Matrix operations, including deletion of rows and columns.
• Variable-size data (see “Generate Code for Variable-Size Data” on page 27-98). Comparison

plotting does not support variable-size data.
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for Code

Generation” on page 6-19).
• Complex numbers (see “Code Generation for Complex Data” on page 5-8).
• Numeric classes (see “Supported Variable Types” on page 4-13).
• Program control statements if, switch, for, while, and break.
• Arithmetic, relational, and logical operators.
• Local functions.
• Global variables.
• Persistent variables.
• Structures.
• Characters.

Single-precision conversion does not support the complete set of Unicode characters. Characters
are restricted to 8 bits of precision in generated code. Many mathematical operations require
more than 8 bits of precision. If you intend to convert your MATLAB algorithm to single precision,
it is a best practice not to perform arithmetic with characters.

• MATLAB classes. Single-precision conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages.

Single-precision conversion using codegen with the -singleC option does not support classes
when the properties have default values. Property values must be initialized in the constructor.
Constant properties cannot be initialized to double precision data types.

 MATLAB Language Features Supported for Single-Precision Conversion

23-25

• Function calls (see “Resolution of Function Calls for Code Generation” on page 20-2)
• varargin and varargout are supported when you generate single-precision C/C++ code by

using the MATLAB Coder app or codegen with -singleC. They are not supported when you use
codegen with -double2single.

For functions that do not use varargin or varargout, you can control the number of input or
output arguments in the generated entry-point function only if you generate single-precision C/C+
+ code by using the MATLAB Coder app or codegen with -singleC.

MATLAB Language Features Not Supported for Single-Precision
Conversion
Single-precision conversion does not support the following features:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin and varargout, or generation of fewer input or output arguments than an entry-point

function defines

23 Single-Precision Conversion

23-26

Setting Up a MATLAB Coder Project

• “Set Up a MATLAB Coder Project” on page 24-2
• “Specify Properties of Entry-Point Function Inputs Using the App” on page 24-3
• “Automatically Define Input Types by Using the App” on page 24-4
• “Make Dimensions Variable-Size When They Meet Size Threshold” on page 24-5
• “Define Input Parameter by Example by Using the App” on page 24-6
• “Define or Edit Input Parameter Type by Using the App” on page 24-14
• “Define Constant Input Parameters Using the App” on page 24-23
• “Define Inputs Programmatically in the MATLAB File” on page 24-24
• “Add Global Variables by Using the App” on page 24-25
• “Specify Global Variable Type and Initial Value Using the App” on page 24-26
• “Undo and Redo Changes to Type Definitions in the App” on page 24-29
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 24-30
• “Slow Operations in MATLAB Coder App” on page 24-31
• “Unable to Open a MATLAB Coder Project” on page 24-32

24

Set Up a MATLAB Coder Project
1 To open the app, on the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB

Coder app icon.
2 Create a project or open an existing project. See “Create a Project” on page 24-2 and “Open an

Existing Project” on page 24-2.
3 If the app detects code generation readiness issues in your entry-point functions, address these

issues.
4 Define the properties of the entry-point function input types. See “Specify Properties of Entry-

Point Function Inputs Using the App” on page 24-3.
5 Check for run-time issues. Provide code or a test file that the app can use to test your code. The

app generates a MEX function. It runs your test code or test file, replacing calls to your MATLAB
function with calls to the MEX function. This step is optional. However, it is a best practice to
perform this step. You can detect and fix run-time errors that are harder to diagnose in the
generated C code.

6 Configure the build settings. Select the build type, language, and production hardware.
Optionally, modify other build settings. See “Configure Build Settings” on page 27-13.

You can now generate code.

Create a Project
On the Select Source Files page, specify the MATLAB files from which you want to generate code.
An entry-point function is a function that you call from MATLAB. Do not add files that have spaces in
their names.

The app creates a project that has the name of the first entry-point function.

Open an Existing Project
1

On the app toolbar, click and select Open existing project.
2 Type or select the project.

The app closes other open projects.

The MATLAB Coder app is not supported in MATLAB Online™.

If the project is a Fixed-Point Converter project, and you have a Fixed-Point Designer license, the
project opens in the Fixed-Point Converter app.

24 Setting Up a MATLAB Coder Project

24-2

Specify Properties of Entry-Point Function Inputs Using the
App

Why Specify Input Properties?
Because C and C++ are statically typed languages, at compile time, MATLAB Coder must determine
the properties of all variables in the MATLAB files. To infer variable properties in MATLAB files,
MATLAB Coder must identify the properties of the inputs to the primary function, also known as the
top-level or entry-point function. Therefore, if your primary function has inputs, you must specify the
properties of these inputs to MATLAB Coder. If your primary function has no input parameters, you
do not need to specify properties of inputs to local functions or external functions called by the
primary function.

Unless you use the tilde (~) character to specify unused function inputs, you must specify the same
number and order of inputs as the MATLAB function . If you use the tilde character, the inputs default
to real, scalar doubles.

See Also

• “Properties to Specify” on page 27-43

Specify an Input Definition Using the App
Specify an input definition using one of the following methods:

• Autodefine Input Types on page 24-4
• Define Type on page 24-14
• Define by Example on page 24-6
• Define Constant on page 24-23
• “Define Inputs Programmatically in the MATLAB File” on page 24-24

 Specify Properties of Entry-Point Function Inputs Using the App

24-3

Automatically Define Input Types by Using the App
If you specify a test file that calls the project entry-point functions, the MATLAB Coder app can infer
the input argument types by running the test file. If a test file calls an entry-point function multiple
times with different size inputs, the app takes the union of the inputs. The app infers that the inputs
are variable size, with an upper bound equal to the size of the largest input.

Before using the app to automatically define function input argument types, you must add at least one
entry-point file to your project. You must also specify code that calls your entry-point functions with
the expected input types. It is a best practice to provide a test file that calls your entry-point
functions. The test file can be either a MATLAB function or a script. The test file must call the entry-
point function at least once.

To automatically define input types:

1 On the Define Input Types page, specify a test file. Alternatively, you can enter code directly.
2 Click Autodefine Input Types.

The app runs the test file and infers the types for entry-point input arguments. The app displays
the inferred types.

Note If you automatically define the input types, the entry-point functions must be in a writable
folder.

If your test file does not call an entry-point function with different size inputs, the resulting type
dimensions are fixed-size. After you define the input types, you can specify and apply rules for making
type dimensions variable-size when they meet a size threshold. See “Make Dimensions Variable-Size
When They Meet Size Threshold” on page 24-5.

The MATLAB Coder app is not supported in MATLAB Online.

24 Setting Up a MATLAB Coder Project

24-4

Make Dimensions Variable-Size When They Meet Size
Threshold

After you define input types automatically or manually, you can make type dimensions variable-size
when they meet a size threshold.

1 From the tools menu, select Apply variable-sizing rules.

2 In the Variable-sizing rules dialog box, select the rules that you want to apply.

• To make a dimension variable-size with an upper bound, select the Make dimension
variable-size if the size is at least check box. Specify the threshold. If the size of a
dimension of an input type is equal to or greater than this threshold, the app makes the
dimension variable-size. The upper bound is the original size of the dimension.

• To make a dimension variable-size with no upper bound, select the Make dimension
unbounded if the size is at least check box. Specify the threshold. If the size of a
dimension of an input is equal to or greater than this threshold, the app makes this dimension
unbounded.

3 To apply the rules to the current type definitions, click Apply. If you change type definitions, the
rules do not affect the new definitions unless you apply them.

The MATLAB Coder app is not supported in MATLAB Online.

See Also

More About
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Code Generation for Variable-Size Arrays” on page 6-2

 Make Dimensions Variable-Size When They Meet Size Threshold

24-5

Define Input Parameter by Example by Using the App

In this section...
“Define an Input Parameter by Example” on page 24-6
“Specify Input Parameters by Example” on page 24-7
“Specify a String Scalar Input Parameter by Example” on page 24-8
“Specify a Structure Type Input Parameter by Example” on page 24-8
“Specify a Cell Array Type Input Parameter by Example” on page 24-9
“Specify an Enumerated Type Input Parameter by Example” on page 24-10
“Specify an Object Input Type Parameter by Example” on page 24-11
“Specify a Fixed-Point Input Parameter by Example” on page 24-12
“Specify an Input from an Entry-Point Function Output Type” on page 24-13

Define an Input Parameter by Example
1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter a MATLAB expression. The variable has the class,

size, and complexity of the value of the expression.

24 Setting Up a MATLAB Coder Project

24-6

Alternatively, you can select a variable from the list of workspace variables that displays.

Specify Input Parameters by Example
This example shows how to specify a 1-by-4 vector of unsigned 16-bit integers.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).
5 Optionally, after you specify the input type, you can specify that the input is variable size. For

example, select the second dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select :4.
Alternatively, to specify that the second dimension is unbounded, select :Inf.

Alternatively, you can specify that the input is variable size by using the coder.newtype function.
Enter the MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note To specify that an input is a double-precision scalar, enter 0.

 Define Input Parameter by Example by Using the App

24-7

Specify a String Scalar Input Parameter by Example
This example shows how to specify a string scalar type by providing an example string.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

"mystring"

The input parameter is a 1-by-1 string array (string scalar) that contains a 1-by-8 character
vector.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound, for example

8. Then, select :8.

Specify a Structure Type Input Parameter by Example
This example shows how to specify a structure with two fields, a and b. The input type of a is scalar
double. The input type of b is scalar char.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

struct('a', 1, 'b', 'x')

The type of the input parameter is struct(1x1). The type of field a is double(1x1). The type
of field b is char(1x1)

5 For an array of structures, to specify the size of each dimension, click the dimension and specify
the size. For example, enter 4 for the first dimension.

6 To specify that the second dimension is variable size with an upper bound of 4, select :4.
Alternatively, to specify that the second dimension is unbounded select :Inf.

Alternatively, specify the size of the array of structures in the struct function call. For example,
struct('a', { 1 2}, 'b', {'x', 'y'}) specifies a 1x2 array of structures with fields a and b.
The type of field a is double(1x1). The type of field b is char(1x1).

To modify the type definition, see “Specify a Structure Input Parameter” on page 24-16.

24 Setting Up a MATLAB Coder Project

24-8

Specify a Cell Array Type Input Parameter by Example
This example shows how to specify a cell array input by example. When you define a cell array by
example, the app determines whether the cell array is homogeneous or heterogeneous. See “Code
Generation for Cell Arrays” on page 9-2. If you want to control whether the cell array is homogeneous
or heterogeneous, specify the cell array by type. See “Specify a Cell Array Input Parameter” on page
24-18.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter an example cell array.

• If all cell array elements have the same properties, the cell array is homogeneous. For
example, enter:

{1 2 3}

The input is a 1x3 cell array. The type of each element is double(1x1).

The colon inside curly braces{:} indicates that all elements have the same properties.
• If elements of the cell array have different classes, the cell array is heterogeneous. For

example, enter:

{'a', 1}

The input is a 1x2 cell array. For a heterogeneous cell array, the app lists each element. The
type of the first element is char(1x1). The type of the second element is double(1x1).

• For some example cell arrays. the classification as homogeneous or heterogeneous is
ambiguous. For these cell arrays, the app uses heuristics to determine whether the cell array
is homogeneous or heterogeneous. For example, for the example cell array, enter:

{1 [2 3]}

The elements have the same class, but different sizes. The app determines that the input is a
1x2 heterogeneous cell array. The type of the first element is double(1x1). The type of the
second element is double(1x2).

 Define Input Parameter by Example by Using the App

24-9

However, the example cell array, {1 [2 3]}, can also be a homogeneous cell array whose
elements are 1x:2 double. If you want this cell array to be homogeneous, do one of the
following:

• Specify the cell array input by type. Specify that the input is a homogeneous cell array.
Specify that the elements are 1x:2 double. See “Specify a Cell Array Input Parameter” on
page 24-18.

• Right-click the variable. Select Homogeneous. Specify that the elements are 1x:2 double.

If you use coder.typeof to specify that the example cell array is variable size, the app
makes the cell array homogeneous. For example, for the example input, enter:

coder.typeof({1 [2 3]}, [1 3], [0 1])

The app determines that the input is a 1x:3 homogeneous cell array whose elements are 1x:2
double.

To modify the type definition, see “Specify a Cell Array Input Parameter” on page 24-18.

Specify an Enumerated Type Input Parameter by Example
This example shows how to specify that an input uses the enumerated type MyColors.

Suppose that MyColors.m is on the MATLAB path.

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

To specify that an input has the enumerated type MyColors:

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.

24 Setting Up a MATLAB Coder Project

24-10

3 Select Define by Example.
4 In the field to the right of the parameter, enter the MATLAB expression:

MyColors.red

Specify an Object Input Type Parameter by Example
This example shows how to specify the type for an object of a value class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

1 Define a function that takes an object of the value class as an input. For example:

 Define Input Parameter by Example by Using the App

24-11

function z = getarea(r)
%#codegen
z = calcarea(r);
end

2 In MATLAB, define an object rect_obj.

rect_obj = myRectangle(3,4)
3 In the app, on the Select Source Files page, enter getarea for the entry-point function.
4 On the Define Input Types page, click Let me enter input or global types directly.
5 Click the field to the right of r.
6 Select Define by Example.
7 In the field to the right of r, enter rect_obj or select it from the list of workspace variables. The

app determines that r is a class with properties length and width.

Alternatively, you can provide a coder.ClassType object for that class. To define a
coder.ClassType object, use coder.typeof. For example:

1 In MATLAB, define a coder.ClassType object that has the same properties as rect_obj.

t = coder.typeof(rect_obj)
2 In the app, provide t as the example.

To change the size or type of a property, click the field to the right of the property.

When you generate code, the properties that you define in the app must be consistent with the
properties in the class definition file. If the class definition file has properties that your code does not
use, your type definition in the app does not have to include those properties. The code generator
removes properties that your code does not use.

See “Specify Objects as Inputs in the MATLAB Coder App” on page 15-30.

Specify a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

This example shows how to specify a signed fixed-point type with a word length of eight bits, and a
fraction length of three bits.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

The app sets the type of input u to fi(1x1). By default, if you do not specify a local fimath, the
app uses the default fimath. See “fimath for Sharing Arithmetic Rules” (Fixed-Point Designer).

Optionally, modify the fixed-point properties or the size of the input. See “Specify a Fixed-Point
Input Parameter” on page 24-16 and “Define or Edit Input Parameter Type by Using the App” on
page 24-14.

24 Setting Up a MATLAB Coder Project

24-12

Specify an Input from an Entry-Point Function Output Type
When generating code for multiple entry-point functions, you can use the output type from one entry-
point function as the input type to another entry-point function. For more information, see “Pass an
Entry-Point Function Output as an Input” on page 27-85.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define and select Use Output.

3 Select the name of the entry-point function and the corresponding output parameter from which
to define the input type.

The MATLAB Coder app is not supported in MATLAB Online.

 Define Input Parameter by Example by Using the App

24-13

Define or Edit Input Parameter Type by Using the App
In this section...
“Define or Edit an Input Parameter Type” on page 24-14
“Specify a String Scalar Input Parameter” on page 24-15
“Specify an Enumerated Type Input Parameter” on page 24-15
“Specify a Fixed-Point Input Parameter” on page 24-16
“Specify a Structure Input Parameter” on page 24-16
“Specify a Cell Array Input Parameter” on page 24-18

Define or Edit an Input Parameter Type
The following procedure shows you how to define or edit double, single, int64, int32, int16,
int8, uint64, uint32, uint16, uint8, logical, and char types.

For more information about defining other types, see the information in this table.

Input Type Link
A string scalar (1-by-1 string array) “Specify a String Scalar Input Parameter” on

page 24-15
A structure (struct) “Specify a Structure Input Parameter” on page

24-16
A cell array (cell (Homogeneous) or cell
(Heterogeneous))

“Specify a Cell Array Input Parameter” on page
24-18

A fixed-point data type (embedded.fi) “Specify a Fixed-Point Input Parameter” on page
24-16

An input by example (Define by Example) “Define Input Parameter by Example by Using the
App” on page 24-6

A constant (Define Constant) “Define Constant Input Parameters Using the
App” on page 24-23

1 Click the field to the right of the input parameter name.
2 Optionally, for numeric types, to make the parameter a complex type, select the Complex

number check box.
3 Select the input type.

The app displays the selected type. It displays and the size options.

24 Setting Up a MATLAB Coder Project

24-14

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector, or a m x n
matrix. By default, if you do not select a size option, the app defines inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.
• Variable size, up to a specified limit, by using the : prefix. For example, to specify that your

input can vary in size up to 10, enter :10.
• Unbounded variable size by entering :Inf.

You can edit the size of each dimension.

Specify a String Scalar Input Parameter
To specify that an input is a string scalar:

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select string. Then select 1x1 scalar.

The type is a 1-by-1 string array (string scalar) that contains a character vector.

4 To specify the size of the character vector, click the field to the right of the string array element
{1}. Select char. Then, select 1xn vector and enter the size.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound, for example

8. Then, select :8.

Specify an Enumerated Type Input Parameter
To specify that an input uses the enumerated type MyColors:

 Define or Edit Input Parameter Type by Using the App

24-15

1 Suppose that the enumeration MyColors is on the MATLAB path.

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2 On the Define Input Types page, click Let me enter input or global types directly.
3 In the field to the right of the input parameter, enter MyColors.

Specify a Fixed-Point Input Parameter
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select embedded.fi.
4 Select the size. If you do not specify the size, the size defaults to 1x1.
5 Specify the input parameter numerictype and fimath properties.

If you do not specify a local fimath, the app uses the default fimath. See “Default fimath Usage to
Share Arithmetic Rules” (Fixed-Point Designer).

To modify the numerictype or fimath properties, open the properties dialog box. To open the

properties dialog box, click to the right of the fixed-point type definition. Optionally, click .

Specify a Structure Input Parameter
When a primary input is a structure, the app treats each field as a separate input. Therefore, you
must specify properties for all fields of a primary structure input in the order that they appear in the
structure definition:

• For each field of an input structure, specify class, size, and complexity.
• For each field that is a fixed-point class, also specify numerictype, and fimath.

Specify Structures by Type

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select struct.

The app displays the selected type, struct. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix. By default,

if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter the size.

Select from the size options. For example, for size 10:

• To specify fixed size, select 10.

24 Setting Up a MATLAB Coder Project

24-16

• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

6 Optionally, specify properties for the structure in the generated code. See “Set Structure
Properties” on page 24-17.

7 Add fields to the structure. Specify the class, size, and complexity of the fields. See “Add a Field
to a Structure” on page 24-18.

Set Structure Properties

1
Click to the right of the structure definition. Optionally, click .

2 In the dialog box, specify properties for the structure in the generated code.

Property Description
C type definition name Name for the structure type in the generated

code.
Type definition is externally defined Default: No — type definition is not externally

defined.

If you select Yes to declare an externally
defined structure, the app does not generate
the definition of the structure type. You must
provide it in a custom include file.

Dependency: C type definition name
enables this option.

C type definition header file Name of the header file that contains the
external definition of the structure, for
example, "mystruct.h". Specify the path to
the file using the Additional include
directories parameter on the project
settings dialog box Custom Code tab.

By default, the generated code contains
#include statements for custom header
files after the standard header files. If a
standard header file refers to the custom
structure type, then the compilation fails. If
you specify the C type definition header file,
the app includes that header file exactly at
the point where it is required.

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

 Define or Edit Input Parameter Type by Using the App

24-17

Property Description
Data alignment boundary The run-time memory alignment of

structures of this type in bytes.

If you have an Embedded Coder license and
use Code Replacement Libraries (CRLs), the
CRLs provide the ability to align data objects
passed into a replacement function to a
specified boundary. You can take advantage
of target-specific function implementations
that require aligned data. By default, the
structure is not aligned on any specific
boundary so it is not matched by CRL
functions that require alignment.

Alignment must be either -1 or a power of 2
that is no more than 128.

Default: 0

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

Rename a Field in a Structure

Select the name field of the structure that you want to rename. Enter the new name.

Add a Field to a Structure

1
To the right of the structure, click

2 Enter the field name. Specify the class, size, and complexity of the field.

Insert a Field into a Structure

1 Select the structure field below which you want to add another field.
2 Right-click the structure field.
3 Select Insert Field Below.

The app adds the field after the field that you selected.
4 Enter the field name. Specify the class, size, and complexity of the field.

Remove a Field from a Structure

1 Right-click the field that you want to remove.
2 Select Remove Field.

Specify a Cell Array Input Parameter
For code generation, cell arrays are homogeneous or heterogeneous. See “Code Generation for Cell
Arrays” on page 9-2. A homogeneous cell array is represented as an array in the generated code. All

24 Setting Up a MATLAB Coder Project

24-18

elements have the same properties. A heterogeneous cell array is represented as a structure in the
generated code. Elements can have different properties.

Specify a Homogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Homogeneous).

The app displays the selected type, cell. The app displays the size options.
4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector, or a m x n

matrix. By default, if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter the size.

Select from the size options. For example, for size 10:

• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

Below the cell array variable, a colon inside curly braces {:} indicates that the cell array
elements have the same properties (class, size, and complexity).

6 To specify the class, size, and complexity of the elements in the cell array, click the field to the
right of {:}.

Specify a Heterogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Heterogeneous).

The app displays the selected type, cell. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix. By default,

if you do not select a size option, the app defines inputs as scalars.
5 Optionally, if your input is not scalar, enter sizes m and n. A heterogeneous cell array is fixed size.

The app lists the cell array elements. It uses indexing notation to specify each element. For
example, {1,2} indicates the element in row 1, column 2.

6 Specify the class, size, and complexity for each cell array element.
7 Optionally, add elements. See “Add an Element to a Heterogeneous Cell Array” on page 24-22
8 Optionally, specify properties for the structure that represents the cell array in the generated

code. See “Set Structure Properties for a Heterogeneous Cell Array” on page 24-19.

Set Structure Properties for a Heterogeneous Cell Array

A heterogeneous cell array is represented as a structure in the generated code. You can specify the
properties for the structure that represents the cell array.

1 Click to the right of the cell array definition. Optionally click .
2 In the dialog box, specify properties for the structure in the generated code.

 Define or Edit Input Parameter Type by Using the App

24-19

Property Description
C type definition name Name for the structure type in the generated

code.
Type definition is externally defined Default: No — type definition is not externally

defined.

If you select Yes to declare an externally
defined structure, the app does not generate
the definition of the structure type. You must
provide it in a custom include file.

Dependency: C type definition name
enables this option.

C type definition header file Name of the header file that contains the
external definition of the structure, for
example, "mystruct.h". Specify the path to
the file using the Additional include
directories parameter on the project
settings dialog box Custom Code tab.

By default, the generated code contains
#include statements for custom header
files after the standard header files. If a
standard header file refers to the custom
structure type, then the compilation fails. If
you specify the C type definition header file,
the app includes that header file exactly at
the point where it is required.

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

24 Setting Up a MATLAB Coder Project

24-20

Property Description
Data alignment boundary The run-time memory alignment of

structures of this type in bytes.

If you have an Embedded Coder license and
use Code Replacement Libraries (CRLs), the
CRLs provide the ability to align data objects
passed into a replacement function to a
specified boundary. You can take advantage
of target-specific function implementations
that require aligned data. By default, the
structure is not aligned on any specific
boundary so it is not matched by CRL
functions that require alignment.

Alignment must be either -1 or a power of 2
that is no more than 128.

Default: 0

Dependency: When Type definition is
externally defined is set to Yes, this
option is enabled.

Change Classification as Homogeneous or Heterogeneous

To change the classification as homogeneous or heterogeneous, right-click the variable. Select
Homogeneous or Heterogeneous.

The app clears the definitions of the elements.

Change the Size of the Cell Array

1 In the definition of the cell array, click a dimension. Specify the size.
2 For a homogeneous cell array, specify whether the dimension is variable size and whether the

dimension is bounded or unbounded. Alternatively, right-click the variable. Select Bounded
(fixed-size), Bounded (variable-size), or Unbounded

3 For a heterogeneous cell array, the app adds elements so that the cell array has the specified size
and shape.

 Define or Edit Input Parameter Type by Using the App

24-21

Add an Element to a Heterogeneous Cell Array

1 In the definition of the cell array, click a dimension. Specify the size. For example, enter 1 for the
first dimension and 4 for the second dimension.

The app adds elements so that the cell array has the specified size and shape. For example for a
1x4 heterogeneous cell array, the app lists four elements: {1,1}, {1,2}, {1,3}, and {1,4}.

2 Specify the properties of the new elements.

24 Setting Up a MATLAB Coder Project

24-22

Define Constant Input Parameters Using the App
1 On the Define Input Types page, click Let me enter input or global types directly.
2 Click the field to the right of the input parameter name.
3 Select Define Constant.
4 In the field to the right of the parameter name, enter the value of the constant or a MATLAB

expression that represents the constant.

The app uses the value of the specified MATLAB expression as a compile-time constant.

The MATLAB Coder app is not supported in MATLAB Online.

 Define Constant Input Parameters Using the App

24-23

Define Inputs Programmatically in the MATLAB File
You can use the MATLAB assert function to define properties of entry-point function inputs in your
MATLAB entry-point files.

To instruct the MATLAB Coder app to determine input types from the assert statements in your code,

on the app toolbar, click . Select Determine input types from code preconditions. If you
enable this option:

• The app labels all entry-point function inputs as Deferred. It determines the input types at
compile time.

• In this project, you cannot use other input specification methods to specify input types.

See “Define Input Properties Programmatically in the MATLAB File” on page 27-60.

Note If you enable fixed-point conversion (requires a Fixed-Point Designer license), the app disables
the Determine input types from code preconditions option.

24 Setting Up a MATLAB Coder Project

24-24

Add Global Variables by Using the App
To add global variables to the project:

1 On the Define Input Types page, automatically define input types or click Let me enter input
or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent global variables
g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 After adding a global variable, but before generating code, specify its type and initial value.

Otherwise, you must create a variable with the same name in the global workspace. See “Specify
Global Variable Type and Initial Value Using the App” on page 24-26.

The MATLAB Coder app is not supported in MATLAB Online.

 Add Global Variables by Using the App

24-25

Specify Global Variable Type and Initial Value Using the App
In this section...
“Why Specify a Type Definition for Global Variables?” on page 24-26
“Specify a Global Variable Type” on page 24-26
“Define a Global Variable by Example” on page 24-26
“Define or Edit Global Variable Type” on page 24-27
“Define Global Variable Initial Value” on page 24-27
“Define Global Variable Constant Value” on page 24-28
“Remove Global Variables” on page 24-28

Why Specify a Type Definition for Global Variables?
If you use global variables in your MATLAB algorithm, before building the project, you must add a
global type definition and initial value for each global variable. If you do not initialize the global data,
the app looks for the variable in the MATLAB global workspace. If the variable does not exist, the app
generates an error.

For MEX functions, if you use global data, you must also specify whether to synchronize this data
between MATLAB and the MEX function.

Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example on page 24-26
• Define type on page 24-27

2 Define an initial value on page 24-27 for each global variable.

If you do not provide a type definition and initial value for a global variable, create a variable with the
same name and suitable class, size, complexity, and value in the MATLAB workspace.

Define a Global Variable by Example
1 Click the field to the right of the global variable that you want to define.
2 Select Define by Example.
3 In the field to the right of the global name, enter a MATLAB expression that has the required

class, size, and complexity. MATLAB Coder software uses the class, size, and complexity of the
value of this expression as the type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that you want to change
and enter the size, for example, 10.

24 Setting Up a MATLAB Coder Project

24-26

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to specify that your

input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define or Edit Global Variable Type
1 Click the field to the right of the global variable that you want to define.
2 Optionally, for numeric types, select Complex to make the parameter a complex type. By default,

inputs are real.
3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.
4 Optionally, change the size of the global variable. Click the dimension that you want to change

and enter the size, for example, 10.

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to specify that your

input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define Global Variable Initial Value
• “Define Initial Value Before Defining Type” on page 24-28
• “Define Initial Value After Defining Type” on page 24-28

 Specify Global Variable Type and Initial Value Using the App

24-27

Define Initial Value Before Defining Type

1 Click the field to the right of the global variable.
2 Select Define Initial Value.
3 Enter a MATLAB expression. MATLAB Coder software uses the value of the specified MATLAB

expression as the value of the global variable. Because you did not define the type of the global
variable before you defined its initial value, MATLAB Coder uses the initial value type as the
global variable type.

The project shows that the global variable is initialized.

If you change the type of a global variable after defining its initial value, you must redefine the
initial value.

Define Initial Value After Defining Type

• Click the type field of a predefined global variable.
• Select Define Initial Value.
• Enter a MATLAB expression. MATLAB Coder software uses the value of the specified MATLAB

expression as the value of the global variable.

The project shows that the global variable is initialized.

Define Global Variable Constant Value
1 Click the field to the right of the global variable.
2 Select Define Constant Value.
3 In the field to the right of the global variable, enter a MATLAB expression.

Remove Global Variables
1 Right-click the global variable.
2 From the menu, select Remove Global.

24 Setting Up a MATLAB Coder Project

24-28

Undo and Redo Changes to Type Definitions in the App
To revert or restore changes to input argument or global variable type definitions, above the input
arguments table, click or .

Alternatively, use the keyboard shortcuts for Undo and Redo. The shortcuts are defined in your
MATLAB preferences. On a Windows platform, the default keyboard shortcuts for Undo and Redo are
Ctrl+Z and Ctrl+Y.

Each undo operation reverts the last change. Each redo operation restores the last change.

The MATLAB Coder app is not supported in MATLAB Online.

See Also

Related Examples
• “Customize Keyboard Shortcuts”

 Undo and Redo Changes to Type Definitions in the App

24-29

Code Generation Readiness Screening in the MATLAB Coder
App

By default, the MATLAB Coder app screens your MATLAB code for features and functions that code
generation does not support. After you enter entry-point functions and click Next, if the app detects
issues, it opens the Review Code Generation Readiness page.

If you click Review Issues, you can use the app editor to fix issues before you generate code.

If the code generation readiness screening causes slow operations in the app, consider disabling the

screening. To disable code generation readiness screening, on the app toolbar, click and clear
Check code generation readiness.

If you clear Check code generation readiness during or after screening, the app retains the
screening results for the current session. If you fix or introduce code generation readiness issues in
your code, the app does not update the screening results. To clear screening results after you disable
screening, or to update screening results after you reenable screening, close and reopen the project.

For a fixed-point conversion project, code generation readiness screening identifies functions that do
not have fixed-point support. The app lists these functions on the Function Replacements tab of the
Convert to Fixed Point page where you can specify function replacement with a custom function or
a lookup table. If you disable screening, do not rely on the app to identify functions that you must
replace. Manually enter the names of functions on the Function Replacements tab. Fixed-point
conversion requires a Fixed-Point Designer license.

Code generation readiness screening is not supported in MATLAB Online.

See Also

More About
• “Slow Operations in MATLAB Coder App” on page 24-31
• “Automated Fixed-Point Conversion” on page 21-67

24 Setting Up a MATLAB Coder Project

24-30

Slow Operations in MATLAB Coder App
By default, the MATLAB Coder app screens your entry-point functions for code generation readiness.
For some large entry-point functions, or functions with many calls, screening can take a long time. If
the screening takes a long time, certain app or MATLAB operations can be slower than expected or
appear to be unresponsive.

To determine if slow operations are due to the code generation readiness screening, disable the
screening.

See Also

More About
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 24-30

 Slow Operations in MATLAB Coder App

24-31

Unable to Open a MATLAB Coder Project
When you open a project from a different release, if necessary, the MATLAB Coder app updates the
project file so that the format is compatible with the release that you are using. Before the app
updates the project file, it creates a backup file with the name project_name.prj.bak. For
example, the backup file name for myproject.prj is myproject.prj.bak. If the backup file exists,
the app inserts an integer between the prj and bak extensions to make the file name unique. For
example, if myproject.prj.bak exists, the app creates the backup file myproject.prj.2.bak.

If the project file is from a release before R2015a, the app also displays a message about the project
file update and backup. To use the project in a release before R2015a, use the backup project file
instead of the updated project file.

To use a backup project file, remove the extensions that follow the prj extension. For example,
rename myproject.prj.2.bak to myproject.prj. If you use the backup project file in the release
that created it, the project is the same as the original project. If you use the backup project file in a
different release than the one that created it, you can possibly lose some information. For example, if
you open a project file in a release that does not recognize a setting in the file, that setting is lost. For
best results, open the backup project file in the release in which you created it.

24 Setting Up a MATLAB Coder Project

24-32

Preparing MATLAB Code for C/C++ Code
Generation

• “Workflow for Preparing MATLAB Code for Code Generation” on page 25-2
• “Fixing Errors Detected at Design Time” on page 25-3
• “Using the Code Analyzer” on page 25-4
• “Check Code with the Code Analyzer” on page 25-5
• “Check Code by Using the Code Generation Readiness Tool” on page 25-7
• “Code Generation Readiness Tool” on page 25-8
• “Unable to Determine Code Generation Readiness” on page 25-11
• “Generate MEX Functions by Using the MATLAB Coder App” on page 25-12
• “Generate MEX Functions at the Command Line” on page 25-16
• “Fix Errors Detected at Code Generation Time” on page 25-17
• “Running and Debugging MEX Functions” on page 25-18
• “Debugging Strategies” on page 25-19
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 25-20
• “Resolve Error: Function Is Not Supported for Code Generation” on page 25-23
• “Debug Generated C/C++ Code” on page 25-24

25

Workflow for Preparing MATLAB Code for Code Generation

See Also
• “Set Up a MATLAB Coder Project” on page 24-2
• “Fixing Errors Detected at Design Time” on page 25-3
• “Generate MEX Functions by Using the MATLAB Coder App” on page 25-12
• “Fix Errors Detected at Code Generation Time” on page 25-17
• “Workflow for Testing MEX Functions in MATLAB” on page 26-3
• “Accelerate MATLAB Algorithms” on page 33-6

25 Preparing MATLAB Code for C/C++ Code Generation

25-2

Fixing Errors Detected at Design Time
Use the code analyzer and the code generation readiness tool to detect issues at design time. Before
generating code, you must fix these issues.

See Also
• “Check Code with the Code Analyzer” on page 25-5
• “Check Code by Using the Code Generation Readiness Tool” on page 25-7
• “Debugging Strategies” on page 25-19

 Fixing Errors Detected at Design Time

25-3

Using the Code Analyzer
You use the code analyzer in the MATLAB Editor to check for code violations at design time,
minimizing compilation errors. The code analyzer continuously checks your code as you enter it. It
reports problems and recommends modifications.

To use the code analyzer to identify warnings and errors specific to MATLAB programming for code
generation, you must add the %#codegen directive (or pragma) to your MATLAB file. A complete list
of code generation analyzer messages is available in the MATLAB Code Analyzer preferences. For
more information, see “Run the Code Analyzer Report”.

Note The code analyzer might not detect all code generation compliance issues in your MATLAB
code. After eliminating the errors or warnings that the code analyzer detects, compile your code with
MATLAB Coder to determine if the code has other compliance issues.

25 Preparing MATLAB Code for C/C++ Code Generation

25-4

Check Code with the Code Analyzer
The code analyzer checks your code for problems and recommends modifications. You can use the
code analyzer to check your code interactively in the MATLAB Editor while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning and error

messages is selected.

The code analyzer provides an indicator in the top right of the editor window. If the indicator is green,
the analyzer did not detect code generation issues.

If the indicator is red, the analyzer has detected errors in your code. If it is orange, it has detected
warning. When the indicator is red or orange, a red or orange marker appears to the right of the code
where the error occurs. Place your pointer over the marker for information about the error. Click the
underlined text in the error message for a more detailed explanation and suggested actions to fix the
error.

 Check Code with the Code Analyzer

25-5

Before generating code from your MATLAB code, you must fix the errors detected by the code
analyzer.

25 Preparing MATLAB Code for C/C++ Code Generation

25-6

Check Code by Using the Code Generation Readiness Tool
In this section...
“Run Code Generation Readiness Tool at the Command Line” on page 25-7
“Run Code Generation Readiness Tool from the Current Folder Browser” on page 25-7
“Run the Code Generation Readiness Tool Using the MATLAB Coder App” on page 25-7

Run Code Generation Readiness Tool at the Command Line
1 Navigate to the folder that contains the file that you want to check for code generation readiness.
2 At the command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename. The tool provides a
code generation readiness score and lists issues that you must fix prior to code generation.

Run Code Generation Readiness Tool from the Current Folder Browser
1 In the current folder browser, right-click the file that you want to check for code generation

readiness.
2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file. It provides a code generation
readiness score and lists issues that you must fix prior to code generation.

Run the Code Generation Readiness Tool Using the MATLAB Coder App
After you add entry-point files to your project, the MATLAB Coder app analyzes the functions for
coding issues and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page. You can review and fix issues.

See “Code Generation Readiness Tool” on page 25-8.

The Code Generation Readiness Tool is not supported in MATLAB Online.

 Check Code by Using the Code Generation Readiness Tool

25-7

Code Generation Readiness Tool
The code generation readiness tool screens MATLAB code for features and functions that code
generation does not support. The tool provides a report that lists the source files that contain
unsupported features and functions. It is possible that the tool does not detect all code generation
issues. Under certain circumstances, it is possible that the tool can report false errors. Therefore,
before you generate code, verify that your code is suitable for code generation by generating a MEX
function.

The code generation readiness tool does not report functions that the code generator automatically
treats as extrinsic. Examples of such functions are plot, disp, and figure.

Issues Tab

On the Issues tab, the tool displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn more about the
issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls, language features, and data types.

You can also:

25 Preparing MATLAB Code for C/C++ Code Generation

25-8

• View your MATLAB code inside the Code Generation Readiness Tool. When you select an issue,
the part of your MATLAB code that caused this issue gets highlighted.

• Group the readiness results either by issue or by file.
• Select the language that the code generation readiness analysis uses.
• Refresh the code generation readiness analysis if you updated your MATLAB code.
• Export the analysis report either as plain text file or as a coder.ScreenerInfo object in the

base workspace.

Files Tab

If the code that you are checking calls functions in other MATLAB code files, the Files tab shows the
call dependency between these files. If you select Show MathWorks Functions, the report also lists
the MathWorks functions that your function calls.

See Also
coder.screener | coder.ScreenerInfo Properties

Related Examples
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-24

 Code Generation Readiness Tool

25-9

• “Functions and Objects Supported for C/C++ Code Generation” on page 3-2

25 Preparing MATLAB Code for C/C++ Code Generation

25-10

Unable to Determine Code Generation Readiness
Sometimes the code generation readiness tool cannot determine whether the entry-point functions in
your project are suitable for code generation. The most likely reason is that the tool is unable to find
the entry-point files. Verify that your current working folder is set to the folder that contains your
entry-point files. If it is not, either make this folder your current working folder or add the folder
containing these files to the MATLAB path.

 Unable to Determine Code Generation Readiness

25-11

Generate MEX Functions by Using the MATLAB Coder App
In this section...
“Workflow for Generating MEX Functions Using the MATLAB Coder App” on page 25-12
“Generate a MEX Function Using the MATLAB Coder App” on page 25-12
“Configure Project Settings” on page 25-14
“Build a MATLAB Coder Project” on page 25-14
“See Also” on page 25-15

Workflow for Generating MEX Functions Using the MATLAB Coder App
Step Action Details
1 Set up the MATLAB Coder project. “Set Up a MATLAB Coder Project” on page 24-2
2 Specify the build configuration parameters. Set

Build type to MEX.
“Configure Project Settings” on page 25-14

3 Build the project. “Build a MATLAB Coder Project” on page 25-14

The MATLAB Coder app is not supported in MATLAB Online. To generate MEX functions in MATLAB
Online, use the codegen command.

Generate a MEX Function Using the MATLAB Coder App
This example shows how to generate a MEX function from MATLAB code using the MATLAB Coder
app.

Create the Entry-Point Function

In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

Create the Test File

In the same local writable folder, create a MATLAB file, mcadd_test.m, that calls mcadd with
example inputs. The example inputs are scalars with type int16.

function y = mcadd_test
y = mcadd(int16(2), int16(3));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function mcadd.

The app creates a project with the default name mcadd.prj.

25 Preparing MATLAB Code for C/C++ Code Generation

25-12

2 Click Next to go to the Define Input Types step. The app analyzes the function for coding issues
and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. In this example, because the
app does not detect issues, it opens the Define Input Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the properties of all
variables in the MATLAB files. You must specify the properties of all entry-point function inputs. From
the properties of the entry-point function inputs, MATLAB Coder can infer the properties of all
variables in the MATLAB files.

Specify the test file mcadd_test.m that MATLAB Coder uses to automatically define types for u and
v:

1 Enter or select the test file mcadd_test.m.
2 Click Autodefine Input Types.

The test file, mcadd_test.m, calls the entry-point function, mcadd, with the example input types.
MATLAB Coder infers that inputs u and v are int16(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point functions, runs the
MEX function, and reports issues. This step is optional. However, it is a best practice to perform this
step. You can detect and fix run-time errors that are harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues arrow .

The app populates the test file field with mcadd_test, the test file that you used to define the
input types.

2 Click Check for Issues.

The app generates a MEX function. It runs the test file replacing calls to mcadd with calls to the
MEX function. If the app detects issues during the MEX function generation or execution, it
provides warning and error messages. Click these messages to navigate to the problematic code
and fix the issue. In this example, the app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate the MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to MEX and Language to C. Use the default values

for the other project build configuration settings.
3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB files and the
generated output files on the left side of the page. On the Variables tab, it displays information
about the MATLAB source variables. On the Target Build Log tab, it displays the build log,
including compiler warnings and errors.

 Generate MEX Functions by Using the MATLAB Coder App

25-13

MATLAB Coder builds the project and, by default, generates a MEX function, mcadd_mex, in the
current folder. MATLAB Coder also generates other supporting files in a subfolder called
codegen/mex/mcadd. MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files. It creates a platform-specific extension for the MEX file. See “Naming
Conventions” on page 27-76.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a project summary
and links to the generated output.

Configure Project Settings
To open the project settings dialog box:

1 To open the Generate dialog box, click the Generate arrow .
2 Click More Settings.

To change a project setting, click the tab that contains the setting that you want to change. For
example, to change the Saturate on integer overflow setting, click the Speed tab.

MEX functions use a different set of configuration parameters than libraries and executables. When
you change the output type from MEX Function to Source Code Static Library, Dynamic
Library, or Executable, verify these settings.

Certain configuration parameters are relevant for both MEX and standalone code generation. If you
enable any of these parameters when the output type is MEX Function, and you want to use the
same setting for C/C++ code generation as well, you must enable it again for C/C++ Static
Library, C/C++ Dynamic Library, and C/C++ Executable.

See Also

• “Using the MATLAB Coder App” on page 27-106
• “How to Disable Inlining Globally Using the MATLAB Coder App” on page 27-113
• “Disabling Run-Time Checks Using the MATLAB Coder App” on page 33-13

Build a MATLAB Coder Project
To build a project using the specified settings, on the Generate Code page, click Generate. As the
MATLAB Coder app builds a project, it displays the build progress. When the build is complete, the
app provides details about the build on the Target Build Log tab.

If the code generation report is enabled or build errors occur, the app generates a report. The report
provides detailed information about the most recent build, and provides a link to the report.

To view the report, click the View report link. The report provides links to your MATLAB code and
generated C/C++ files and compile-time type information for the variables in your MATLAB code. If
build errors occur, the report lists errors and warnings.

25 Preparing MATLAB Code for C/C++ Code Generation

25-14

See Also
• “Configure Build Settings” on page 27-13

See Also

Related Examples
• “Configure Build Settings” on page 27-13
• “Generate C Code by Using the MATLAB Coder App”

 Generate MEX Functions by Using the MATLAB Coder App

25-15

Generate MEX Functions at the Command Line

Command-line Workflow for Generating MEX Functions
Step Action Details
1 Install prerequisite products. “Installing Prerequisite Products”
2 Set up your file infrastructure. “Paths and File Infrastructure Setup” on page 27-

76
3 Fix errors detected by the code analyzer. “Fixing Errors Detected at Design Time” on page

25-3
4 Specify build configuration parameters. “Specify Build Configuration Parameters” on page

27-17
5 Specify properties of primary function inputs. “Specify Properties of Entry-Point Function Inputs”

on page 27-43
6 Generate the MEX function using codegen with

suitable command-line options.
codegen

Generate a MEX Function at the Command Line
In this example, you use the codegen function to generate a MEX function from a MATLAB file that
adds two inputs. You use the codegen -args option to specify that both inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the command line, specify
that the two input parameters are int16 using the -args option. By default, if you do not use
the -args option, codegen treats inputs as real, scalar doubles.

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder. codegen also generates
other supporting files in a subfolder called codegen/mex/mcadd.codegen uses the name of the
MATLAB function as the root name for the generated files and creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page 27-76.

See Also

Related Examples
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Accelerate MATLAB Algorithm by Generating MEX Function”

25 Preparing MATLAB Code for C/C++ Code Generation

25-16

Fix Errors Detected at Code Generation Time
When the code generator detects errors or warnings, it automatically generates an error report. The
error report describes the issues and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB features that are supported
for code generation. For more information, see “Programming Considerations for Code Generation”.
Choose a debugging strategy for detecting and correcting code generation errors in your MATLAB
code. For more information, see “Debugging Strategies” on page 25-19.

When code generation is complete, the software generates a MEX function that you can use to test
your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code generator determines that
these functions should be extrinsic or you declare them to be extrinsic, it attempts to compile these
functions. See “Resolution of Function Calls for Code Generation” on page 20-2. To get detailed
diagnostics, add the %#codegen directive to each external function that you want codegen to
compile.

See Also
• “Code Generation Reports” on page 29-7
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Debugging Strategies” on page 25-19
• “Use the coder.extrinsic Construct” on page 20-9

 Fix Errors Detected at Code Generation Time

25-17

Running and Debugging MEX Functions
When you call a MEX function, pass it the same inputs that you use for the original MATLAB
algorithm. Do not pass coder.Constant or any of the coder.Type classes to a MEX function. You
can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the toolboxes that
the MEX function requires. For example, if you generate a MEX function from a MATLAB algorithm
that uses a Computer Vision Toolbox™ function or System object, to run the MEX function, you must
have a Computer Vision Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version, rebuild the MEX
functions.

Debug MEX Functions
To debug your MEX functions, use the disp function to inspect the contents of your MEX function
variables. You cannot use save to debug MEX function variables because code generation does not
support it. Code generation does not support declaration of save as extrinsic. You can also use the
fprintf function to inspect the contents of your MEX function variables.

Debug MEX Functions by Using a C/C++ Debugger
To debug your MEX functions by using a C/C++ debugger, set the MEX configuration object property
EnableDebugging to 1.

cfg = coder.config('mex');
cfg.EnableDebugging = 1;
codegen -config cfg foo_mex

Alternatively, you can debug your MEX function by executing this command:

codegen -g foo_mex

The foo_mex file is the MEX file that you intend to debug. You can debug this file by using a C or C+
+ debugger. For more information on debugging by using a C/C++ debugger on a Microsoft Windows
platform, see “Debug on Microsoft Windows Platforms”.

For more information on debugging by using a C/C++ debugger on a Linux® or Mac platform, see
“Debug on Linux Platforms” or “Debug on Mac Platforms”.

25 Preparing MATLAB Code for C/C++ Code Generation

25-18

Debugging Strategies
Before you perform code verification, choose a debugging strategy for detecting and correcting
noncompliant code in your MATLAB applications, especially if they consist of many MATLAB files that
call each other's functions. The following table describes two general strategies, each of which has
advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification

1 Verify that your lowest-level
(leaf) functions are
compliant.

2 Work your way up the
function hierarchy
incrementally to compile and
verify each function, ending
with the top-level function.

• Efficient
• Unlikely to cause

errors
• Easy to isolate code

generation syntax
violations

Requires application tests that
work from the bottom up

Top-down
verification

1 Declare functions called by
the top-level function to be
extrinsic so that MATLAB
Coder does not compile
them. See “Use the
coder.extrinsic Construct” on
page 20-9.

2 Verify that your top-level
function is compliant.

3 Work your way down the
function hierarchy
incrementally by removing
extrinsic declarations one by
one to compile and verify
each function, ending with
the leaf functions.

You retain your top-
level tests

Introduces extraneous code that
you must remove after code
verification, including:

• Extrinsic declarations
• Additional assignment

statements as required to
convert opaque values returned
by extrinsic functions to
nonopaque values (see “Working
with mxArrays” on page 20-11).

 Debugging Strategies

25-19

Collect and View Line Execution Counts for Your MATLAB Code
When you perform the Check for Run-Time Issues step in the MATLAB Coder app, you must
provide a test that calls your entry-point functions with representative data. The Check for Run-
Time Issues step generates a MEX function from your MATLAB functions and runs the test,
replacing calls to the MATLAB functions with calls to the MEX function. When running the MEX
function, the app counts executions of the MEX code that corresponds to a line of MATLAB code.
These line execution counts help you to see how well your test exercises your MATLAB code. You can
identify dead code and sections of code that require further testing.

To see the line execution counts, after the Check for Run-Time Issues step finishes the test, click
View MATLAB line execution counts.

In the app editor, the app displays a color coded bar to the left of your MATLAB code.

25 Preparing MATLAB Code for C/C++ Code Generation

25-20

This table describes the color coding.

Color Indicates
Green One of the following situations:

• The entry-point function executes multiple times and the code executes more
than one time.

• The entry-point function executes one time and the code executes one time.

Different shades of green indicate different ranges of line execution counts. The
darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code executes one
time.

Red Code does not execute.

When you place your pointer over the bar, the color highlighting extends over the code. For each
section of code, the app displays the number of times that the section executes.

 Collect and View Line Execution Counts for Your MATLAB Code

25-21

Collection of line execution counts is on by default. Turn it off only after you have verified that you
have adequate test file coverage. Turning off line execution counts can speed up the Check for Run-
Time Issues step. To turn off collection of line executions counts, in the Check for Run-Time
Issues dialog box, clear the Collect MATLAB line execution counts check box.

If you check for run-time issues multiple times, the line execution counts accumulate. To set the
counts to zero, click Reset line execution counts.

The MATLAB Coder app is not supported in MATLAB Online.

See Also

Related Examples
• “Check for Run-Time Issues by Using the App” on page 26-5

More About
• “Why Test MEX Functions in MATLAB?” on page 26-2

25 Preparing MATLAB Code for C/C++ Code Generation

25-22

Resolve Error: Function Is Not Supported for Code Generation

Issue
Certain MATLAB functions are not supported for code generation. If you try to generate code for
these unsupported functions, you see this error message:

The function <function_name> is not supported for code generation.

Possible Solutions
This error message occurs when the code generator cannot generate code for the specified function.
If you want to generate code for your project, use the following workarounds depending on your
deployment platform.

MEX Target: Declare the Function as Extrinsic

To call the unsupported function in a MEX, declare the function as an extrinsic in your MATLAB code.
The function bypasses code generation and instead uses the MATLAB engine to execute the call. This
functionality is available only when the MATLAB engine is available in MEX functions. Certain
functions are automatically marked as extrinsic while other functions require you to explicitly call
them as an extrinsic function. To declare a function as an extrinsic function, use coder.extrinsic.
For more information, see “Use MATLAB Engine to Execute a Function Call in Generated Code” on
page 20-8.

Standalone Target: Manually Implement the Function in MATLAB Code or C/C++ Code

To generate standalone code for a project that uses unsupported functions, manually implement the
unsupported function as custom MATLAB code that is supported for code generation or C/C++ code.

To use handwritten C/C++ code to implement the unsupported functionality, call this code from
inside your MATLAB code by using coder.ceval. Then generate code for the entry-point MATLAB
functions as usual.

You can find third-party custom MATLAB code or C/C++ code for the function that you require.

Before using third-party custom MATLAB code, generate a MEX function for the code to verify that it
performs as expected. Similarly with third-party C/C++ code, verify that the code or library performs
as expected.

You can also deploy your MATLAB code to a platform that supports MATLAB Compiler. The code
generated by the compiler is not completely standalone as it requires access to MATLAB run-time
libraries. See “Write Deployable MATLAB Code” (MATLAB Compiler).

See Also
coder.ceval | coder.extrinsic

Related Examples
• “Extrinsic Functions” on page 29-9
• “Write Deployable MATLAB Code” (MATLAB Compiler)

 Resolve Error: Function Is Not Supported for Code Generation

25-23

Debug Generated C/C++ Code
Debug the generated code if it produces unexpected outputs or stops. These outcomes are due to
programmatic errors or logical fallacies in the MATLAB code, or the behavior of certain functions in
the generated code. To debug your generated C/C++ code:

1 Review the generated MEX function to verify that this code provides the same functionality as
the original MATLAB code. It is a best practice to generate a MEX function before generating
standalone code for your project.

2 Review the generated standalone code for run-time errors by setting the following options in the
code configuration object:

cfg = coder.config('lib'); % or 'dll' or 'exe'
cfg.RuntimeChecks = 1;
codegen myFunction -config cfg

See RuntimeChecks in coder.CodeConfig.
3 Review the Extended Capabilities section in the reference pages for the functions you include in

your code. The behavior of some MATLAB functions differ in the generated code causing the
functions to produce different but equivalent output values. The code generator checks for
differences in execution at run-time and reports them as potential differences. See “Potential
Differences Reporting” on page 2-18.

4 Review calls to external C functions through coder.ceval. Verify that the data type, input, and
output layout are correct. MATLAB uses a column-major layout by default.

5 Look for any warnings that are produced during code generation.
6 To deploy the generated code, run the initialization function before calling the entry-point

function. Call the terminate function after the entry-point function. See “Use Generated Initialize
and Terminate Functions” on page 27-25.

7 If any issues persist, try compiling the code by using the debug flag.

For MEX functions, add -g to the codegen command.

codegen myFunction -args {1,2} -g

For standalone code generation, create a coder.config object and modify it as shown.

cfg = coder.config('dll'); % or 'lib' or 'exe'
cfg.BuildConfiguration = 'Debug';
codegen myFunction -config cfg

For more information, see “Debug Generated Code During SIL Execution” (Embedded Coder).
8 Follow the recommended workflow to generate code while using the code generator. See

“Workflow for Preparing MATLAB Code for Code Generation” on page 25-2.

See Also
coder.CodeConfig

Related Examples
• “Workflow for Preparing MATLAB Code for Code Generation” on page 25-2

25 Preparing MATLAB Code for C/C++ Code Generation

25-24

• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Debug on Microsoft Windows Platforms”
• “Debug on Linux Platforms”
• “Debug on Mac Platforms”
• “Debugging Strategies” on page 25-19

 Debug Generated C/C++ Code

25-25

Testing MEX Functions in MATLAB

• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Workflow for Testing MEX Functions in MATLAB” on page 26-3
• “Running MEX Functions” on page 26-4
• “Check for Run-Time Issues by Using the App” on page 26-5
• “Verify MEX Functions in the MATLAB Coder App” on page 26-7
• “Verify MEX Functions at the Command Line” on page 26-8
• “Debug Run-Time Errors” on page 26-9
• “Using MEX Functions That MATLAB Coder Generates” on page 26-11

26

Why Test MEX Functions in MATLAB?
Before generating C/C++ code for your MATLAB code, it is a best practice to test the MEX function
to verify that it provides the same functionality as the original MATLAB code. To do this testing, run
the MEX function using the same inputs as you used to run the original MATLAB code and compare
the results. For more information about how to test a MEX function using the MATLAB Coder app,
see “Check for Run-Time Issues by Using the App” on page 26-5 and “Verify MEX Functions in the
MATLAB Coder App” on page 26-7. For more information about how to test a MEX function at the
command line, see “Verify MEX Functions at the Command Line” on page 26-8.

Running the MEX function in MATLAB before generating code enables you to detect and fix run-time
errors that are much harder to diagnose in the generated code. If you encounter run-time errors in
your MATLAB functions, fix them before generating code. See “Fix Errors Detected at Code
Generation Time” on page 25-17 and “Debug Run-Time Errors” on page 26-9.

When you run your MEX function in MATLAB, by default, the following run-time checks execute:

• Memory integrity checks. These checks perform array bounds checking, dimension checking, and
detect violations of memory integrity in code generated for MATLAB functions. If a violation is
detected, MATLAB stops execution and provides a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These checks enable periodic
checks for Ctrl+C breaks in code generated for MATLAB functions, allowing you to terminate
execution with Ctrl+C.

For more information, see “Control Run-Time Checks” on page 33-12.

26 Testing MEX Functions in MATLAB

26-2

Workflow for Testing MEX Functions in MATLAB

See Also
• “Set Up a MATLAB Coder Project” on page 24-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 25-2
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Debug Run-Time Errors” on page 26-9
• “Accelerate MATLAB Algorithms” on page 33-6

 Workflow for Testing MEX Functions in MATLAB

26-3

Running MEX Functions
When you call a MEX function, pass it the same inputs that you use for the original MATLAB
algorithm. Do not pass coder.Constant or any of the coder.Type classes to a MEX function. You
can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the toolboxes that
the MEX function requires. For example, if you generate a MEX function from a MATLAB algorithm
that uses a Computer Vision Toolbox function or System object, to run the MEX function, you must
have a Computer Vision Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version, rebuild the MEX
functions.

Debug MEX Functions
To debug your MEX functions, use the disp function to inspect the contents of your MEX function
variables. You cannot use save to debug MEX function variables because code generation does not
support it. Code generation does not support declaration of save as extrinsic. You can also use the
fprintf function to inspect the contents of your MEX function variables.

Debug MEX Functions by Using a C/C++ Debugger
To debug your MEX functions by using a C/C++ debugger, set the MEX configuration object property
EnableDebugging to 1.

cfg = coder.config('mex');
cfg.EnableDebugging = 1;
codegen -config cfg foo_mex

Alternatively, you can debug your MEX function by executing this command:

codegen -g foo_mex

The foo_mex file is the MEX file that you intend to debug. You can debug this file by using a C or C+
+ debugger. For more information on debugging by using a C/C++ debugger on a Microsoft Windows
platform, see “Debug on Microsoft Windows Platforms”.

For more information on debugging by using a C/C++ debugger on a Linux or Mac platform, see
“Debug on Linux Platforms” or “Debug on Mac Platforms”.

26 Testing MEX Functions in MATLAB

26-4

Check for Run-Time Issues by Using the App
Before you generate standalone C/C++ code for your MATLAB code, it is a best practice to generate
a MEX function from your entry-point functions. Running the MEX function helps you to detect and
fix run-time errors that are harder to diagnose in the generated code. It also helps you to verify that
the MEX provides the same functionality as the original MATLAB code.

In the MATLAB Coder app, to generate and run the MEX function for your MATLAB code, perform the
Check for Run-Time Issues step.

1 Write a function or script that calls your entry-point functions. You can use the same test file (or
files) that you use to automatically define input types in the Define Input Types step.

2 Complete the Select Source Files and Define Input Types steps. On the Define Input Types
page, click Next to go to Check for Run-Time Issues step.

3 Specify the test file. In the previous step, if you automatically generated the input types, the app
populates the dialog box with that test file. Instead of a test file, you can enter code that calls
your entry-point functions. However, it is a best practice to provide a test file.

4 Click Check for Issues. The app generates a MEX function from your MATLAB function. It runs
the test that you specified, substituting calls to your MATLAB entry-point functions with calls to
the generated MEX function. The app reports MEX generation or build errors on the Errors tab.
The app reports MEX run-time errors on the Test Output tab.

5 If the app reports errors, to edit the MATLAB code, click View errors.
6 After you fix issues, to rerun the test, click Check for Issues.

The MATLAB Coder app is not supported in MATLAB Online.

Collect MATLAB Line Execution Counts
When the app runs the MEX function, it counts executions of the MEX code that corresponds to a line
of MATLAB code. If the app does not detect issues, you can view these line execution counts. The line
execution counts help you to see how well your test exercises your MATLAB code. You can identify
dead code and sections of code that require further testing. See “Collect and View Line Execution
Counts for Your MATLAB Code” on page 25-20.

Disable JIT Compilation for Parallel Loops
By default, to speed up generation of the MEX function, the app tries to use just-in-time (JIT)
compilation. JIT compilation is incompatible with certain code generation features and options such
as custom code and use of the OpenMP library. If the app cannot use JIT compilation, it generates a
C/C++ MEX function instead. If your code uses parfor and the Enable OpenMP library if
possible setting is Yes, the app uses JIT compilation and treats the parfor-loops as for-loops. If
you want the Check for Run-Time Issues step to run for-loops in parallel, disable JIT compilation:

1 On the Check for Run-Time Issues page, click Settings.
2 On the All Settings tab, set Use JIT compilation in Check for Run-Time Issues to No.

 Check for Run-Time Issues by Using the App

26-5

See Also

More About
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Generate C Code by Using the MATLAB Coder App”
• “Fix Errors Detected at Code Generation Time” on page 25-17
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 25-20
• “Control Run-Time Checks” on page 33-12
• “Verify MEX Functions at the Command Line” on page 26-8

26 Testing MEX Functions in MATLAB

26-6

Verify MEX Functions in the MATLAB Coder App
In the MATLAB Coder app, after you generate a MEX function, you can verify that the generated MEX
function has the same functionality as the original MATLAB entry-point function. Provide a test file
that calls the original MATLAB entry-point function. The test file can be a MATLAB function or script.
The test file must be in the same folder as the original entry-point function.

1 On the Generate Code page, click Verify Code.
2 Type or select the test file name.
3 To run the test file without replacing calls to the original MATLAB function with calls to the MEX

function, for Run using, select MATLAB code. Click Run Generated Code.
4 To run the test file, replacing calls to the original MATLAB function with calls to the MEX

function, for Run using, select Generated code. Click Run Generated Code.
5 Compare the results of running the original MATLAB function with the results of running the

MEX function.

The MATLAB Coder app is not supported in MATLAB Online. To verify MEX functions in MATLAB
Online, see “Verify MEX Functions at the Command Line” on page 26-8.

See Also
coder.runTest | codegen

More About
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Verify MEX Functions at the Command Line” on page 26-8
• “Unit Test Generated Code with MATLAB Coder” on page 29-27

 Verify MEX Functions in the MATLAB Coder App

26-7

Verify MEX Functions at the Command Line
If you have a test file that calls your original MATLAB function, you can use coder.runTest to verify
the MEX function at the command line. coder.runTest runs the test file replacing calls to the
original MATLAB function with calls to the generated MEX function. For example, here is a call to
coder.runTest for the test file myfunction_test and the function myfunction

coder.runTest('myfunction_test', 'myfunction')

If errors occur during the run with coder.runTest, call stack information is available for
debugging.

Alternatively, you can use the codegen -test option.

codegen myfunction -test 'myfunction_test'

The test file can be a MATLAB function, script, or class-based unit test.

See Also
coder.runTest | codegen

More About
• “Why Test MEX Functions in MATLAB?” on page 26-2
• “Check for Run-Time Issues by Using the App” on page 26-5
• “Unit Test Generated Code with MATLAB Coder” on page 29-27

26 Testing MEX Functions in MATLAB

26-8

Debug Run-Time Errors
In this section...
“Viewing Errors in the Run-Time Stack” on page 26-9
“Handling Run-Time Errors” on page 26-10

If you encounter run-time errors in your MATLAB functions, the run-time stack appears in the
MATLAB command window. Use the error message and stack information to learn more about the
source of the error, and then either fix the issue or add error-handling code. For more information,
see “Viewing Errors in the Run-Time Stack” on page 26-9“Handling Run-Time Errors” on page 26-
10.

Viewing Errors in the Run-Time Stack
About the Run-Time Stack

The run-time stack is enabled by default for MEX code generation from MATLAB. To learn more about
the source of the error, use the error message and the following stack information:

• The name of the function that generated the error
• The line number of the attempted operation
• The sequence of function calls that led up to the execution of the function and the line at which

each of these function calls occurred

Example Run-Time Stack Trace

This example shows the run-time stack trace for MEX function mlstack_mex:

mlstack_mex(-1)

Index exceeds matrix dimensions. Index
value -1 exceeds valid range [1-4] of
array x.

Error in mlstack>mayfail (line 31)
y = x(u);

Error in mlstack>subfcn1 (line 5)
switch (mayfail(u))

Error in mlstack (line 2)
y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.
Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31
y = x(u);

 Debug Run-Time Errors

26-9

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5
switch (mayfail(u))

Error in ==> mlstack at 2
y = subfcn1(u);

When to Use the Run-Time Stack

To help you find the source of run-time errors, the run-time stack is useful during debugging.
However, when the stack is enabled, the generated code contains instructions for maintaining the
run-time stack, which might slow the run time. Consider disabling the run-time stack for faster run
time.

Disable the Run-Time Stack

You can disable the run-time stack by disabling the memory integrity checks as described in “How to
Disable Run-Time Checks” on page 33-13.

Caution Before disabling the memory integrity checks, verify that all array bounds and dimension
checking is unnecessary.

Handling Run-Time Errors
The code generator propagates error IDs. If you throw an error or warning in your MATLAB code, use
the try-catch statement in your test bench code to examine the error information and attempt to
recover, or clean up and abort. For example, for the function in “Example Run-Time Stack Trace” on
page 26-9, create a test script containing:

try
 mlstack_mex(u)
catch
 % Add your error handling code here
end

For more information, see “The try/catch Statement”.

26 Testing MEX Functions in MATLAB

26-10

Using MEX Functions That MATLAB Coder Generates
When you specify MEX for the output (build) type, MATLAB Coder generates a binary MATLAB
executable (MEX) version of your MATLAB function. You can call the MEX function from MATLAB.
See “Call MEX Functions”.

How you use the MEX function depends on your goal.

Goal See
Accelerate your MATLAB function. “MATLAB Algorithm Acceleration”
Test generated function for functionality and run-
time issues.

“Why Test MEX Functions in MATLAB?” on page
26-2

Debug your MEX function. “Debug Run-Time Errors” on page 26-9

 Using MEX Functions That MATLAB Coder Generates

26-11

Generating C/C++ Code from MATLAB
Code

• “Code Generation Workflow” on page 27-3
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 27-4
• “Configure Build Settings” on page 27-13
• “Specify Configuration Parameters in Command-Line Workflow Interactively” on page 27-22
• “Specify Data Types Used in Generated Code” on page 27-24
• “Use Generated Initialize and Terminate Functions” on page 27-25
• “Change the Language Standard” on page 27-29
• “Convert codegen Command to Equivalent MATLAB Coder Project” on page 27-30
• “Share Build Configuration Settings” on page 27-33
• “Convert MATLAB Coder Project to MATLAB Script” on page 27-35
• “Preserve Variable Names in Generated Code” on page 27-38
• “Reserved Keywords” on page 27-39
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Specify Cell Array Inputs at the Command Line” on page 27-52
• “Constant Input Checking in MEX Functions” on page 27-57
• “Define Input Properties Programmatically in the MATLAB File” on page 27-60
• “Create and Edit Input Types by Using the Coder Type Editor” on page 27-69
• “Speed Up Compilation by Generating Only Code” on page 27-74
• “Disable Creation of the Code Generation Report” on page 27-75
• “Paths and File Infrastructure Setup” on page 27-76
• “Generate Code for Multiple Entry-Point Functions” on page 27-78
• “Generate One MEX Function for Multiple Signatures” on page 27-82
• “Pass an Entry-Point Function Output as an Input” on page 27-85
• “Generate Code for Global Data” on page 27-88
• “Specify Global Cell Arrays at the Command Line” on page 27-96
• “Generate Code for Enumerations” on page 27-97
• “Generate Code for Variable-Size Data” on page 27-98
• “How MATLAB Coder Partitions Generated Code” on page 27-106
• “Requirements for Signed Integer Representation” on page 27-115
• “Build Process Customization” on page 27-116
• “Run-time Stack Overflow” on page 27-119
• “Compiler and Linker Errors” on page 27-120
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page 27-122

27

• “Name the C Structure Type to Use With a Global Structure Variable” on page 27-129
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page 27-131
• “Generate Code That Uses N-Dimensional Indexing” on page 27-134
• “Install OpenMP Library on macOS Platform” on page 27-138
• “Generate Code to Detect Edges on Images” on page 27-139
• “C Code Generation for a MATLAB Kalman Filtering Algorithm” on page 27-145
• “Generate Code to Optimize Portfolio by Using Black Litterman Approach” on page 27-154
• “Generate Code for Persistent Variables” on page 27-162
• “Generate Code for Structure Arrays” on page 27-166
• “Add Custom Toolchains to MATLAB® Coder™ Build Process” on page 27-168
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” on page 27-177
• “Build Process Support for Folder Names” on page 28-25
• “Generate Code That Reads Data from a File” on page 28-29

27 Generating C/C++ Code from MATLAB Code

27-2

Code Generation Workflow

See Also
• “Set Up a MATLAB Coder Project” on page 24-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 25-2
• “Workflow for Testing MEX Functions in MATLAB” on page 26-3
• “Configure Build Settings” on page 27-13

 Code Generation Workflow

27-3

Generating Standalone C/C++ Executables from MATLAB Code

In this section...
“Generate a C Executable Using the MATLAB Coder App” on page 27-4
“Generate a C Executable at the Command Line” on page 27-10
“Specifying main Functions for C/C++ Executables” on page 27-11
“Specify main Functions” on page 27-11

Generate a C Executable Using the MATLAB Coder App
This example shows how to generate a C executable from MATLAB code using the MATLAB Coder
app. In this example, you generate an executable for a MATLAB function that generates a random
scalar value. Using the app, you:

1 Generate a an example C main function that calls the generated library function.
2 Copy and modify the generated main.c and main.h.
3 Modify the project settings so that the app can find the modified main.c and main.h.
4 Generate the executable.

Create the Entry-Point Function

In a local writable folder, create a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

Create the Test File

In the same local writable folder, create a MATLAB file, coderand_test.m, that calls coderand.

function y = coderand_test()
y = coderand();

Open the MATLAB Coder app

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function coderand.

The app creates a project with the default name coderand.prj in the current folder.
2 Click Next to go to the Define Input Types step. The app analyzes the function for coding issues

and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. In this example, because the
app does not detect issues, it opens the Define Input Types page.

27 Generating C/C++ Code from MATLAB Code

27-4

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the properties of all
variables in the MATLAB files. You must specify the properties of all entry-point function inputs. From
the properties of the entry-point function inputs, MATLAB Coder can infer the properties of all
variables in the MATLAB files.

In this example, the function coderand does not have inputs.

Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point functions, runs the
MEX function, and reports issues. This step is optional. However, it is a best practice to perform this
step. You can detect and fix run-time errors that are harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues arrow .

Select or enter the test file coderand_test.
2 Click Check for Issues.

The app generates a MEX function for coderand. It runs the test file replacing calls to
coderand with calls to the MEX function. If the app detects issues during the MEX function
generation or execution, it provides warning and error messages. Click these messages to
navigate to the problematic code and fix the issue. In this example, the app does not detect
issues.

3 Click Next to go to the Generate Code step.

Generate a C main Function

When you generate an executable, you must provide a C/C++ main function. By default, when you
generate C/C++ source code, static libraries, dynamically linked libraries, or executables, MATLAB
Coder generates a main function. This generated main function is a template that you modify for your
application. See “Incorporate Generated Code Using an Example Main Function” on page 32-23.
After you copy and modify the generated main function, you can use it for generation of the C/C++
executable. Alternatively, you can write your own main function.

Before you generate the executable for coderand, generate a main function that calls coderand.

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Source Code and Language to C. Use the

default values for the other project build configuration settings.
3 Click More Settings.
4 On the All Settings tab, under Advanced, verify that Generate example main is set to

Generate, but do not compile, an example main function. Click Close.
5 Click Generate.

MATLAB Coder generates a main.c file and a main.h file. The app indicates that code
generation succeeded.

6 Click Next to open the Finish Workflow page.

 Generating Standalone C/C++ Executables from MATLAB Code

27-5

On the Finish Workflow page, under Generated Output, you see that main.c is in the
subfolder coderand\codegen\lib\coderand\examples.

Copy the Generated Example Main Files

Because subsequent code generation can overwrite the generated example files, before you modify
these files, copy them to a writable folder outside of the codegen folder. For this example, copy
main.c and main.h from the subfolder coderand\codegen\lib\coderand\examples to a
writable folder, for example, c:\myfiles.

Modify the Generated Example Main Files
1 In the folder that contains a copy of the example main files, open main.c.

Generated main.c
/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/

/* Include Files */
#include "main.h"
#include "coderand.h"
#include "coderand_terminate.h"

/* Function Declarations */
static void main_coderand(void);

/* Function Definitions */

/*
 * Arguments : void
 * Return Type : void
 */
static void main_coderand(void)
{
 double r;

27 Generating C/C++ Code from MATLAB Code

27-6

 /* Call the entry-point 'coderand'. */
 r = coderand();
}

/*
 * Arguments : int argc
 * const char * const argv[]
 * Return Type : int
 */
int main(int argc, const char * const argv[])
{
 (void)argc;
 (void)argv;

 /* The initialize function is being called automatically from your entry-point function. So, a call to initialize is not included here. */
 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_coderand();

 /* Terminate the application.
 You do not need to do this more than one time. */
 coderand_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

2 Modify main.c so that it prints the results of a coderand call:

• In main_coderand, delete the line

double r;
• In main_coderand, replace

r = coderand()

with

printf("coderand=%g\n", coderand());
• For this example, main does not have arguments. In main, delete the lines:

(void)argc;
(void)argv;

Change the definition of main to

int main()

Modified main.c
/* Include Files */
#include "main.h"
#include "coderand.h"
#include "coderand_terminate.h"

 Generating Standalone C/C++ Executables from MATLAB Code

27-7

/* Function Declarations */
static void main_coderand(void);

/* Function Definitions */

/*
 * Arguments : void
 * Return Type : void
 */
static void main_coderand(void)
{
 /* Call the entry-point 'coderand'. */
 printf("coderand=%g\n", coderand());
}

/*
 * Arguments : int argc
 * const char * const argv[]
 * Return Type : int
 */
int main()
{
 /* The initialize function is being called automatically from your entry-point function. So, a call to initialize is not included here. */
 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_coderand();

 /* Terminate the application.
 You do not need to do this more than one time. */
 coderand_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

3 Open main.h

Generated main.h
/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */

27 Generating C/C++ Code from MATLAB Code

27-8

/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/
#ifndef MAIN_H
#define MAIN_H

/* Include Files */
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "coderand_types.h"

/* Function Declarations */
extern int main(int argc, const char * const argv[]);

#endif

/*
 * File trailer for main.h
 *
 * [EOF]
 */

4 Modify main.h:

• Add stdio to the include files:

#include <stdio.h>

• Change the declaration of main to

extern int main()

Modified main.h

#ifndef MAIN_H
#define MAIN_H

/* Include Files */
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "rtwtypes.h"
#include "coderand_types.h"

/* Function Declarations */
extern int main();

#endif

/*
 * File trailer for main.h
 *

 Generating Standalone C/C++ Executables from MATLAB Code

27-9

 * [EOF]
 */

Generate the Executable

1
To open the Generate Code page, expand the workflow steps and click Generate

2 To open the Generate dialog box, click the Generate arrow .
3 Set Build type to Executable (.exe).
4 Click More Settings.
5 On the Custom Code tab, in Additional source files, enter main.c
6 On the Custom Code tab, in Additional include directories, enter the location of the modified

main.c and main.h files. For example, c:\myfiles. Click Close.
7 To generate the executable, click Generate.

The app indicates that code generation succeeded.
8 Click Next to go to the Finish Workflow step.
9 Under Generated Output, you can see the location of the generated executable coderand.exe.

Run the Executable

To run the executable in MATLAB on a Windows platform:

system('coderand')

Generate a C Executable at the Command Line
In this example, you create a MATLAB function that generates a random scalar value and a main C
function that calls this MATLAB function. You then specify types for the function input parameters,
specify the main function, and generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar value from the standard
uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_terminate.h"

int main()
{
 /* The initialize function is called automatically from the generated entry-point function.
 So, a call to initialize is not included here. */

 printf("coderand=%g\n", coderand());

27 Generating C/C++ Code from MATLAB Code

27-10

 coderand_terminate();

 return 0;
}

Note In this example, because the default file partitioning method is to generate one file for
each MATLAB file, you include "coderand_terminate.h". If your file partitioning method is
set to generate one file for all functions, do not include "coderand_terminate.h".

3 Configure your code generation parameters to include the main C function and then generate the
C executable:

cfg = coder.config('exe');
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg coderand

codegen generates a C executable, coderand.exe, in the current folder. It generates
supporting files in the default folder, codegen/exe/coderand. codegen generates the minimal
set of #include statements for header files required by the selected code replacement library.

Specifying main Functions for C/C++ Executables
When you generate an executable, you must provide a main function. For a C executable, provide a C
file, main.c. For a C++ executable, provide a C++ file, main.cpp. Verify that the folder containing
the main function has only one main file. Otherwise, main.c takes precedence over main.cpp, which
causes an error when generating C++ code. You can specify the main file from the project settings
dialog box, the command line, or the Code Generation dialog box.

By default, when you generate C/C++ source code, static libraries, dynamically linked libraries, or
executables, MATLAB Coder generates a main function. This generated main function is a template
that you modify for your application. See “Incorporate Generated Code Using an Example Main
Function” on page 32-23. After you copy and modify the generated main function, you can use it for
generation of the C/C++ executable. Alternatively, you can write your own main function.

When you convert a MATLAB function to a C/C++ library function or a C/C++ executable, MATLAB
Coder generates an initialize function and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB file, you must include
the terminate header function in main.c. Otherwise, do not include it in main.c.

• For more information about calling the initialize and terminate functions, see “Use Generated
Initialize and Terminate Functions” on page 27-25.

Specify main Functions
Specifying main Functions Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Custom Code tab, set:

 Generating Standalone C/C++ Executables from MATLAB Code

27-11

a Additional source files to the name of the C/C++ source file that contains the main
function. For example, main.c. For more information, see “Specifying main Functions for
C/C++ Executables” on page 27-11.

b Additional include directories to the location of main.c. For example, c:\myfiles.

Specifying main Functions at the Command Line

Set the CustomSource and CustomInclude properties of the code generation configuration object
(see “Working with Configuration Objects” on page 27-18). The CustomInclude property indicates
the location of C/C++ files specified by CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');
2 Set the CustomSource property to the name of the C/C++ source file that contains the main

function. (For more information, see “Specifying main Functions for C/C++ Executables” on page
27-11.) For example:

cfg.CustomSource = 'main.c';
3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';
4 Generate the C/C++ executable using the command-line options. For example, if myFunction

takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

MATLAB Coder compiles and links the main function with the C/C++ code that it generates from
myMFunction.m.

27 Generating C/C++ Code from MATLAB Code

27-12

Configure Build Settings
In this section...
“Specify Build Type” on page 27-13
“Specify a Language for Code Generation” on page 27-15
“Specify Output File Name” on page 27-16
“Specify Output File Locations” on page 27-16
“Parameter Specification Methods” on page 27-17
“Specify Build Configuration Parameters” on page 27-17

Specify Build Type
Build Types

MATLAB Coder can generate code for the following output types:

• MEX function
• Standalone C/C++ code
• Standalone C/C++ code and compile it to a static library
• Standalone C/C++ code and compile it to a dynamically linked library
• Standalone C/C++ code and compile it to an executable

Note When you generate an executable, you must provide a C/C++ file that contains the main
function, as described in “Specifying main Functions for C/C++ Executables” on page 27-11.

Location of Generated Files

By default, MATLAB Coder generates files in output folders based on your output type. For more
information, see “Generated Files and Locations” on page 27-110.

Note Each time MATLAB Coder generates the same type of output for the same code or project, it
removes the files from the previous build. If you want to preserve files from a build, copy them to a
different location before starting another build.

Specify the Build Type Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to one of the following.

• Source Code
• MEX
• Static Library
• Dynamic Library
• Executable

 Configure Build Settings

27-13

If you select Source Code, MATLAB Coder does not invoke the make command or generate
compiled object code. When you iterate between modifying MATLAB code and generating C/C++
code and you want to inspect the generated code, this option can save you time. This option is
equivalent to Static Library with the Generate code only box selected.

Code generation uses a different set of configuration parameters for MEX functions than it uses for
the other build types. When you switch the output type between MEX Function and Source,
Static Library, Dynamic Library, or Executable, verify these settings.

Certain configuration parameters are relevant for both MEX and standalone code generation. If you
enable any of these parameters when the output type is MEX Function, and you want to use the
same setting for C/C++ code generation as well, you must enable it again for C/C++ Static
Library, C/C++ Dynamic Library, and C/C++ Executable.

Specifying the Build Type at the Command Line

Call codegen with the -config option. For example, suppose that you have a primary function foo
that takes no input parameters. The following table shows how to specify different output types when
compiling foo. If a primary function has input parameters, you must specify these inputs. For more
information, see “Specify Properties of Entry-Point Function Inputs” on page 27-43.

Note C is the default language for code generation with MATLAB Coder. To generate C++ code, see
“Specify a Language for Code Generation” on page 27-15.

To Generate: Use This Command:
MEX function using the default code
generation options

codegen foo

MEX function specifying code
generation options

cfg = coder.config('mex');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and compile
it to a library using the default code
generation options

codegen -config:lib foo

Standalone C/C++ code and compile
it to a library specifying code
generation options

cfg = coder.config('lib');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and compile
it to an executable using the default
code generation options and
specifying the main.c file at the
command line

codegen -config:exe main.c foo

Note You must specify a main function for generating a C/C++
executable. See “Specifying main Functions for C/C++ Executables” on
page 27-11

27 Generating C/C++ Code from MATLAB Code

27-14

To Generate: Use This Command:
Standalone C/C++ code and compile
it to an executable specifying code
generation options

cfg = coder.config('exe');
% Set configuration parameters, for example,
% specify main file
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg foo

Note You must specify a main function for generating a C/C++
executable. See “Specifying main Functions for C/C++ Executables” on
page 27-11

Specify a Language for Code Generation
• “Specify the Language Using the MATLAB Coder App” on page 27-15
• “Specifying the Language Using the Command-Line Interface” on page 27-15

MATLAB Coder can generate C or C++ libraries and executables. C is the default language. You can
specify a language explicitly from the project settings dialog box or at the command line.

Specify the Language Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Language to C or C++.

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can use a C++
compiler and interface with external C++ applications. MATLAB Coder does not generate C++
classes.

Specifying the Language Using the Command-Line Interface

1 Select a suitable compiler for your target language.
2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can then use a C+
+ compiler and interface with external C++ applications. MATLAB Coder does not generate C++
classes.

See Also

• “Working with Configuration Objects” on page 27-18
• “Setting Up the C or C++ Compiler”

 Configure Build Settings

27-15

Specify Output File Name
Specify Output File Name Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 In the Output file name field, enter the file name.

Note Do not put spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the output file name is:

• fcn1 for C/C++ libraries and executables.
• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder project_folder/codegen/target/fcn1:

• project_folder is your current project folder
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamic C/C++ libraries
• exe for C/C++ executables

Command-Line Alternative

Use the codegen function -o option.

Specify Output File Locations
Specify Output File Location Using the MATLAB Coder App

The output file location must not contain:

• Spaces (Spaces can lead to code generation failures in certain operating system configurations).
• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters.

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or Executable

(depending on your requirements).
3 Click More Settings.
4 Click the Paths tab.

The default setting for the Build folder field is A subfolder of the project folder. By
default, MATLAB Coder generates files in the folder project_folder/codegen/target/
fcn1:

27 Generating C/C++ Code from MATLAB Code

27-16

• fcn1 is the name of the alphabetically first entry-point file.
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamically linked C/C++ libraries
• exe for C/C++ executables

5 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working folder

MATLAB Coder generates files in the MATLAB_working_folder/codegen/target/fcn1
folder

• Set Build Folder to Specified folder. In the Build folder name field, provide the path
to the folder.

Command-Line Alternative

Use the codegen function -d option.

Parameter Specification Methods
If you are using Use Details
The MATLAB Coder app The project settings dialog box. “Specify Build Configuration

Parameters MATLAB Coder App” on
page 27-17

codegen at the command line and
want to specify a few parameters

Configuration objects “Specify Build Configuration
Parameters at the Command Line
Using Configuration Objects” on
page 27-18

codegen in build scripts

codegen at the command line and
want to specify many parameters

Configuration object dialog boxes “Specifying Build Configuration
Parameters at the Command Line
Using Dialog Boxes” on page 27-21

Specify Build Configuration Parameters
• “Specify Build Configuration Parameters MATLAB Coder App” on page 27-17
• “Specify Build Configuration Parameters at the Command Line Using Configuration Objects”

on page 27-18
• “Specifying Build Configuration Parameters at the Command Line Using Dialog Boxes”

on page 27-21

You can specify build configuration parameters from the MATLAB Coder project settings dialog box,
the command line, or configuration object dialog boxes.

Specify Build Configuration Parameters MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .

 Configure Build Settings

27-17

2 Set Build type to Source Code, Static Library, Dynamic Library, or Executable
(depending on your requirements).

3 Click More Settings.

The project settings dialog box provides the set of configuration parameters applicable to the
output type that you select. Code generation uses a different set of configuration parameters for
MEX functions than it uses for the other build types. When you switch the output type between
MEX Function and Source Code, Static Library, Dynamic Library, or Executable,
verify these settings.

Certain configuration parameters are relevant for both MEX and standalone code generation. If
you enable any of these parameters when the output type is MEX Function, and you want to use
the same setting for C/C++ code generation as well, you must enable it again for C/C++ Static
Library, C/C++ Dynamic Library, and C/C++ Executable.

4 Modify the parameters as required. For more information about parameters on a tab, click Help.

Changes to the parameter settings take place immediately.

Specify Build Configuration Parameters at the Command Line Using Configuration Objects

Types of Configuration Objects

The codegen function uses configuration objects to customize your environment for code generation.
The following table lists the available configuration objects.

Configuration Object Description
coder.CodeConfig If no Embedded Coder license is available or you disable use of

the Embedded Coder license, specifies parameters for C/C++
library or executable generation.

For more information, see the class reference information for
coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies parameters
for C/C++ library or executable generation.

For more information, see the class reference information for
coder.EmbeddedCodeConfig.

coder.HardwareImplementation Specifies parameters of the target hardware implementation. If
not specified, codegen generates code that is compatible with
the MATLAB host computer.

For more information, see the class reference information for
coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference information for
coder.MexCodeConfig.

Working with Configuration Objects

To use configuration objects to customize your environment for code generation:

27 Generating C/C++ Code from MATLAB Code

27-18

1 In the MATLAB workspace, define configuration object variables, as described in “Creating
Configuration Objects” on page 27-19.

For example, to generate a configuration object for C static library generation:

cfg = coder.config('lib');
% Returns a coder.CodeConfig object if no
% Embedded Coder license available.
% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of these methods:

• Interactive commands, as described in “Specify Build Configuration Parameters at the
Command Line Using Configuration Objects” on page 27-18

• Dialog boxes, as described in “Specifying Build Configuration Parameters at the Command
Line Using Dialog Boxes” on page 27-21

3 Call the codegen function with the -config option. Specify the configuration object as its
argument.

The -config option instructs codegen to generate code for the target, based on the
configuration property values. In the following example, codegen generates a C static library
from a MATLAB function, foo, based on the parameters of a code generation configuration
object, cfg, defined in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in this case, a C static
library. For more information, see codegen.

Creating Configuration Objects

You can define a configuration object in the MATLAB workspace.

To Create... Use a Command Such As...
MEX configuration object
coder.MexCodeConfig

cfg = coder.config('mex');

 Configure Build Settings

27-19

To Create... Use a Command Such As...
Code generation configuration object for
generating a standalone C/C++ library
or executable
coder.CodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable the check out of an
Embedded Coder license, use one of the following commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

Code generation configuration object for
generating a standalone C/C++ library
or executable for an embedded target
coder.EmbeddedCodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note Requires an Embedded Coder license; otherwise creates a
coder.CodeConfig object.

Hardware implementation configuration
object
coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

Each configuration object comes with a set of parameters, initialized to default values. You can
change these settings, as described in “Modifying Configuration Objects at the Command Line Using
Dot Notation” on page 27-20.

Modifying Configuration Objects at the Command Line Using Dot Notation

You can use dot notation to modify the value of one configuration object parameter at a time. Use this
syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');
cfg.CustomInclude = 'c:\myfiles';
cfg.CustomSource = 'main.c';
codegen -config cfg foo

27 Generating C/C++ Code from MATLAB Code

27-20

• To automatically generate and launch code generation reports after generating a C/C++ static
library:

cfg = coder.config('lib');
cfg.GenerateReport= true;
cfg.LaunchReport = true;
codegen -config cfg foo

Saving Configuration Objects

Configuration objects do not automatically persist between MATLAB sessions. Use one of the
following methods to preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file at your next session

For example, assume that you create and customize a MEX configuration object mexcfg in the
MATLAB workspace. To save the configuration object, at the MATLAB prompt, enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB workspace.

Write a script that creates the configuration object and sets its properties.

You can rerun the script whenever you need to use the configuration object again.

Specifying Build Configuration Parameters at the Command Line Using Dialog Boxes

After you have created a configuration object, you can modify the properties of the object by using
the configuration parameter dialog box. See “Specify Configuration Parameters in Command-Line
Workflow Interactively” on page 27-22.

 Configure Build Settings

27-21

Specify Configuration Parameters in Command-Line Workflow
Interactively

After you have created a code generation configuration object at the command line, you can modify
the properties of the object interactively by using the Configuration Parameters dialog box.

For more information on configuring the code generation process by using configuration objects, see
“Configure Build Settings” on page 27-13.

Create and Modify Configuration Objects by Using the Dialog Box
1 Create a configuration object as described in “Creating Configuration Objects” on page 27-19.

For example, to create a coder.MexCodeConfig configuration object for MEX code generation:

mexcfg = coder.config('mex');
2 Open the property dialog box by using one of these methods:

• In the MATLAB workspace, double-click the configuration object variable.
• At the MATLAB command prompt, issue the open command, passing it the configuration

object variable:

open mexcfg
3 In the dialog box, modify configuration parameters as required.

Additional Functionalities in the Dialog Box
To enable you to easily modify the configuration parameters in an interactive fashion, the
Configuration Parameters dialog box provides these functionalities:

• Search: When you search for a string, you see the filtered results across all the settings
categories. The search string might be present in a setting name, the name of an option for a
setting, or in a tooltip.

27 Generating C/C++ Code from MATLAB Code

27-22

• Informative tooltips: The tooltip for each individual setting contains the corresponding
configuration object property name, a Help link for that property, and the name of any additional
product that using that property requires. If the property is disabled, the tooltip also contains
links to other properties that you must set to enable this property. You can make that change in
the tooltip itself.

• Settings with nondefault values: The dialog box shows settings that have nondefault values in bold
font. To reset such a setting to its default values, click the Reset button in the tooltip.

• MISRA Compliance pane: If you have Embedded Coder, the MISRA Compliance pane displays
the settings that might impact MISRA compliance of the generated code. To set all of these
settings to the recommended values, click Set to Recommended Values.

See “Generate C/C++ Code with Improved MISRA Compliance” (Embedded Coder).
• Generate equivalent script: You can view the command-line script that produces your current

settings by clicking the Script button located at the bottom of the list of categories. You can
switch from the script mode back to the interactive mode by clicking the Configure button.

See Also
coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” on page 27-13

 Specify Configuration Parameters in Command-Line Workflow Interactively

27-23

Specify Data Types Used in Generated Code
In this section...
“Specify Data Type Using the MATLAB Coder App” on page 27-24
“Specify Data Type at the Command Line” on page 27-24

MATLAB Coder can use built-in C data types or predefined types from rtwtypes.h in generated
code. By default, when the generated code declares variables, it uses built-in C types.

You can explicitly specify the data types used in generated code in the project settings dialog box or
at the command line.

Specify Data Type Using the MATLAB Coder App
1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or Executable

(depending on your requirements).
3 Click More Settings.
4 To use built-in C types, on the Code Appearance tab, set Data Type Replacement to Use

built-in C data types in the generated code. To use predefined types from
rtwtypes.h, set Data Type Replacement to Use MathWorks typedefs in the
generated code.

Specify Data Type at the Command Line
1 Create a configuration object for code generation. Use coder.config with arguments

'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');
2 To use built-in C types, set the DataTypeReplacement property to 'CBuiltIn'.

cfg.DataTypeReplacement = 'CBuiltIn';

To use predefined types from rtwtypes.h, set the DataTypeReplacement property to
'CoderTypedefs'.

27 Generating C/C++ Code from MATLAB Code

27-24

Use Generated Initialize and Terminate Functions
When generating C/C++ code from MATLAB code, the code generator automatically produces two
housekeeping functions, initialize and terminate. The initialize function initializes the state on which
the generated C/C++ entry-point functions operate. It must be called before you call the entry-point
functions for the first time. The terminate function frees allocated memory and performs other
cleanup operations. It must be called after you call the entry-point functions for the last time.

Initialize Function
The name of the generated initialize function is primary_function_name_initialize, where
primary_function_name is the name of the first MATLAB entry-point function that you specify while
generating code. The initialize function initializes the state on which the generated entry-point
functions operate. The initialize function can include:

• Calls to supporting code for nonfinite data (Inf and NaN). These calls are generated if your
MATLAB code contains operations that can generate nonfinite values.

• Code that initializes global or persistent variables.
• Custom code for creating an initial state that you specify. To include custom code in the initialize

function, do one of the following:

• In a code configuration object, set CustomInitializer to a character vector that contains
the custom code.

• In the MATLAB Coder app, on the Custom Code tab, specify custom code for the initialize
function.

In certain situations, no initialization code is necessary and the generated initialize function is empty.

Calling Initialize Functions

If you generate a MEX function, the generated code automatically includes a call to the initialize
function. If you generate standalone code, there are two possible situations:

• By default, if the initialize function is nonempty, the code generator includes a call to the initialize
function at the beginning of the generated C/C++ entry-point functions. The generated code also
includes checks to make sure that the initialize function is called automatically only once, even if
there are multiple entry-point functions. In this situation, you do not need to manually call the
initialize function.

If the initialize function is empty, the generated C/C++ entry-point functions do not include a call
to the initialize function.

• You can choose to not include a call to the initialize function in the generated entry-point
functions. Do one of the following:

• In a coder.CodeConfig or coder.EmbeddedCodeConfig object, set RunInitializeFcn to
false.

• In the MATLAB Coder app, on the All Settings tab, set Automatically run the initialize
function to No.

If you make this choice, you must manually call the initialize function before you call a generated
entry-point function for the first time. Not calling the initialize function causes the generated
entry-point functions to operate on an invalid state.

 Use Generated Initialize and Terminate Functions

27-25

If you generate C++ code with a class interface, then the code generator produces a class
constructor and destructor that perform initialization and termination operations. You do not need to
manually call the initialize and terminate functions. See “Generate C++ Code with Class
Interface” on page 40-4.

Examples of Generated Initialize Functions

Examples of MATLAB code patterns and the corresponding generated initialize functions:

• Your MATLAB code uses global or persistent variables. For example, define this MATLAB
function:

function y = bar
global g
y = g;
end

Generate a static library for bar. Specify the initial value of g as 1.

codegen -config:lib -globals {'g',1} bar

The code generator produces the file bar_initialize.c in work\codegen\lib\bar, where
work is the folder that contains bar.m. The function bar_initialize initializes the global
variable g.

void bar_initialize(void)
{
 g = 1.0;
 isInitialized_bar = true;
}

The generated C function bar includes a call to bar_initialized. It uses the boolean
isInitialized_bar to make sure that the initialize function is called automatically only once.

double bar(void)
{
 if (!isInitialized_bar) {
 bar_initialize();
 }

 return g;
}

• Your MATLAB code contains an operation that can generate nonfinite values (Inf or NaN). For
example, define a MATLAB function foo that calls factorial. The factorial function grows
quickly and returns Inf for inputs greater than a certain threshold. For an input of type double,
the threshold is 170. Executing factorial(171) in MATLAB returns Inf.

function y = foo(a)
y = factorial(a);
end

Generate a static library for foo.

codegen -config:lib foo -args {1}

The code generator produces the file foo_initialize.c in work\codegen\lib\foo, where
work is the folder that contains foo.m. The function foo_initialize calls supporting code for
nonfinite data, rt_InitInfAndNaN, which is defined in another generated file rt_nonfinite.c.

27 Generating C/C++ Code from MATLAB Code

27-26

void foo_initialize(void)
{
 rt_InitInfAndNaN();
 isInitialized_foo = true;
}

Terminate Function
The name of the generated terminate function is primary_function_name_terminate, where
primary_function_name is the name of the first MATLAB entry-point function that you specify while
generating code. The terminate function frees allocated memory and performs other cleanup
operations.

The terminate function can also include custom cleanup code that you specify. To include custom code
in the terminate function, do one of the following:

• In a code configuration object, set CustomTerminator to a character vector that contains the
custom code.

• Alternatively, in the MATLAB Coder app, on the Custom Code tab, specify custom code for the
terminate function.

If you generate a MEX function, the generated code automatically includes a call to the terminate
function.

If you generate standalone code, the generated code does not automatically include a call to the
terminate function. In this situation, you must manually invoke the terminate function after you call
the generated entry-point functions for the last time.

Terminate functions are also used to clear the state of persistent variables. A persistent variable
retains its state until a terminate function is invoked. For more information, see “Generate Code for
Persistent Variables” on page 27-162.

Example of Generated Terminate Function

Define this MATLAB function:

function y = bar
global g
y = g;
end

Generate a static library for bar. Specify the initial value of g as 1.

codegen -config:lib -globals {'g',1} bar

The code generator produces the file bar_terminate.c in work\codegen\lib\bar, where work
is the folder that contains bar.m. The function bar_terminate sets the boolean
isInitialized_bar (that was set to true after the initialize function call) to false.

void bar_terminate(void)
{
 isInitialized_bar = false;
}

 Use Generated Initialize and Terminate Functions

27-27

See Also
coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Deploy Generated Code” on page 32-69

27 Generating C/C++ Code from MATLAB Code

27-28

Change the Language Standard
For calls to math operations, the code generator uses the language standard that you specify in the
build settings. The default language standard depends on the language that you select. For C, it is
C99 (ISO). For C++, it is C++11 (ISO).

You can change the language standard to one of these libraries.

Library Name Language Support Standard
C89/C90 (ANSI) C, C++ ISO®/IEC 9899:1990
C99 (ISO) C, C++ ISO/IEC 9899:1999
C++03 (ISO) C++ ISO/IEC 14882:2003
C++11 (ISO) C++ ISO/IEC 14882:2011(E)

The C++03 (ISO) and C++11 (ISO) math libraries are available only if the language is C++.

To change the library:

• In the project build settings, on the Custom Code tab, set the Language standard parameter.
• In a code configuration object, set the TargetLangStandard parameter.

Verify that your compiler supports the library that you want to use. If you select a library that your
compiler does not support, compiler errors can occur.

See Also

More About
• “Specify Build Configuration Parameters MATLAB Coder App” on page 27-17
• “Specify Build Configuration Parameters at the Command Line Using Configuration Objects” on

page 27-18

 Change the Language Standard

27-29

Convert codegen Command to Equivalent MATLAB Coder
Project

You can use the codegen command with the -toproject option to convert a codegen command to
an equivalent MATLAB Coder project file. You can then generate code from the project file by using
another codegen command or the MATLAB Coder app.

For example, to convert a codegen command with input arguments input_arguments to the
project file myProject.prj, run:

codegen input_arguments -toproject myProject.prj

Input arguments to codegen include:

• Names of entry-point functions
• Input type definitions specified by using the -args option
• Code generation options, including parameters specified in configuration objects
• Names of custom source files to include in the generated code

You can also use the -toproject option to convert an incomplete codegen command to a project
file. For example, to create a project file myProjectTemplate.prj that contains only the code
generation parameters stored in the configuration object cfg, run:

codegen -config cfg -toproject myProjectTemplate.prj

myProjectTemplate.prj does not contain specifications of entry-point functions or input types. So,
you cannot generate code from this project file. You can open myProjectTemplate.prj in the
MATLAB Coder app and use it as a template to create full project files that you can use to generate
code.

Note Running the codegen command with the -toproject option does not generate code. It
creates only the project file.

Example: Convert a Complete codegen Command to a Project File
Define a MATLAB function, myadd, that returns the sum of two values.

function y = myadd(u,v) %#codegen
y = u + v;
end

Create a coder.CodeConfig object for generating a static library. Set TargetLang to 'C++'.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';

At the MATLAB command line, create and run a codegen command. Specify myadd as the entry-point
function. Specify the inputs to myadd as variable-size matrices of type double whose dimensions are
unbounded. Specify cfg as the code configuration object. Include the -toproject option to convert
the codegen command to an equivalent MATLAB Coder project file with name
myadd_project.prj.

27 Generating C/C++ Code from MATLAB Code

27-30

codegen -config cfg myadd -args {coder.typeof(1,[Inf,Inf]),coder.typeof(1,[Inf,Inf])} -toproject myadd_project.prj

Project file 'myadd_project.prj' was successfully created.
Open Project

The code generator creates the project file myadd_project.prj in the current working folder.
Running codegen with the -toproject option does not generate code. It creates only the project
file.

Generate code from myadd_project.prj by using another codegen command.

codegen myadd_project.prj

The code generator produces a C++ static library function myadd in the work\codegen\lib\myadd
folder, where work is your current working directory.

Example: Convert an Incomplete codegen Command to a Template
Project File
Create a coder.CodeConfig object for generating a static library. Set TargetLang to 'C++'.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';

At the MATLAB command line, create and run a codegen command. Specify cfg as the code
configuration object. Include the -toproject option to convert the codegen command to an
equivalent MATLAB Coder project file with name myProjectTemplate.prj.

codegen -config cfg -toproject myProjectTemplate.prj

Project file 'myProjectTemplate.prj' was successfully created.
Open Project

You can now open myProjectTemplate.prj in the MATLAB Coder app and use it as a template to
create full project files that you can use to generate code.

Limitations
When you use the codegen command with the -toproject option, these limitations apply:

• Exporting the CodeTemplate parameter of a coder.EmbeddedCodeConfig object to a project
file is not supported.

• Suppose that your codegen command for generating a MEX function uses coder.Constant to
define a constant input that is a fi object obj.

Certain fi object properties are enabled by other properties. When you construct a fi object,
these properties are set to their default values unless you explicitly modify them. In obj, you set
one or more properties that are not enabled to non-default values. See “fi Object Properties”
(Fixed-Point Designer).

You convert this codegen command to a project file by using the -toproject option. You build
the project file and generate a MEX function. When you pass obj as the constant input argument
to the generated MEX function and run the MEX, the MEX might throw an error.

 Convert codegen Command to Equivalent MATLAB Coder Project

27-31

To fix this issue, you must set the properties of obj that are not enabled to their default values
before passing it to the MEX function. To do this, define a new fi object obj_new:

a = mat2str(obj);
obj_new = eval(a);

Pass obj_new as the constant input to the generated MEX function.

See Also
codegen

More About
• “Convert MATLAB Coder Project to MATLAB Script” on page 27-35
• “Share Build Configuration Settings” on page 27-33

27 Generating C/C++ Code from MATLAB Code

27-32

Share Build Configuration Settings
To share build configuration settings between multiple projects or between the project and command-
line workflow, you can export settings to and import settings from a code generation configuration
object.

This functionality is not supported in MATLAB Online.

Export Settings
You can export project file settings to a code configuration object by using the MATLAB Coder app or
at the command line. The type of the configuration object depends on the project file settings.

Project File Settings in MATLAB Coder App Code Configuration Object
Build type is MEX. coder.MexCodeConfig
Build type is static library, dynamically linked
library, or executable.

One of the following conditions is true:

• You do not have Embedded Coder.
• You have Embedded Coder. On the All

Settings tab, Use Embedded Coder
features is set to No.

coder.CodeConfig

Build type is static library, dynamically linked
library, or executable.

You have Embedded Coder. On the All Settings
tab, Use Embedded Coder features is set to
Yes.

coder.EmbeddedCodeConfig

You can then either import these settings into another project or use the configuration object with the
codegen function -config option to generate code at the command line.

Export Settings by Using the MATLAB Coder App

In the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library), or Executable

(depending on your requirements).
3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify a name for the configuration object.
6 Click Export to Variable.

MATLAB Coder saves the project settings information in a configuration object with the specified
name in the base workspace.

 Share Build Configuration Settings

27-33

Export Settings at the Command Line

At the MATLAB command line, use the -toconfig option with the coder command to export the
code configuration settings stored in a MATLAB Coder project file to a code configuration object. For
example, executing this command returns a code configuration object cfg corresponding to
myProject.prj.

cfg = coder('-toconfig','myProject.prj')

Import Settings
To import the settings saved in a code generation configuration object stored in the base workspace:

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or Executable

(depending on your requirements).
3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify the name of the configuration object.
6 Click Import from Variable.

See Also
coder | coder.config

More About
• “Configure Build Settings” on page 27-13
• “Convert MATLAB Coder Project to MATLAB Script” on page 27-35
• “Convert codegen Command to Equivalent MATLAB Coder Project” on page 27-30

27 Generating C/C++ Code from MATLAB Code

27-34

Convert MATLAB Coder Project to MATLAB Script
After you define input types, you can convert a MATLAB Coder project to the equivalent script of
MATLAB commands. The script reproduces the project in a configuration object and runs the
codegen command. You can:

• Move from a project workflow to a command-line workflow.
• Save the project as a text file that you can share.

You can convert a project using the MATLAB Coder app or the command-line interface.

Project to script conversion does not support entry-point function inputs that are value classes.

Project to script conversion is not supported in MATLAB Online.

Convert a Project Using the MATLAB Coder App
1

On the app toolbar, click , and then select Convert to script.
2 Specify the script name and click Save.

Convert a Project Using the Command-Line Interface
To convert a project to a script using the command-line interface, use the -tocode option of the
coder command. The project file must be on the search path.

For example, to convert the project, myproject.prj to the script named myscript.m use this
command:

coder -tocode myproject -script myscript.m

The coder command overwrites a file that has the same name as the script. If you omit the -script
option, the coder command writes the script to the Command Window.

For more information about the -tocode option, see coder.

Run the Script
1 Make sure that the entry-point functions that are arguments to codegen in the script are on the

search path.
2 Run the script. For example:

 myscript

The following variables appear in the base workspace.

Variable For
cfg Configuration object
ARGS Types of input arguments, if the project has

entry-point function inputs

 Convert MATLAB Coder Project to MATLAB Script

27-35

Variable For
ARG Types of cell array elements, if the project has

cell array inputs. A script can reuse ARG for
different cell array elements

GLOBALS Types and initial values of global variables, if the
project has global variables

cfg, ARGS, ARG, and GLOBALS appear in the workspace only after you run the script. The type of
configuration object depends on the project file settings.

Project File Settings in MATLAB Coder App Code Configuration Object
Build type is MEX. coder.MexCodeConfig
Build type is static library, dynamically linked
library, or executable.

One of the following conditions is true:

• You do not have an Embedded Coder license.
• You have an Embedded Coder license. On the

All Settings tab, Use Embedded Coder
features is set to No.

coder.CodeConfig

Build type is static library, dynamically linked
library, or executable.

You have an Embedded Coder license. On the All
Settings tab, Use Embedded Coder features is
set to Yes.

coder.EmbeddedCodeConfig

You can import the settings from the configuration object cfg into a project. See “Share Build
Configuration Settings” on page 27-33.

For a project that includes fixed-point conversion, project to script conversion generates a pair of
scripts for fixed-point conversion and fixed-point code generation. For an example, see “Convert
Fixed-Point Conversion Project to MATLAB Scripts” on page 21-86.

Special Cases That Generate Additional MAT-File
Suppose that you convert a project file myproject.prj to a script myscript.m. In certain
situations the code generator can produce an additional MAT-file in the current working folder. In
such cases, the generated script loads the MAT-file and uses the stored values to define constant
inputs or constant global variables in the generated code.

This behavior happens if all of these conditions are true:

• The project file myproject.prj was generated by converting a codegen command to an
equivalent MATLAB Coder project. See “Convert codegen Command to Equivalent MATLAB Coder
Project” on page 27-30.

• The original codegen command uses coder.Constant objects to define constant inputs or
constant global variables.

27 Generating C/C++ Code from MATLAB Code

27-36

• One or more of these coder.Constant objects are created from values that are structures, cell
arrays, value classes, or large numeric constants (greater than a certain threshold). The generated
MAT-file stores these values.

Even if all of the preceding conditions are true, you can avoid the creation of the auxiliary MAT-file.
Before generating the script, modify the project file myproject.prj:

• Open myproject.prj in the MATLAB Coder app.
• Navigate to the Define Input Types page.
• Enter the constant values of the inputs or the global variables directly in the app. This action

automatically saves the modified myproject.prj.

See Also
codegen | coder

More About
• “Convert codegen Command to Equivalent MATLAB Coder Project” on page 27-30
• “Share Build Configuration Settings” on page 27-33

 Convert MATLAB Coder Project to MATLAB Script

27-37

Preserve Variable Names in Generated Code
If code readability is more important than reduced memory usage, specify that you want the code
generator to preserve your variable names rather than reuse them in the generated code.

By default, when possible, variables share names and memory in the generated code. The code
generator reuses your variable names for other variables or reuses other variable names for your
variables. For example, for code such as:

if (s>0)
 myvar1 = 0;
 ...
else
 myvar2 = 0;
 ...
end

the generated code can look like this code:

 if (s > 0.0) {
 myvar2 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

When the code generator preserves your variable names, the generated code can look like this code:

 if (s > 0.0) {
 myvar1 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

To specify that you want the code generator to preserve your variable names:

• In a code generation configuration object, set the PreserveVariableNames parameter to
'UserNames'.

• In the MATLAB Coder app, set Preserve variable names to User names.

Preservation of variable names does not prevent an optimization from removing them from the
generated code or prevent the C/C++ compiler from reusing them in the generated binary code.

See Also

More About
• “Reuse Large Arrays and Structures” on page 35-53
• “Configure Build Settings” on page 27-13

27 Generating C/C++ Code from MATLAB Code

27-38

Reserved Keywords
The code generator reserves the use of certain identifiers in the generated code. These identifiers
include C and C++ keywords and C and C++ standard library names. Using these keywords in your
MATLAB code as identifiers or function names might cause the code generator to rename them. If
you do not find variables or functions that have reserved keywords as names in your generated code,
they might have been renamed by the code generator.

Note You can preserve most variable names, apart from the reserved keywords, in your generated
code. See “Preserve Variable Names in Generated Code” on page 27-38.

C Reserved Keywords
_Bool _Complex _Generic _Imaginary
_Noreturn _Static_assert _Thread_local threads
asm auto assert case
char const continue default
complex void time tgmath
ctype iso646 stdatomic stddef
do double else enum
extern float for goto
if inline int long
limits locale stdbool stdio
register restrict return short
signal wctype setjmp string
signed sizeof static struct
single _Alignas _Alignof _Atomic
stdalign inttypes stdarg uchar
stdint math errno wchar
stdlib stdnoreturn break fenv
switch typedef typeof union
true false bool fortran
unsigned while volatile

C++ Reserved Keywords
algorithm cstddef iostream sstream
any cstdint istream stack
array cstdio iterator static_cast
atomic cstdlib limits stdexcept

 Reserved Keywords

27-39

bitset cstring list streambuf
cassert ctgmath locale string_view
catch ctime map strstream
ccomplex cuchar memory system_error
cctype cwchar memory_resource template
cerrno cwctype mutable this
cfenv delete mutex thread
cfloat deque namespace throw
chrono dynamic_cast new try
cinttypes exception numeric tuple
ciso646 execution operator typeid
class explicit optional type_traits
climits export ostream typeindex
clocale filesystem private typeinfo
cmath foreward_list protected typename
codecvt friend public unordered_map
complex fstream queue unordered_set
condition_variable functional random using
const_cast future ratio utility
csetjmp initializer_list regex valarray
csignal inline reinterpret_cast vector
cstdalign iomanip scoped_allocator virtual
cstdarg ios set wchar_t
cstdbool iosfwd shared_mutex

Keywords Reserved for Code Generation
abs fortran localZCE rtNaN
asm HAVESTDIO localZCSV SeedFileBuffer
bool id_t matrix SeedFileBufferLen
boolean_T int_T MODEL single
byte_T int8_T MT TID01EQ
char_T int16_T NCSTATES time_T
cint8_T int32_T NULL true
cint16_T int64_T NUMST TRUE
cint32_T INTEGER_CODE pointer_T uint_T
creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T
creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

27 Generating C/C++ Code from MATLAB Code

27-40

creal64_T localB real_T uint32_T
cuint8_T localC real32_T uint64_T
cuint16_T localDWork real64_T UNUSED_PARAMETER
cuint32_T localP RT USE_RTMODEL
ERT localX RT_MALLOC VCAST_FLUSH_DATA
false localXdis rtInf vector
FALSE localXdot rtMinusInf

Some identifiers from the C/C++ standard libraries such as fprintf, freadf, and I are also
reserved.

If you include these names in your MATLAB code as identifiers, they are renamed in the generated
code by prepending a letter in front of the name. For example, asm might be renamed as b_asm.

This code snippet uses an input and output variable that is named real_T, which is a reserved
keyword for code generation.

function real_T = foo(real_T)
real_T = real_T + 1;
end

In the generated code, the variable real_T is renamed to b_real_T.

void foo(double *b_real_T)
{
 (*b_real_T)++;
}

Reserved Prefixes
MATLAB Coder reserves the prefix eml for global C/C++ functions and variables in generated code.
For example, MATLAB for code generation run-time library function names begin with the prefix
emlrt, such as emlrtCallMATLAB. To avoid naming conflicts, do not name C/C++ functions or
primary MATLAB functions with the prefix eml.

MATLAB Coder Code Replacement Library Keywords
The list of code replacement library (CRL) reserved keywords for your development environment
varies depending on which CRLs currently are registered. Beyond the default ANSI®, ISO, and GNU®

CRLs provided with MATLAB Coder software, additional CRLs might be registered and available for
use if you have installed other products that provide CRLs (for example, a target product), or if you
have used Embedded Coder APIs to create and register custom CRLs.

To generate a list of reserved keywords for the CRLs currently registered in your environment, use
the following MATLAB function:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns a cell array of character vectors that contain CRL keywords. Specifying the
return argument is optional.

 Reserved Keywords

27-41

Note To list the CRLs currently registered in your environment, use the MATLAB command
crviewer.

To generate a list of reserved keywords for the CRL that you are using to generate code, call the
function passing the name of the CRL as displayed in the Code replacement library menu on the
Code Generation > Interface pane of the Configuration Parameters dialog box. For example,
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:
>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

 'exp10'
 'exp10f'
 'acosf'
 'acoshf'
 'asinf'
 'asinhf'
 'atanf'
 'atanhf'
...
 'rt_lu_cplx'
 'rt_lu_cplx_sgl'
 'rt_lu_real'
 'rt_lu_real_sgl'
 'rt_mod_boolean'
 'rt_rem_boolean'
 'strcpy'
 'utAssert'

Note Some of the returned keywords appear with the suffix $N, for example, 'rt_atan2$N'. $N
expands into the suffix _snf only if nonfinite numbers are supported. For example, 'rt_atan2$N'
represents 'rt_atan2_snf' if nonfinite numbers are supported and 'rt_atan2' if nonfinite
numbers are not supported. As a precaution, you should treat both forms of the keyword as reserved.

See Also

More About
• “Preserve Variable Names in Generated Code” on page 27-38
• “Configure Build Settings” on page 27-13

27 Generating C/C++ Code from MATLAB Code

27-42

Specify Properties of Entry-Point Function Inputs
In this section...
“Why You Must Specify Input Properties” on page 27-43
“Properties to Specify” on page 27-43
“Rules for Specifying Properties of Primary Inputs” on page 27-46
“Methods for Defining Properties of Primary Inputs” on page 27-46
“Define Input Properties by Example at the Command Line” on page 27-47
“Specify Constant Inputs at the Command Line” on page 27-49
“Specify Variable-Size Inputs at the Command Line” on page 27-50

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must determine the properties of
all variables in the MATLAB files at compile time. To infer variable properties in MATLAB files,
MATLAB Coder must be able to identify the properties of the inputs to the primary function, also
known as the top-level or entry-point function. Therefore, if your primary function has inputs, you
must specify the properties of these inputs, to MATLAB Coder. If your primary function has no input
parameters, MATLAB Coder can compile your MATLAB file without modification. You do not need to
specify properties of inputs to local functions or external functions called by the primary function.

Note Your primary function cannot be within a package. Create a wrapper function as the primary
function outside the package. Call the desired function within the new function as the primary
function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the generated code, specify
the type. Otherwise, the inputs default to real, scalar doubles.

• When generating code with codegen, you must specify the type of these inputs using the -args
option.

Properties to Specify
If your primary function has inputs, you must specify the following properties for each input.

For Specify properties
 Class Size Complexity numerictype fimath
Fixed-point inputs

 Specify Properties of Entry-Point Function Inputs

27-43

For Specify properties
Each field in a
structure input

Specify properties for each field according to its class

When a primary input is a structure, the code generator treats each field as a separate input.
Therefore, you must specify properties for all fields of a primary structure input in the order
that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values

MATLAB Coder assigns the following default values for properties of primary function inputs.

Property Default
class double
size scalar
complexity real
numerictype No default
fimath MATLAB default fimath object

Specifying Default Values for Structure Fields

In most cases, when you do not explicitly specify values for properties, MATLAB Coder uses defaults
except for structure fields. The only way to name a field in a structure is to set at least one of its
properties. Therefore, you might need to specify default values for properties of structure fields. For
examples, see “Specifying Class and Size of Scalar Structure” on page 27-67 and “Specifying Class
and Size of Structure Array” on page 27-68.

Specifying Default fimath Values for MEX Functions

MEX functions generated with MATLAB Coder use the default fimath value in effect at compile time.
If you do not specify a default fimath value, MATLAB Coder uses the MATLAB default fimath. The
MATLAB factory default has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules” (Fixed-Point Designer).

When running MEX functions that depend on the default fimath value, do not change this value
during your MATLAB session. Otherwise, you receive a run-time warning, alerting you to a mismatch
between the compile-time and run-time fimath values.

For example, suppose that you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

27 Generating C/C++ Code from MATLAB Code

27-44

The function test constructs a fi object without explicitly specifying a fimath object. Therefore,
test relies on the default fimath object in effect at compile time. At the MATLAB prompt, generate
the MEX function text_mex to use the factory setting of the MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Specifying Multiple Signatures for MEX Function

To generate a multisignature MEX function from an entry-point function, provide multiple -args
specifications for the same entry-point function. The generated MEX function works with the multiple
signatures that you provide during code generation. For more information on multisignature MEX,
see “Generate One MEX Function for Multiple Signatures” on page 27-82.

Supported Classes

The following table presents the class names supported by MATLAB Coder.

Class Name Description
logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array

 Specify Properties of Entry-Point Function Inputs

27-45

Class Name Description
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64–bit unsigned integer array
single Single-precision floating-point or fixed-point number

array
double Double-precision floating-point or fixed-point number

array
struct Structure array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules:

• The order of elements in the cell array must correspond to the order in which inputs appear in the
primary function signature. For example, the first element in the cell array defines the properties
of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB function, specify
properties for only the number of arguments that you want in the generated function.

• If the MATLAB function has input arguments, to generate a function that has no input arguments,
pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input numerictype
and fimath properties.

• For each primary function input whose class is struct, specify the properties of each of its fields
in the order that they appear in the structure definition.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages
“Specify Properties of
Entry-Point Function
Inputs Using the App” on
page 24-3

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB code
• MATLAB Coder saves the definitions

in the project file

• Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

27 Generating C/C++ Code from MATLAB Code

27-46

Method Advantages Disadvantages
“Define Input Properties
by Example at the
Command Line” on page
27-47

Note If you define input
properties
programmatically in the
MATLAB file, you cannot
use this method

• Easy to use
• Does not alter original MATLAB code
• Designed for prototyping a function

that has a few primary inputs

• Must be specified at the command
line every time you invoke codegen
(unless you use a script)

• Not efficient for specifying memory-
intensive inputs such as large
structures and arrays

“Define Input Properties
Programmatically in the
MATLAB File” on page 27-
60

• Integrated with MATLAB code; no
need to redefine properties each time
you invoke MATLAB Coder

• Provides documentation of property
specifications in the MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• MATLAB Coder project files do not

currently recognize properties defined
programmatically. If you are using a
project, you must reenter the input
types in the project.

Define Input Properties by Example at the Command Line
• “Command-Line Option -args” on page 27-47
• “Rules for Using the -args Option” on page 27-48
• “Specifying Properties of Primary Inputs by Example at the Command Line” on page 27-48
• “Specifying Properties of Primary Fixed-Point Inputs by Example at the Command Line”

on page 27-48

Command-Line Option -args

The codegen function provides a command-line option -args for specifying the properties of
primary (entry-point) function inputs as a cell array of example values or types. The cell array can be
a variable or literal array of constant values. Using this option, you specify the properties of inputs at
the same time as you generate code for the MATLAB function with codegen.

You can pass the output type from one entry-point function as the input to another. See “Pass an
Entry-Point Function Output as an Input” on page 27-85. For information about specifying cell array
inputs, see “Specify Cell Array Inputs at the Command Line” on page 27-52.

If you have a test function or script that calls the entry-point MATLAB function with the required
types, you can use coder.getArgTypes to determine the types of the function inputs.
coder.getArgTypes returns a cell array of coder.Type objects that you can pass to codegen
using the -args option. See “Specifying General Properties of Primary Inputs” on page 27-65 for
codegen.

You can also create coder.Type objects interactively by using the Coder Type Editor. See “Create
and Edit Input Types by Using the Coder Type Editor” on page 27-69.

 Specify Properties of Entry-Point Function Inputs

27-47

Rules for Using the -args Option

When using the -args command-line option to define properties by example, follow these rules:

• The order of elements in the cell array must correspond to the order in which inputs appear in the
primary function signature. For example, the first element in the cell array defines the properties
of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB function, specify
properties for only the number of arguments that you want in the generated function.

• If the MATLAB function has input arguments, to generate a function that has no input arguments,
pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input numerictype
and fimath properties.

• For each primary function input whose class is struct, specify the properties of each of its fields
in the order that they appear in the structure definition.

Specifying Properties of Primary Inputs by Example at the Command Line

Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;

The following examples show how to specify different properties of the primary inputs u and v by
example at the command line:

• Use a literal cell array of constants to specify that both inputs are real scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned 16-bit, 1-by-4 vector and
input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are real, unsigned 8-bit
integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by Example at the Command Line

To generate a MEX function or C/C++ code for fixed-point MATLAB code, you must install Fixed-Point
Designer software.

Consider a MATLAB function that calculates the square root of a fixed-point number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example, follow these steps:

27 Generating C/C++ Code from MATLAB Code

27-48

1 Define the numerictype properties for x, for example:

T = numerictype('WordLength',32,...
 'FractionLength',23,...
 'Signed',true);

2 Define the fimath properties for x, for example:

F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,...
 'SumFractionLength',23,...
 'ProductMode','SpecifyPrecision',...
 'ProductWordLength',32,...
 'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties that you defined, for
example:

myeg = { fi(4.0,T,F) };
4 Compile the function sqrtfi using the codegen command, passing the variable myeg as the

argument to the -args option, for example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
If you know that your primary inputs do not change at run time, you can reduce overhead in the
generated code by specifying that the primary inputs are constant values. Constant inputs are
commonly used for flags that control how an algorithm executes and values that specify the sizes or
types of data.

To specify that inputs are constants, use the -args command-line option with a coder.Constant
object. To specify that an input is a constant with the size, class, complexity, and value of
constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs

The code generator compiles constant function inputs into the generated code. In the generated C or
C++ code, function signatures do not contain the constant inputs. By default, MEX function
signatures contain the constant inputs. When you call a MEX function, you must provide values that
match the compile-time values. You can control whether a MEX function signature includes constant
inputs and whether the MEX function checks the values that you provide for constant inputs. See
“Constant Input Checking in MEX Functions” on page 27-57.

Specifying a Structure as a Constant Input

Suppose that you define a structure tmp in the MATLAB workspace to specify the dimensions of a
matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

 Specify Properties of Entry-Point Function Inputs

27-49

The following example shows how to specify that primary input u is a double scalar variable and
primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB supports bounded and
unbounded variable-size data for code generation. Bounded variable-size data has fixed upper
bounds. This data can be allocated statically on the stack or dynamically on the heap. Unbounded
variable-size data does not have fixed upper bounds. This data must be allocated on the heap. You can
define inputs to have one or more variable-size dimensions — and specify their upper bounds — using
the -args option and coder.typeof function:

-args {coder.typeof(example_value, size_vector, variable_dims)}

Specifies a variable-size input with:

• Same class and complexity as example_value
• Same size and upper bounds as size_vector
• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size vector for dimensions
with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the following exceptions:

• If the dimension is 1 or 0, which are fixed.
• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and “Generate Code for Variable-Size Data” on page 27-
98.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector A and stores them in
a vector B:

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))
 B = ones(1,numel(A)/n);
 k = 1;
 for i = 1 : numel(A)/n
 B(i) = mean(A(k + (0:n-1)));
 k = k + n;
 end
else
 B = zeros(1,0);
 error('n <= 0 or does not divide number of elements evenly');
end

27 Generating C/C++ Code from MATLAB Code

27-50

2 Specify the first input A as a vector of double values. Its first dimension stays fixed in size and its
second dimension can grow to an upper bound of 100. Specify the second input n as a double
scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}
3 As an alternative, assign the coder.typeof expression to a MATLAB variable, then pass the

variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

See Also

More About
• “Define String Scalar Inputs” on page 5-17
• “Specify Objects as Inputs at the Command Line” on page 15-27
• “Specify Cell Array Inputs at the Command Line” on page 27-52
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate” on page 19-3
• “Pass an Entry-Point Function Output as an Input” on page 27-85

 Specify Properties of Entry-Point Function Inputs

27-51

Specify Cell Array Inputs at the Command Line
To specify cell array inputs at the command line, use the same methods that you use for other types
of inputs. You can:

• Provide an example cell array input to the -args option of the codegen command.
• Provide a coder.CellType object to the -args option of the codegen command. To create a

coder.CellType object, use coder.typeof.
• Use coder.Constant to specify a constant cell array input.

For code generation, cell arrays are classified as homogeneous or heterogeneous. See “Code
Generation for Cell Arrays” on page 9-2. When you provide an example cell array to codegen or
coder.typeof, the function determines whether the cell array type is homogeneous or
heterogeneous. If the cell array elements have the same class and size, coder.typeof returns a
homogeneous cell array type. If the elements have different classes, coder.typeof returns a
heterogeneous cell array type. For some cell arrays, the classification as homogeneous or
heterogeneous is ambiguous. For example, the type for {1 [2 3]} can be a 1x2 heterogeneous type.
The first element is double and the second element is 1x2 double. The type can also be a 1x3
homogeneous type in which the elements have class double and size 1x:2. For these ambiguous cases,
coder.typeof uses heuristics to classify the type as homogeneous or heterogeneous. If you want a
different classification, use the coder.CellType makeHomogeneous or makeHeterogeneous
methods. The makeHomogeneous method makes a homogeneous copy of a type. The
makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the classification as
homogeneous and heterogeneous, respectively. You cannot later use one of these methods to create a
copy that has a different classification.

If you have a test file, you can use coder.getArgTypes to determine input types. In the output cell
array of types, for cell array inputs, coder.getArgTypes returns a coder.CellType object. If you
want a different classification (homogeneous or heterogeneous), use the makeHomogeneous or
makeHeterogeneous methods.

Specify Cell Array Inputs by Example
To specify a cell array input by example, provide an example cell array in the -args option of the
codegen command.

For example:

• To specify a 1x3 cell array whose elements have class double:

codegen myfunction -args {{1 2 3}} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second element has class

double:

codegen myfunction -args {{'a', 1}} -report

The input argument is a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x1 double.

27 Generating C/C++ Code from MATLAB Code

27-52

Specify the Type of the Cell Array Input
To specify the type of a cell array input, use coder.typeof to create a coder.CellType object.
Pass the coder.CellType object to the -args option of the codegen command.

For example:

• To specify a 1x3 cell array whose elements have class double:

t = coder.typeof({1 2 3});
codegen myfunction -args {t} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second element has class

double:

t = coder.typeof({'a', 1});
codegen myfunction -args {t}

The input argument is a 1x2 heterogeneous cell array whose first element is a 1x1 char and whose
second element is a 1x1 double.

You can also use the advanced function coder.newtype to create a coder.CellType object.

Make a Homogeneous Copy of a Type
If coder.typeof returns a heterogeneous cell array type, but you want a homogeneous type, use the
makeHomogeneous method to make a homogeneous copy of the type.

The following code creates a heterogeneous type.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

To make a homogeneous copy of the type, use:

t = makeHomogeneous(t)

t =

coder.CellType
 1×2 locked homogeneous cell
 base: 1×:2 double

Alternatively, use this notation:

t = makeHomogeneous(coder.typeof({1 [2 3]}))

t =

coder.CellType

 Specify Cell Array Inputs at the Command Line

27-53

 1×2 locked homogeneous cell
 base: 1×:2 double

The classification as homogeneous is locked (permanent). You cannot later use the
makeHeterogeneous method to make a heterogeneous copy of the type.

If the elements of a type have different classes, such as char and double, you cannot use
makeHomogeneous to make a homogeneous copy of the type.

If you use coder.cstructname to specify a name for the structure type that represents a type in the
generated code, you cannot create a homogeneous copy of the type.

Make a Heterogeneous Copy of a Type
If coder.typeof returns a homogeneous cell array type, but you want a heterogeneous type, use the
makeHeterogeneous method to make a heterogeneous copy of the type.

The following code creates a homogeneous type.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

To make the type heterogeneous, use:

t = makeHeterogeneous(t)

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

Alternatively, use this notation:

t = makeHeterogeneous(coder.typeof({1 2 3}))

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

The classification as heterogeneous is locked (permanent). You cannot later use the
makeHomogeneous method to make a homogeneous copy of the type.

If a type is variable size, you cannot use makeHeterogeneous to make a heterogeneous copy of it.

27 Generating C/C++ Code from MATLAB Code

27-54

Specify Variable-Size Cell Array Inputs
You can specify variable-size cell array inputs in the following ways:

• In the coder.typeof call.

For example, to specify a variable-size cell array whose first dimension is fixed and whose second
dimension has an upper bound of 5:

t = coder.typeof({1}, [1 5], [0 1])

t =

coder.CellType
 1x:5 homogeneous cell
 base: 1x1 double

For elements with the same classes, but different sizes, you can the use coder.typeof size and
variable dimensions arguments to create a variable-size homogeneous cell array type. For
example, the following code does not use the size and variable dimensions arguments. This code
creates a type for a heterogeneous cell array.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

The following code, that uses the size and dimensions arguments, creates a type for a variable-size
homogeneous type cell array:

t = coder.typeof({1 [2 3]}, [1 5], [0 1])

t =

coder.CellType
 1×:5 locked homogeneous cell
 base: 1×:2 double

• Use coder.resize.

For example, to specify a variable-size cell array whose first dimension is fixed and whose second
dimension has an upper bound of 5:

t = coder.typeof({1});
t = coder.resize(t, [1 5], [0,1])

t =

coder.CellType
 1x5 homogeneous cell
 base: 1x1 double

You cannot use coder.resize with a heterogeneous cell array type.

 Specify Cell Array Inputs at the Command Line

27-55

Specify Type Name for Heterogeneous Cell Array Inputs
A heterogeneous cell array is represented in the generated code as a structure. To specify the name
of the structure type in the generated code, use coder.cstructname.

For example, to specify the name myname for the cell array type in the generated code:

t = coder.typeof({'a', 1})
t = coder.cstructname(t, 'myname')

t =

coder.CellType
 1×2 locked heterogeneous cell myname
 f1: 1×1 char
 f2: 1×1 double

If you use coder.cstructname with a homogeneous cell array type, coder.cstructname returns
a heterogeneous copy of the type. However, it is a best practice to use the makeHeterogeneous
method of the coder.CellType object to make a heterogeneous copy of a homogeneous cell array
type. Then, you can use coder.cstructname with the heterogeneous copy of the type.

Specify Constant Cell Array Inputs
To specify that a cell array input is constant, use the coder.Constant function with the -args
option of the codegen command. For example:

codegen myfunction -args {coder.Constant({'red', 1 'green', 2, 'blue', 3})} -report

The input is a 1x6 heterogeneous cell array. The sizes and classes of the elements are:

• 1x3 char
• 1x1 double
• 1x5 char
• 1x1 double
• 1x4 char
• 1x1 double

See Also
coder.CellType | coder.typeof | coder.getArgTypes | coder.resize | coder.newtype

Related Examples
• “Define Input Properties by Example at the Command Line” on page 27-47
• “Specify Constant Inputs at the Command Line” on page 27-49

More About
• “Code Generation for Cell Arrays” on page 9-2

27 Generating C/C++ Code from MATLAB Code

27-56

Constant Input Checking in MEX Functions
When you specify a constant input argument for generation of a MEX function, by default the
generated MEX function signature includes this argument. When you call the MEX function, it checks
that the value that you provide for the constant argument is the value specified at code generation
time.

To generate a MEX function that does not check constant input values or that does not include
constant input arguments, modify the constant input checking configuration parameter:

• If you use the MATLAB Coder app:

1 On the Generate Code page, set Build type to MEX.
2 Click More Settings.
3 On the All Settings tab, set Constant Inputs to one of the values in the table.

• If you use codegen, in a MEX configuration object, set the ConstantInputs property to one of
the values in the table.

Constant Inputs (App) ConstantInputs (Configuration
Object)

Description

Check values at run time 'CheckValues' This value is the default value.

When you call the MEX function, it
checks that the value you provide
for a constant input argument is the
value specified at code generation
time.

You can call the MEX function and
the original MATLAB function with
the same arguments. Therefore, you
can use the same test file for both
functions.

Checking the values can add to the
execution time of the MEX function.

Ignore input value 'IgnoreValues' When you call the MEX function, it
ignores the value that you provide
for a constant input argument. It
uses the value specified at code
generation time.

You can use the same test file
without the overhead of checking
the constant argument values.

 Constant Input Checking in MEX Functions

27-57

Constant Inputs (App) ConstantInputs (Configuration
Object)

Description

Remove from MEX signature 'Remove' The code generator removes
constant input arguments from the
MEX function signature. When you
call the MEX function, you do not
provide a value for a constant input
argument.

This option is for backward
compatibility.

Control Whether a MEX Function Checks the Value of a Constant Input
This example shows how to use the ConstantInputs parameter to control whether a MEX function
checks the value of a constant input argument.

Write a function myadd that returns the sum of its inputs.

function c = myadd(a,b)
c = a + b;
end

Create a configuration object for MEX code generation.

mexcfg = coder.config('mex');

Look at the value of the constant input checking configuration parameter, ConstantInputs.

mexcfg.ConstantInputs

ans =

 'CheckValues'

It has the default value, CheckValues.

Generate a MEX function myadd_mex. Specify that the first argument is a double scalar and that the
second argument is a constant with value 3.

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Code generation successful.

Call myadd_mex. You must provide the input 3 for the second argument.

myadd_mex(1,3)

ans =

27 Generating C/C++ Code from MATLAB Code

27-58

 4

Modify ConstantInputs so that the MEX function does not check that the input value matches the
value specified at code generation time.

mexcfg.ConstantInputs = 'IgnoreValues';

Generate myadd_mex.

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Code generation successful.

Call myadd_mex with a constant input value other than 3, for example, 5.

myadd_mex(1,5)

ans =

 4

The MEX function ignores the input value 5. It uses the value 3, which is the value that you specified
for the constant argument b when you generated myadd_mex.

Modify ConstantInputs so that the MEX function signature does not include the constant input
argument.

mexcfg.ConstantInputs = 'Remove';

Generate myadd_mex.

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Code generation successful.

Call myadd_mex. Provide the value 1 for a. Do not provide a value for the constant argument b.

myadd_mex(1)

ans =

 4

See Also
coder.MexCodeConfig

More About
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Configure Build Settings” on page 27-13

 Constant Input Checking in MEX Functions

27-59

Define Input Properties Programmatically in the MATLAB File
For code generation, you can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB file.

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying the class, size, and
complexity of primary function inputs.

When specifying input properties using the assert function, use one of the following methods. Use
the exact syntax that is provided; do not modify it.

• “Specify Any Class” on page 27-60
• “Specify fi Class” on page 27-60
• “Specify Structure Class” on page 27-61
• “Specify Cell Array Class” on page 27-61
• “Specify Fixed Size” on page 27-61
• “Specify Scalar Size” on page 27-62
• “Specify Upper Bounds for Variable-Size Inputs” on page 27-62
• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 27-62
• “Specify Size of Individual Dimensions” on page 27-63
• “Specify Real Input” on page 27-63
• “Specify Complex Input” on page 27-63
• “Specify numerictype of Fixed-Point Input” on page 27-63
• “Specify fimath of Fixed-Point Input” on page 27-64
• “Specify Multiple Properties of Input” on page 27-64

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For example, to set the class of
input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object). For example, to
set the class of input U to fi, call:

...
assert(isfi(U));
...

27 Generating C/C++ Code from MATLAB Code

27-60

or

...
assert(isa(U,'embedded.fi'));
...

You must specify both the fi class and the numerictype. See “Specify numerictype of Fixed-Point
Input” on page 27-63. You can also set the fimath properties, see “Specify fimath of Fixed-Point
Input” on page 27-64. If you do not set the fimath properties, codegen uses the MATLAB default
fimath value.

Specify Structure Class
assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For example, to set the
class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the properties of all fields in
the order that they appear in the structure definition.

Specify Cell Array Class
assert(iscell(param))
assert(isa(param, 'cell'))

Sets the input parameter param to the MATLAB class cell (cell array). For example, to set the class
of input C to a cell, call:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

To specify the properties of cell array elements, see “Specifying Properties of Cell Arrays” on page
27-66.

Specify Fixed Size
assert (all (size (param) == [dims]))

Sets the input parameter param to the size that dimensions dims specifies. For example, to set the
size of input U to a 3-by-2 matrix, call:

 Define Input Properties Programmatically in the MATLAB File

27-61

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set the upper-bound size
of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));
assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound size of
each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same value.
• Bounds must be nonnegative.

To fix the size of the first dimension of input U to 3 and set the second dimension as variable size with
upper bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

27 Generating C/C++ Code from MATLAB Code

27-62

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions and all dimensions simultaneously. You can also specify
individual dimensions instead of specifying all dimensions simultaneously. The following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Sets the upper-bound size of dimension k of input parameter param. To set the upper-bound size of
the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the numerictype object T. For
example, to specify the numerictype property of fixed-point input U as a signed numerictype
object T with 32-bit word length and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

 Define Input Properties Programmatically in the MATLAB File

27-63

Specifying the numerictype for a variable does not automatically specify that the variable is fixed
point. You must specify both the fi class and the numerictype.

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For example, to
specify the fimath property of fixed-point input U so that it saturates on integer overflow, use the
following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the MATLAB default
fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&
 function2 (params) &&
 function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single assert function call.
For example, the following code specifies that input U is a double, complex, 3-by-3 matrix, and input V
is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&
 ~isreal(U) &&
 all(size(U) == [3 3]) &&
 isa(V,'uint16'));
...

Rules for Using assert Function
When using the assert function to specify the properties of primary function inputs, follow these
rules:

• Call assert functions at the beginning of the primary function, before control-flow operations
such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while, and switch
statements.

• For a fixed-point input, you must specify both the fi class and the numerictype. See “Specify
numerictype of Fixed-Point Input” on page 27-63. You can also set the fimath properties. See
“Specify fimath of Fixed-Point Input” on page 27-64. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

27 Generating C/C++ Code from MATLAB Code

27-64

• If you set the class of an input parameter to struct, you must specify the class, size, and
complexity of all fields in the order that they appear in the structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound size of
each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the same

value.
• Bounds must be nonnegative.

• If you specify individual dimensions, the following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram takes two inputs:
pennywhistle and win. The code specifies the following properties for these inputs.

Input Property Value
pennywhistle class int16

size 220500-by-1 vector
complexity real (by default)

win class double
size 1024-by-1 vector
complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs inside assert
commands:

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double') && all(size(win) == [nfft 1]));
...

 Define Input Properties Programmatically in the MATLAB File

27-65

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point input x. The
code specifies the following properties for this input.

Property Value
class fi
numerictype numerictype object T, as specified in the primary function
fimath fimath object F, as specified in the primary function
size scalar
complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...
 'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',23,...
 'ProductMode','SpecifyPrecision',...
 'ProductWordLength',32,'ProductFractionLength',23);
assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

You must specify both the fi class and the numerictype.

Specifying Properties of Cell Arrays
To specify the class cell (cell array), use one of the following syntaxes:

assert(iscell(param))
assert(isa(param, 'cell'))

For example, to set the class of input C to cell, use:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

You can also specify the size of the cell array and the properties of the cell array elements. The
number of elements that you specify determines whether the cell array is homogeneous or
heterogeneous. See “Code Generation for Cell Arrays” on page 9-2.

If you specify the properties of the first element only, the cell array is homogeneous. For example, the
following code specifies that C is a 1x3 homogeneous cell array whose elements are 1x1 double.

27 Generating C/C++ Code from MATLAB Code

27-66

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1 3]));
assert(isa(C{1}, 'double'));
...

If you specify the properties of the first element only, but also assign a structure type name to the cell
array, the cell array is heterogeneous. Each element has the properties of the first element. For
example, the following code specifies that C is a 1x3 heterogeneous cell array. Each element is a 1x1
double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1 3]));
assert(isa(C{1}, 'double'));
coder.cstructname(C, 'myname');
...

If you specify the properties of each element, the cell array is heterogeneous. For example, the
following code specifies a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x3 double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1 2]));
assert(isa(C{1}, 'char'));
assert(all(size(C{2}) == [1 3]));
assert(isa(C{2}, 'double'));
...

If you specify more than one element, you cannot specify that the cell array is variable size, even if all
elements have the same properties. For example, the following code specifies a variable-size cell
array. Because the code specifies the properties of the first and second elements, code generation
fails.

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1 2]));
assert(isa(C{1}, 'double'));
assert(isa(C{2}, 'double'));
...

In the previous example, if you specify the first element only, you can specify that the cell array is
variable-size. For example:

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1 2]));
assert(isa(C{1}, 'double'));
...

Specifying Class and Size of Scalar Structure
Suppose that you define S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

 Define Input Properties Programmatically in the MATLAB File

27-67

The following code specifies the properties of the function input S and its fields:

function y = fcn(S) %#codegen

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you do not explicitly specify values for properties, MATLAB Coder uses defaults
—except for structure fields. The only way to name a field in a structure is to set at least one of its
properties. At a minimum, you must specify the class of a structure field.

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array for specifying the
properties of each field. For example, assume that you have defined S as the following 1-by-2 array of
MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S by using the first
element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its properties. At a minimum, you
must specify the class of all fields.

27 Generating C/C++ Code from MATLAB Code

27-68

Create and Edit Input Types by Using the Coder Type Editor
C/C++ source code includes type declarations for all variables. MATLAB code does not include
explicit type declarations. To allow the generation of C/C++ code with specific types, you must
specify the properties (class, size, and complexity) of all input variables to the MATLAB entry-point
functions during C/C++ or MEX code generation. An entry-point function is a top-level MATLAB
function from which you generate code. The code generator uses these input properties to determine
the properties of all variables in the generated code. Different input type specifications can cause the
same MATLAB code to produce different versions of the generated code.

When you generate C/C++ or MEX code at the command line, one of the ways to specify the
properties of an input argument is by using a coder.Type object that contains information about
class, size, and complexity (and sometimes other properties) of the argument. You can create and edit
coder.Type objects programmatically at the command line, or interactively by using the Coder Type
Editor.

For more information about creating coder.Type objects at the command line, see coder.typeof
and coder.newtype.

Note To create and edit composite types such as structures and cell arrays, or types that have many
customizable parameters such as embedded.fi, use the Coder Type Editor. Examples of such types
are shown later in this topic.

Open the Coder Type Editor
To launch the Coder Type Editor, do one of the following:

• Launch an empty type editor by using the coderTypeEditor command:

coderTypeEditor
• Open the type editor pre-populated with coder.Type objects corresponding to the workspace

variables var1, var2, and var3 by typing:

coderTypeEditor var1 var2 var3
• Open a coder.Type object myType that already exists in your base MATLAB workspace:

• Double click myType in the workspace.
• Display myType at the command line and click the Edit Type Object link that appears at the

end of the display.
• Use this command at the MATLAB command line:

open myType

Common Editor Actions
By using the toolstrip buttons in the type editor, you can perform these actions:

• Create a new type by clicking New Type and specifying the type, size, complexity, and other
properties of the coder.Type object.

• Convert an existing variable to a type by clicking From Variable and specifying a variable that
already exists in the base workspace.

 Create and Edit Input Types by Using the Coder Type Editor

27-69

• Create a new type from an example value by clicking From Example and entering MATLAB code
that the software converts to a coder.Type object.

• Load all coder.Type objects from the base workspace to the Type Browser pane of the type
editor by clicking Load All.

• Edit an existing type by selecting it in the Type Browser and modifying its properties.
• Save all coder.Type objects in the type editor by clicking Save All.
• Remove a selected type from Type Browser by clicking Delete. Alternatively, remove all types

from the Type Browser by clicking Delete > Delete all. Deleting a coder.Type object from the
Type Browser does not delete the object from the base MATLAB workspace.

• Export a MATLAB script that contains the code to recreate all the types by clicking Share >
MATLAB Script. Or, create a MAT file that contains all the types by clicking Share > MAT File.

•
Undo and redo your last action in the type editor by using the buttons.

These are some additional actions that you can perform in the Coder Type Editor:

• In both the Type Browser pane and the Type Properties pane, copy a type object and paste it
either as a new type or a field of an existing structure type. You can also copy the properties of
one existing type into another existing type.

• Change the order of fields of a structure type. View the type in the properties pane and use drag-
and-drop action.

Type Browser Pane
The Type Browser pane shows the name, class, and size of the coder.Type objects that are
currently loaded in the type editor. For composite types such as structures, cell arrays, or classes, you
can expand the display of the code.Type object in the Type Browser pane. The expanded view
shows the name, class, and complexity of the individual fields or properties of the composite type.

27 Generating C/C++ Code from MATLAB Code

27-70

Visual Indicators on the Type Browser

Indicator Description
expander The type has fields or properties that you can see

by clicking the expander.
{:} Homogeneous cell array (all elements have the

same properties).
{n} nth element of a heterogeneous cell array.
:n Variable-size dimension with an upper bound of n.
:inf Variable-size dimension that is unbounded.

Type Properties Pane
The type properties pane displays the class (data type), size, and other properties of the coder.Type
object that is currently selected in the Type Browser. For composite types such as structures and
classes, this pane also shows the name, class, and size of each constituent field or property.

To edit the name, class, and size of a field in place, double-click the item.

 Create and Edit Input Types by Using the Coder Type Editor

27-71

Alternatively, click a field. The view in the type editor pane changes to display the properties of that
field. Edit name, class(data type), size, or other properties in the pane.

The breadcrumb shows the nested path to the field that is currently open in the type properties pane.
Click a field in the breadcrumb to display it in the pane. You can also edit the name of a type directly
in the breadcrumb.

MATLAB Code Pane
The MATLAB Code pane displays the MATLAB script that creates the coder.Type object that is
currently selected in the Type Browser. To automate the creation of this type, copy this script and
include it in your build script.

27 Generating C/C++ Code from MATLAB Code

27-72

See Also
coderTypeEditor | coder | coder.typeof | coder.newtype

More About
• “Specify Properties of Entry-Point Function Inputs” on page 27-43

 Create and Edit Input Types by Using the Coder Type Editor

27-73

Speed Up Compilation by Generating Only Code
To speed up compilation, you can generate only code. When you generate only code, MATLAB Coder
does not invoke the make command or generate compiled object code. When you iterate between
modifying MATLAB code and generating C/C++ code, and you want to inspect the generated code,
using this option saves time.

To select this option in the MATLAB Coder app:

1 On the Generate Code page, click the Generate arrow to open the Generate dialog box.
2 Set Build Type to Static Library, Dynamic Library, or Executable.
3 Select the Generate code only check box.

To set this option at the command line, use the codegen -c option. For example, to generate only
code for a function foo:

codegen -c foo

See Also
codegen

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 35-71

27 Generating C/C++ Code from MATLAB Code

27-74

Disable Creation of the Code Generation Report
If you disable creation of the code generation report, you can speed up code generation, unless an
error occurs. If an error occurs, the code generator creates a report even if you disabled creation of
the report.

To disable creation of the code generation report:

• In the MATLAB Coder app, in the project build settings, on the Debugging tab, clear the Always
create a report check box.

• At the command line, when you generate code, do not use the -report option. If you specify a
code configuration object, make sure that the GenerateReport property is set to false.

By default, creation of the code generation report is disabled.

See Also

More About
• “Configure Build Settings” on page 27-13
• “Code Generation Reports” on page 29-7

 Disable Creation of the Code Generation Report

27-75

Paths and File Infrastructure Setup
In this section...
“Compile Path Search Order” on page 27-76
“Specify Folders to Search for Custom Code” on page 27-76
“Naming Conventions” on page 27-76

Compile Path Search Order
MATLAB Coder resolves MATLAB functions by searching first on the code generation path and then
on the MATLAB path. The code generation path contains the current folder and the code generation
libraries. By default, unless MATLAB Coder determines that a function should be extrinsic or you
explicitly declare the function to be extrinsic, MATLAB Coder tries to compile and generate code for
functions it finds on the path. MATLAB Coder does not compile extrinsic functions, but rather
dispatches them to MATLAB for execution. See “Resolution of Function Calls for Code Generation” on
page 20-2.

Specify Folders to Search for Custom Code
If you want to integrate custom code — such as source, header, and library files — with the generated
code, you can specify additional folder to search. The following table describes how to specify these
search paths. The path should not contain:

• Spaces (Spaces can lead to code generation failures in certain operating system configurations)
• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters

To specify additional
folders

Do this

Using the MATLAB Coder
app

1 To open the Generate dialog box, on the Generate Code page,
click the Generate arrow .

2 Click More Settings.
3 On the Paths tab, in the Search paths field, either browse to add

a folder to the search path or enter the full path. The search path
must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions
MATLAB Coder enforces naming conventions for MATLAB functions and generated files.

Conventions for Naming Generated Files

The following table describes how MATLAB Coder names generated files. MATLAB Coder follows
MATLAB conventions by providing platform-specific extensions for MEX files.

27 Generating C/C++ Code from MATLAB Code

27-76

Platform MEX File
Extension

MATLAB Coder
Extension for
Static Library

MATLAB Coder
Extension for
Shared Library

MATLAB Coder
Executable
Extension

Linux (64-bit) .mexa64 .a .so None
Mac (64-bit) .mexmaci64 .a .dylib None
Windows (64-bit) .mexw64 .lib .dll

Also, generates an
import library with
a .lib extension
that is required for
linking against
the .dll.

.exe

See Also
codegen

More About
• “Resolution of Function Calls for Code Generation” on page 20-2
• “Reserved Keywords” on page 27-39

 Paths and File Infrastructure Setup

27-77

Generate Code for Multiple Entry-Point Functions
In this section...
“Generating Code for Multiple Entry-Point Functions” on page 27-78
“Call a Single Entry-Point Function from a MEX Function” on page 27-79
“Generate Code for More Than One Entry-Point Function Using the MATLAB Coder App” on page
27-79

An entry-point function is a top-level MATLAB function from which you generate code. For many
applications, you may only need to generate code for a single entry-point function. You can also
generate C/C++ code from multiple entry-point functions at the same time. By using multiple entry-
point functions, you can:

• Generate multi-functional C/C++ libraries that contain larger levels of functionality than if you
were to generate independent libraries for each entry-point function.

• Generate code that shares code more efficiently when multiple entry-point functions rely on the
same subfunctions.

• Generate library functions that can communicate using shared memory, for example, when they
use the same global variables.

As a best practice, generate a MEX function to validate entry-point interactions in MATLAB before
generating a C/C++ library.

Generating Code for Multiple Entry-Point Functions
To generate code for more than one entry-point function, use the syntax from the codegen reference
page. By default, for MEX code generation, codegen:

• Generates a MEX function in the current folder. Only a single MEX function is generated when you
specify multiple entry-point functions. To call a single entry-point function from a generated MEX
function, see “Call a Single Entry-Point Function from a MEX Function” on page 27-79.

• Names the MEX function name_mex. name is the name of the first entry-point function from an
alphabetical order.

• Stores generated files in the subfolder codegen/mex/subfolder. subfolder is the name of the
first entry-point function from a left-to-right order (as they are entered after the codegen
command).

You can specify the output file name and subfolder name using the -o option:

codegen -o myOutputFileName fun1 fun2

In this case, codegen generates a MEX function named myOutputFileName in the current folder
and stores generated files in the subfolder codegen/mex/myOutputFileName.

Example: Generating Code for Two Entry-Point Functions

Generate a MEX function for two entry-point functions, ep1 and ep2. Function ep1 takes one input
and ep2 takes two inputs. Using the -o option, name the generated MEX function sharedmex:

codegen -o mySharedMex ep1 -args {single(0)} ep2 -args {0,zeros(1,1024)}

27 Generating C/C++ Code from MATLAB Code

27-78

codegen generates a MEX function named mySharedMex.mex in the current folder and stores
generated files in the subfolder codegen/mex/mySharedMex.

To generate and compile standalone library code, use the -config:lib option.

codegen -config:lib -o mySharedLib ep1 -args single(0) ep2 -args {0,zeros(1,1024)}

The codegen command generates the C/C++ library code in the codegen/lib/mySharedLib
folder.

To use the output type from one entry-point function as the input type to another, see “Pass an Entry-
Point Function Output as an Input” on page 27-85. For information on viewing entry-point functions
in the code generation report, see “Code Generation Reports” on page 29-7.

Call a Single Entry-Point Function from a MEX Function
Suppose that you have a MEX function myMex generated from multiple entry-point functions, fun1,
fun2, …, funN. You can call a single entry-point function, fun_i, by using this syntax:

myMex('fun_i',param1,..,paramM)

Here the MATLAB function signature for fun_i is fun_i(param1,..,paramM).

For example, consider the MEX function, mySharedMex, that has entry-point functions ep1 and ep2.
To call ep1 with an input parameter u, enter:

mySharedMex('ep1',u)

To call ep2 with input parameters v and x, enter:

mySharedMex('ep2',v,x)

Generate Code for More Than One Entry-Point Function Using the
MATLAB Coder App
This example shows how to generate code for multiple entry-point functions using the MATLAB Coder
app.

Create the Entry-Point Functions

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 In the same local writable folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

Create the Test File

In the folder that contains ep1.m and ep2.m, create a MATLAB file, ep_test.m, that calls ep1 and
ep2 with example inputs.

 Generate Code for Multiple Entry-Point Functions

27-79

function [y, y1] = ep_test
y = ep1(single(2));
y1 = ep2(double(3), double(4));

Open the MATLAB Coder App

On the MATLAB toolstrip Apps tab, under Code Generation, click the MATLAB Coder app icon.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function ep1.

The app creates a project with the default name ep1.prj in the current folder. To avoid code
generation errors, you must store the project file and all entry-point MATLAB function files in the
same folder.

2 To add ep2 to the list of entry-point functions, click Add Entry-Point Function. Type or select
the name of the entry-point function ep2.

3 To go to the Define Input Types step, click Next. The app analyzes the functions for coding
issues and code generation readiness. If the app identifies issues, it opens the Review Code
Generation Readiness page where you can review and fix issues. In this example, because the
app does not detect issues, it opens the Define Input Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the properties of all
variables in the MATLAB files. You must specify the properties of all entry-point function inputs. From
the properties of the entry-point function inputs, MATLAB Coder can infer the properties of all
variables in the MATLAB files.

Specify a test file that MATLAB Coder can use to automatically define types:

1 Enter or select the test file ep_test.m.
2 Click Autodefine Input Types.

The test file, ep_test.m, calls the entry-point functions ep1 and ep2 with the example input
types. MATLAB Coder infers that for ep1, input u is single(1x1). For ep2, u and v are
double(1x1).

3 To go to the Check for Run-Time Issues step, click Next.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point functions, runs the
MEX function, and reports issues. This step is optional. However, it is a best practice to perform this
step. You can detect and fix run-time errors that are harder to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues arrow .

The app populates the test file field with ep_test, the test file that you used to define the input
types.

2 Click Check for Issues.

The app generates a MEX function named ep1_mex for ep1 and ep2. It runs the test file
ep_test replacing calls to ep1 and ep2 with calls to the MEX function. If the app detects issues

27 Generating C/C++ Code from MATLAB Code

27-80

during the MEX function generation or execution, it provides warning and error messages. To
navigate to the problematic code and fix the issue, click these messages. In this example, the app
does not detect issues.

3 To go to the Generate Code step, click Next.

Generate MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Verify that the Output file name is ep1_mex. By default, the app uses the name of the

alphabetically first entry-point function.
4 Click Generate.

MATLAB Coder builds the project. It generates a MEX function, ep1_mex, in the current folder.
MATLAB Coder also generates other supporting files in a subfolder called codegen/mex/
ep1_mex. MATLAB Coder uses the name of the MATLAB function as the root name for the
generated files. It creates a platform-specific extension for the MEX file, as described in “Naming
Conventions” on page 27-76.

You can now test your MEX function in MATLAB. See “Call a Single Entry-Point Function from a
MEX Function” on page 27-79.

If you generate a static library for ep1 and ep2, MATLAB Coder builds the project and generates
a C library, ep1, and supporting files in the default folder, codegen/lib/ep1.

See Also
codegen | coder.OutputType

More About
• “Pass an Entry-Point Function Output as an Input” on page 27-85
• “Specify Properties of Entry-Point Function Inputs” on page 27-43

 Generate Code for Multiple Entry-Point Functions

27-81

Generate One MEX Function for Multiple Signatures
In this section...
“Generate Multisignature MEX Function for a Single Entry-Point Function” on page 27-82
“Generate Multisignature MEX Function for Multiple Entry-Point Functions” on page 27-83

An entry-point function is a top-level MATLAB function from which you generate code. If your entry-
point function has inputs, you must specify the properties of the inputs to generate a MEX function.
In this case, the generated MEX function works only with the signature of the entry-point function
that you specify during code generation.

If your entry-point function supports multiple signatures, you can generate a single MEX function
instead of generating a separate MEX function for each signature. The generated MEX function
works with the multiple signatures provided during code generation.

By using multisignature MEX functionality, you can:

• Generate one MEX function that supports the multiple signatures that you specify in the entry-
point function.

• Reduce the overhead involved in generating and using separate MEX functions for each signature
of your entry-point function.

• Achieve MATLAB function-like behavior in the generated MEX function.

Generate Multisignature MEX Function for a Single Entry-Point
Function
To generate a multisignature MEX function, consider this function myAdd:

function y = myAdd(a,b)
%#codegen
y = a+b;
end

Suppose that you want to generate a MEX function from myAdd that works with three different data
types: double, int8, and vector of doubles. Specify the three arguments as: {1,2},
{int8(2), int8(3)}, and {1:10, 1:10}. You specify the entry-point function followed by a -
args for each signature of the entry-point function.

To generate code for myAdd function, at the MATLAB command prompt, run this codegen command:
codegen -config:mex myAdd.m -args {1,2} -args {int8(2),int8(3)} -args {1:10,1:10} -report

This syntax generates a single MEX function myAdd_mex for the signatures specified in the codegen
command.

At the command prompt, call the generated MEX function myAdd_mex. Make sure that the values you
pass to myAdd_mex match the input properties that you specified in the codegen command.

myAdd_mex(3,4)

ans =

 7

27 Generating C/C++ Code from MATLAB Code

27-82

myAdd_mex(int8(5),int8(6))

ans =

 int8

 11

myAdd_mex(1:10,2:11)

ans =

 3 5 7 9 11 13 15 17 19 21

Running the MATLAB function myAdd with these input values produces the same output. These test
cases verify that myAdd and myAdd_mex have the same behavior.

Generate Multisignature MEX Function for Multiple Entry-Point
Functions
During code generation, you can also generate one MEX function for multiple entry-point functions
containing multiple signatures.

Suppose that you have two entry-point functions myAdd and myMul. The first entry-point function,
myAdd returns the sum of two values:

function y = myAdd(a,b)
%#codegen
y = a+b;
end

The second entry-point function, myMul returns the multiplication of two values:

function y = myMul(a,b)
%#codegen
y = a*b;
end

You specify the entry-point function followed by a -args for each signature of the entry-point
function. Consider that the function myAdd supports the input types double and int8. Specify these
arguments as: {1,2} and {int8(1), int8(2)}. Similarly, if the function myMul supports the input
types double and int16, specify these arguments as: {1,2} and {int16(1), int16(2)}. Now,
you can generate a MEX function from your entry-point functions.

To generate code for myAdd and myMul functions, at the MATLAB command prompt, run this
codegen command:
codegen -config:mex myAdd.m -args {1,2} -args {int8(1),int8(2)} myMul.m -args {1,2} -args {int16(1),int16(2)} -o 'myMath' -report

This syntax generates one MEX function myMath for all the signatures that you specified in the
codegen command.

You can verify the output values by using the generated MEX function myMath at the command
prompt. Make sure that the values you pass to myMath match the input properties that you specified
before code generation.

myMath("myAdd",3,4)

 Generate One MEX Function for Multiple Signatures

27-83

ans =

 7

myMath("myAdd",int8(5),int8(6))

ans =

 int8
 11

myMath("myMul",3,4)

ans =

 12

myMath("myMul",int16(5),int16(6))

ans =

 int16
 30

Running the MATLAB function myAdd and myMul with these input values produces the same output.
These test cases verify that myAdd, myMul, and the generated MEX function myMath have the same
behavior.

Limitations
Multisignature MEX generation does not support:

• fiaccel -float2fixed configuration.
• Defining input parameters programmatically. See “Define Input Properties Programmatically in

the MATLAB File” on page 27-60.

See Also
codegen | coder.MexCodeConfig

More About
• “Generate Code for Multiple Entry-Point Functions” on page 27-78
• “Specify Properties of Entry-Point Function Inputs” on page 27-43

27 Generating C/C++ Code from MATLAB Code

27-84

Pass an Entry-Point Function Output as an Input
When you generate code for multiple entry-point functions, you must specify the input types for each
function. Using coder.OutputType, you can pass the output type of one function as the input type
to another function. For example, to use the type of the second output from a function foo1 as the
input type to a function foo2, enter:

codegen foo1 -args {7, 42} foo2 -args {coder.OutputType('foo1',2)}

You can also use coder.OutputType to facilitate the process of partitioning, componentizing, or
extending your code base. For example, when your MATLAB code uses or accepts a complicated,
aggregate data type, consider creating a separate constructor function that creates that data type.
Then, generate code for multiple entry-point functions, using coder.OutputType to pass the output
type from the constructor to your other entry-point functions.

For more information on using multiple entry-point functions, see “Generate Code for Multiple Entry-
Point Functions” on page 27-78.

Pass an Entry-Point Function Output as an Input to Another Entry-
Point Function
The coder.OutputType function provides a way to chain together entry-point functions that use the
same data types. Use coder.OutputType to:

• Simplify the input type specification process. When an existing entry-point function creates or
defines a data type, you can reuse that definition for the input to a different entry-point function.

• Synchronize and align data between entry-point functions. When you use coder.OutputType to
pass a data type, there is only a single source for the type definition, and that definition is used by
both functions.

To understand these advantages, compare two cases where you generate code with and without using
coder.OutputType.

Example: Reuse a Nested Structure Output Type as an Input Type

Suppose that you have a complicated data type that is important to your code base. You have multiple
entry-point functions that rely on this data type for input, output, and internal computation. You
require the interfaces between the generated function code to use the same type definition.

For the purposes of this example, suppose that the data type is a nested structure, with a variable-
size array stored in the lowest-level property. You want to name this structure type squiggle in the
generated code. In MATLAB, you write a constructing function for the data type called
myConstuctor:

function [out] = myConstructor(a, b)
% create a variable-sized array with upper bounds of 100-by-100
coder.varsize('myStruct.f1.f2.f3.f4', [100 100], [1 1]);
% define the nested structure type
myStruct = struct('f1', struct('f2', struct('f3', struct('f4', zeros(a,b)))));
% specify the name of the structure and one of its fields
coder.cstructname(myStruct.f1.f2.f3,'squiggle_f3');
coder.cstructname(myStruct,'squiggle');
out = myStruct;

 Pass an Entry-Point Function Output as an Input

27-85

You write a second function, useConstructor, that takes the squiggle type as input, performs
addition, and pushes additional columns on to the end of the data.

function x = useConstructor(x, n)
xz = x.f1.f2.f3.f4;
b = zeros(size(xz,1),1);
for i = 1:n
 xz = [(xz + pi), b];
end
x.f1.f2.f3.f4 = xz;

To generate code for myConstructor and useConstructor and treat them as multiple entry-point
functions, you must specify the input types for both functions. Specify the input types for
myConstructor by using two integers. For useConstructor, specify the input type as the output
type from myConstructor by using coder.OutputType:

v = coder.OutputType('myConstructor');
codegen myConstructor -args {5,1} useConstructor -args {v,3} -report -config:lib

In the generated code, the function interfaces are aligned. The two entry-point functions use the
same type definition for squiggle. You can use the generated code for the constructor to create an
input type for the generated code for useConstructor.

Example: Manually Define an Input Type Without Using coder.OutputType

If you do not use coder.OutputType to define the input type for useConstructor, you must
specify the input type by using coder.typeof and coder.StructType class properties:

% MATLAB type definition for squiggle
myStruct = struct('f1', struct('f2', struct('f3', struct('f4', zeros(2)))));
t = coder.typeof(myStruct);
t.Fields.f1.Fields.f2.Fields.f3.Fields.f4 = coder.typeof(zeros(2), [100 100], [1 1]);
t.Fields.f1.Fields.f2.Fields.f3.TypeName = 'squiggle_f3';
t.TypeName = 'squiggle';

To generate static library code, enter:

codegen myConstructor -args {5,1} useConstructor -args {t,3} -report -config:lib

As in the first example, the function interfaces are aligned. However, creating and maintaining the
type definition for squiggle is labor-intensive. Changes that you make to the type definition must be
replicated in two places: the myConstructor function and the current workspace variable t. These
changes can fall out of synchronization, particularly when working with complicated type definitions.
Use coder.OutputType to assist in your development process.

Use coder.OutputType to Facilitate Code Componentization
If your MATLAB code uses large, complicated, or aggregate type definitions, you can separate your
code into different entry-point function components (such as a constructor and an operator) and use
coder.OutputType to pass the type definition between them. The coder.OutputType function
enables you to ensure a matching interface between the different entry-point functions.

Example: Create a Constructor and Use coder.OutputType to Pass the Output Type

Consider the function useSparse that performs an operation on a sparse matrix input.

27 Generating C/C++ Code from MATLAB Code

27-86

function out = useSparse(in)
%#codegen
out = in*2;

If you generate code for useSparse, you must manually construct the appropriate input type in C/C+
+. To automate and simplify the type construction, write a constructor for the sparse matrix.

function A = makeSparse(i,j,v,m,n)
%#codegen
A = sparse(i,j,v,m,n);

To generate code, use coder.OutputType to pass the output from the constructor as the input to
useSparse. Define your input argument as a 3-by-5 matrix.

t = coder.OutputType('makeSparse');
S = round(rand(3,5));
[m,n] = size(S);
[i,j,v] = find(S);
i = coder.typeof(i,[inf 1]); % allow number of nonzero entries to vary
codegen makeSparse -args {i,i,i,m,n} useSparse -args {t} -report

Using the generated C/C++ code, you can call makeSparse to generate the input to useSparse. The
coder.OutputType function makes it easy to create and align the interface for separate entry-point
functions that belong to a common code base.

See Also
coder.StructType | coder.typeof | coder.varsize | coder.cstructname |
coder.OutputType

More About
• “Generate Code for Multiple Entry-Point Functions” on page 27-78
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Code Generation for Sparse Matrices” on page 5-19

 Pass an Entry-Point Function Output as an Input

27-87

Generate Code for Global Data

In this section...
“Workflow” on page 27-88
“Declare Global Variables” on page 27-88
“Define Global Data” on page 27-88
“Synchronizing Global Data with MATLAB” on page 27-90
“Define Constant Global Data” on page 27-92
“Global Data Limitations for Generated Code” on page 27-94

Workflow
To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.
2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 27-88.
3 Generate code using the MATLAB Coder app or using codegen.

If you use global data, you must also specify whether you want to synchronize this data between
MATLAB and the generated MEX function. For more information, see “Synchronizing Global Data
with MATLAB” on page 27-90.

Declare Global Variables
When using global data, you must first declare the global variables in your MATLAB code. Consider
the use_globals function that uses two global variables AR and B:

function y = use_globals(u)
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;
global B;
AR(1) = u + B(1);
y = AR * 2;

Define Global Data
You can define global data in the MATLAB global workspace, in a MATLAB Coder project, or at the
command line. If you do not initialize global data in the project or at the command line, MATLAB
Coder looks for the variable in the MATLAB global workspace. If the variable does not exist, MATLAB
Coder generates an error.

27 Generating C/C++ Code from MATLAB Code

27-88

Defining Global Data in the MATLAB Global Workspace

To generate a MEX function for the use_globals function described in “Declare Global Variables”
on page 27-88 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the MATLAB prompt, enter:

global AR B;
AR = ones(4);
B = [1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}
% Use the -args option to specify that the input u
% is a real, scalar, double
% By default, codegen generates a MEX function,
% use_globals_mex, in the current folder

Defining Global Data Using the MATLAB Coder App

1 On the Define Input Types page, automatically define input types or click Let me enter input
or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent global variables
g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 Click the field to the right of the global variables name. Specify the type and initial value of the

global variable. See “Specify Global Variable Type and Initial Value Using the App” on page 24-
26.

If you do not specify the type, you must create a variable with the same name in the global
workspace.

Defining Global Data at the Command Line

To define global data at the command line, use the codegen -globals option. For example, to
compile the use_globals function described in “Declare Global Variables” on page 27-88, specify
two global inputs AR and B at the command line. Use the -args option to specify that the input u is a
real, scalar double. By default, codegen generates a MEX function, use_globals_mex, in the
current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using the format -globals
{'g', {type, initial_value}}. For cell arrays, you must use this format. See “Specify Global
Cell Arrays at the Command Line” on page 27-96.

Defining Variable-Size Global Data

To provide initial values for variable-size global data, specify the type and initial value with the -
globals flag using the format -globals {'g', {type, initial_value}}. For example, to
specify a global variable g1 that has an initial value [1 1] and upper bound [2 2], enter:

 Generate Code for Global Data

27-89

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB
Why Synchronize Global Data?

The generated MEX function and MATLAB each have their own copies of global data. To make these
copies consistent, you must synchronize their global data whenever the two interact. If you do not
synchronize the data, their global variables might differ. The level of interaction determines when to
synchronize global data. For more information, see “When to Synchronize Global Data” on page 27-
90.

When global data is constant, you cannot synchronize the global data with MATLAB. By default, the
MEX function tests for consistency between the compile-time constant global values and the MATLAB
values at function entry and after extrinsic function calls. If the MATLAB values differ from the
compile-time constant global values, the MEX function ends with an error. For information about
controlling when the MEX function tests for consistency between the compile-time constant global
values and the MATLAB values, see “Consistency Between MATLAB and Constant Global Data” on
page 27-94.

When to Synchronize Global Data

By default, synchronization between the MEX function's global data and MATLAB occurs at MEX
function entry and exit and for extrinsic calls. Use this synchronization method for maximum
consistency between the MEX function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.
• Disable synchronization when the global data does not interact.
• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options to use. To learn how to set
these options, see “How to Synchronize Global Data” on page 27-91.

27 Generating C/C++ Code from MATLAB Code

27-90

Global Data Synchronization Options

If you want to Set the global data
synchronization mode
to:

Synchronize before and after
extrinsic calls?

Have maximum consistency when all
extrinsic calls modify global data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Have maximum consistency when
most extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the coder.extrinsic -
sync:off option to turn off
synchronization for the extrinsic
calls that do not change global
data.

Have maximum consistency when
most extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the coder.extrinsic -
sync:on option to synchronize
only the calls that modify global
data.

Maximize performance when
synchronizing global data, and none of
your extrinsic calls modify global data.

At MEX-function
entry and exit

No.

Communicate between generated
MEX functions only. No interaction
between MATLAB and MEX function
global data.

Disabled No.

How to Synchronize Global Data

To control global data synchronization, set the global data synchronization mode and select whether
to synchronize extrinsic functions. For guidelines on which options to use, see “When to Synchronize
Global Data” on page 27-90.

You can control the global data synchronization mode from the project settings dialog box, the
command line, or a MEX configuration dialog box. You control the synchronization of data with
extrinsic functions using the coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to MEX.
3 Click More Settings.
4 On the Memory tab, set Global data synchronization mode to At MEX-function entry

and exit or Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the Command Line

1 In the MATLAB workspace, define the code generation configuration object. At the MATLAB
command line, enter:

mexcfg = coder.config('mex');

 Generate Code for Global Data

27-91

2 At the MATLAB command line, set the GlobalDataSyncMethod property to
SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';
3 When compiling your code, use the mexcfg configuration object. For example, to generate a

MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls

To control whether synchronization between MATLAB and MEX function global data occurs before
and after you call an extrinsic function, use the coder.extrinsic-sync:on and -sync:off
options.

By default, global data is:

• Synchronized before and after each extrinsic call, if the global data synchronization mode is At
MEX-function entry, exit and extrinsic calls. If you are sure that certain extrinsic
calls do not change global data, turn off synchronization for these calls using the -sync:off
option. For example, if functions foo1 and foo2 do not change global data, turn off
synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');
• Not synchronized, if the global data synchronization mode is At MEX-function entry and

exit. If the code has a few extrinsic calls that change global data, turn on synchronization for
these calls using the -sync:on option. For example, if functions foo1 and foo2 change global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');
• Not synchronized, if the global data synchronization mode is Disabled. When synchronization is

disabled, you cannot use the -sync:on option to control the synchronization for specific extrinsic
calls.

Clear Global Data

Because MEX functions and MATLAB each have their own copies of global data, you must clear both
copies to ensure that consecutive MEX runs produce the same results. The clear global command
removes only the copy of the global data in the MATLAB workspace. To remove both copies of the
data, use the clear global and clear mex commands together. The clear all command also
removes both copies.

Define Constant Global Data
If you know that the value of a global variable does not change at run time, you can reduce overhead
in the generated code by specifying that the global variable has a constant value. You cannot write to
the constant global variable.

Define Constant Global Data Using the MATLAB Coder App

• On the Define Input Types page, automatically define input types or click Let me enter input
or global types directly.

The app displays a table of entry-point inputs.

27 Generating C/C++ Code from MATLAB Code

27-92

1 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent global variables
g1, g2, and so on.

2 Under Global Variables, enter a name for the global variable.
3 Click the field to the right of the global variable name.
4 Select Define Constant Value.

5 In the field to the right of the global variable, enter a MATLAB expression.

Define Constant Global Data at the Command Line

To specify that a global variable is constant using the codegen command, use the -globals option
with the coder.Constant class.

1 Define a configuration object for the code generation output type that you want. For example,
define a configuration object for MEX code generation:

cfg = coder.config('mex');
2 Use coder.Constant to specify that a global variable has a constant value. For example, the

following code specifies that the global variable g has initial value 4 and that global variable gc
has the constant value 42.

 Generate Code for Global Data

27-93

global_values = {'g', 4, 'gc', coder.Constant(42)};
3 Generate the code using the -globals option. For example, generate code for myfunction

specifying that the global variables are defined in the cell array global_values.

codegen -config cfg -globals global_values myfunction

Consistency Between MATLAB and Constant Global Data

By default, the generated MEX function verifies that the values of constant global data in the
MATLAB workspace are consistent with the compile-time values in the generated MEX. It tests for
consistency at function entry and after calls to extrinsic functions. If the MEX function detects an
inconsistency, it ends with an error. To control when the MEX function tests for consistency, use the
global synchronization mode and the coder.extrinsic synchronization options.

The following table shows how the global data synchronization mode and the coder.extrinsic
synchronization option setting determine when a MEX function verifies consistency between the
compile-time constant global data values and MATLAB.

Global Data
Synchronization
Mode (Project)

GlobalDataSyncMethod
(MEX Configuration Object)

Verify
Consistency
of Constant
Global Values
at MEX
Function
Entry

coder.extrinsic
synchronization
option

Verify
Consistency of
Constant Global
Values After
Extrinsic
Function Call

At MEX-function
entry, exit and
extrinsic calls
(default)

'SyncAlways' yes 'sync:on'
(default)

yes

'sync:off' no

At MEX-function
entry and exit

'SyncAtEntryAndExits' yes 'sync:on' yes
'sync:off'
(default)

no

Disabled 'NoSync' no N/A N/A

Constant Global Data in a Code Generation Report

The code generation report provides the following information about a constant global variable:

• Type of Global on the Variables tab.
• Highlighted variable name in the Function pane.

See “View MATLAB Variables” on page 29-10.

Global Data Limitations for Generated Code
• Global structure variables cannot contain handle objects or sparse arrays.
• You cannot apply coder.cstructname directly to a global variable. To name the structure type

to use with a global variable, use coder.cstructname to create a type object that names the
structure type. Then, when you run codegen, specify that the global variable has that type. See
“Name the C Structure Type to Use With a Global Structure Variable” on page 27-129.

27 Generating C/C++ Code from MATLAB Code

27-94

See Also
global

More About
• “Specify Global Variable Type and Initial Value Using the App” on page 24-26
• “Name the C Structure Type to Use With a Global Structure Variable” on page 27-129

 Generate Code for Global Data

27-95

Specify Global Cell Arrays at the Command Line
To specify global cell array inputs, use the -globals option of the codegen command with this
syntax:

codegen myfunction -globals {global_var, {type_object, initial_value}}

For example:

• To specify that the global variable g is a 1x3 cell array whose elements have class double and
whose initial value is {1 2 3}, use:

codegen myfunction -globals {'g', {coder.typeof({1 1 1}), {1 2 3}}}

Alternatively, use:

t = coder.typeof({1 1 1});
codegen myfunction -globals {'g', {t, {1 2 3}}}

The global variable g is a 1x3 homogeneous cell array whose elements are 1x1 double.

To make g heterogeneous, use:

t = makeHeterogeneous(coder.typeof({1 1 1}));
codegen myfunction -globals {'g', {t, {1 2 3}}}

• To specify that g is a cell array whose first element has type char, whose second element has type
double, and whose initial value is {'a', 1}, use:

codegen myfunction -globals {'g', {coder.typeof({'a', 1}), {'a', 1}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 char and whose
second element is 1x1 double.

• To specify that g is a cell array whose first element has type double, whose second element is a
1x2 double array, and whose initial value is {1 [2 3]}, use:

codegen myfunction -globals {'g', {coder.typeof({1 [2 3]}), {1 [2 3]}}}

Alternatively, use:

t = coder.typeof({1 [2 3]});
codegen myfunction -globals {'g', {t, {1 [2 3]}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 double and
whose second element is 1x2 double.

Global variables that are cell arrays cannot have variable size.

See Also
codegen | coder.typeof

Related Examples
• “Generate Code for Global Data” on page 27-88

27 Generating C/C++ Code from MATLAB Code

27-96

Generate Code for Enumerations
The basic workflow for generating code for enumerated types in MATLAB code is:

1 Define an enumerated data type that derives from one of these base types: int8, uint8, int16,
uint16, or int32.

2 Save the enumerated data type in a file on the MATLAB path.
3 Write a MATLAB function that uses the enumerated type.
4 Specify enumerated type inputs.
5 Generate code.

See Also

More About
• “Code Generation for Enumerations” on page 14-2
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page 27-131
• “Customize Enumerated Types in Generated Code” on page 14-7
• “Specify an Enumerated Type Input Parameter by Example” on page 24-10
• “Specify an Enumerated Type Input Parameter” on page 24-15

 Generate Code for Enumerations

27-97

Generate Code for Variable-Size Data

In this section...
“Disable Support for Variable-Size Data” on page 27-98
“Control Dynamic Memory Allocation” on page 27-98
“Generating Code for MATLAB Functions with Variable-Size Data” on page 27-100
“Generate Code for a MATLAB Function That Expands a Vector in a Loop” on page 27-101

Variable-size data is data whose size might change at run time. You can use MATLAB Coder to
generate C/C++ code from MATLAB code that uses variable-size data. MATLAB supports bounded
and unbounded variable-size data for code generation. Bounded variable-size data has fixed upper
bounds. This data can be allocated statically on the stack or dynamically on the heap. Unbounded
variable-size data does not have fixed upper bounds. This data must be allocated on the heap. By
default, for MEX and C/C++ code generation, support for variable-size data is enabled and dynamic
memory allocation is enabled for variable-size arrays whose size is greater than or equal to a
configurable threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code generation, support for variable-size data is enabled. You modify
variable sizing settings from the project settings dialog box, the command line, or using dialog boxes.

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Memory tab, select or clear Enable variable-sizing.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays whose size is greater than
or equal to a configurable threshold. If you disable support for variable-size data (see “Disable
Support for Variable-Size Data” on page 27-98), you also disable dynamic memory allocation. You can
modify dynamic memory allocation settings from the project settings dialog box or the command line.

27 Generating C/C++ Code from MATLAB Code

27-98

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Memory tab, set Dynamic memory allocation for variable-sized arrays to one of the

following options:

Setting Action
Never Dynamic memory allocation is disabled.

Variable-size data is allocated statically on
the stack.

Always Dynamic memory allocation is enabled for
variable-size arrays. Variable-size data is
allocated dynamically on the heap.

For arrays with max size at or
above threshold

Dynamic memory allocation is enabled for
variable-size arrays whose size is greater
than or equal to the Dynamic memory
allocation threshold. Variable-size arrays
whose size is less than this threshold are
allocated on the stack.

4 Optionally, if you set Dynamic memory allocation for variable-sized arrays to For arrays
with maximum size at or above threshold, configure Dynamic memory allocation
threshold to fine-tune memory allocation.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX function:

mexcfg = coder.config('mex');
2 Set the DynamicMemoryAllocationForVariableSizeArrays option:

Setting Action
mexcfg.DynamicMemoryAllocationForVariableSizeArrays='Never'; Dynamic memory allocation is

disabled. Variable-size data is
allocated statically on the stack.

mexcfg.DynamicMemoryAllocationForVariableSizeArrays='Always'; Dynamic memory allocation is
enabled for variable-size arrays.
Variable-size data is allocated
dynamically on the heap.

 Generate Code for Variable-Size Data

27-99

Setting Action
mexcfg.DynamicMemoryAllocationForVariableSizeArrays='Threshold';Dynamic memory allocation is

enabled for variable-size arrays
whose size (in bytes) is greater
than or equal to the value
specified using the
DynamicMemoryAllocationTh
reshold parameter. Variable-
size arrays whose size is less
than this threshold are allocated
on the stack.

3 Optionally, if you set DynamicMemoryAllocationForVariableSizeArrays to 'Threshold',
configure DynamicMemoryAllocationThreshold to fine tune memory allocation.

4 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg foo

Generating Code for MATLAB Functions with Variable-Size Data
Here is a basic workflow that first generates MEX code for verifying the generated code and then
generates standalone code after you are satisfied with the result of the prototype.

To work through these steps with a simple example, see “Generate Code for a MATLAB Function That
Expands a Vector in a Loop” on page 27-101

1 In the MATLAB Editor, add the compilation directive %#codegen at the top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm
• Turns on checking in the MATLAB Code Analyzer to detect potential errors during code

generation
2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code assigns data a fixed size
but later grows the data, such as by assignment or concatenation in a loop. If that data is
supposed to vary in size at run time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code. Use the following
command-line options:

• -args {coder.typeof...} if you have variable-size inputs
• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for function foo. The first
argument, 0, indicates the input data type (double) and complexity (real). The second
argument, [2 4], indicates the size, a matrix with two dimensions. The third argument, 1,
indicates that the input is variable sized. The upper bound is 2 for the first dimension and 4 for
the second dimension.

27 Generating C/C++ Code from MATLAB Code

27-100

Note During compilation, codegen detects variables and structure fields that change size after
you define them, and reports these occurrences as errors. In addition, codegen performs a run-
time check to generate errors when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause How To Fix For More Information
You try to change the size
of data after its size has
been locked.

Declare the data to be variable
sized.

See “Diagnosing and Fixing
Size Mismatch Errors” on page
6-12.

5 Fix upper bounds errors

Cause How To Fix For More Information
MATLAB cannot determine
or compute the upper
bound

Specify an upper bound. See“Specify Upper Bounds for
Variable-Size Arrays” on page
6-6 and “Diagnosing and Fixing
Size Mismatch Errors” on page
6-12.

MATLAB attempts to
compute an upper bound
for unbounded variable-size
data.

If the data is unbounded,
enable dynamic memory
allocation.

See “Control Dynamic Memory
Allocation” on page 27-98.

6 Generate C/C++ code using the codegen function.

Generate Code for a MATLAB Function That Expands a Vector in a Loop
• “About the MATLAB Function myuniquetol” on page 27-101
• “Step 1: Add Compilation Directive for Code Generation” on page 27-102
• “Step 2: Address Issues Detected by the Code Analyzer” on page 27-102
• “Step 3: Generate MEX Code” on page 27-102
• “Step 4: Generate C Code” on page 27-103
• “Step 5: Specify an Upper Bound for the Output Vector” on page 27-103
• “Step 6: Change the Dynamic Memory Allocation Threshold” on page 27-104

About the MATLAB Function myuniquetol

This example uses the function myuniquetol. This function returns in vector B a version of input
vector A, where the elements are unique to within tolerance tol of each other. In vector B, abs(B(i) -
B(j)) > tol for all i and j. Initially, assume input vector A can store up to 100 elements.

function B = myuniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

 Generate Code for Variable-Size Data

27-101

Step 1: Add Compilation Directive for Code Generation

Add the %#codegen compilation directive at the top of the function:

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

Step 2: Address Issues Detected by the Code Analyzer

The Code Analyzer detects that variable B might change size in the for-loop. It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, you expect vector B to expand in size because it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code

It is a best practice to generate MEX code before you generate C/C++ code. Generating MEX code
can identify code generation issues that are harder to detect at run time.

1 Generate a MEX function for myuniquetol:
codegen -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to function
myuniquetol:

• The first argument, coder.typeof, defines a variable-size input. The expression
coder.typeof(0,[1 100],1) defines input A as a real double vector with a fixed upper
bound. Its first dimension is fixed at 1 and its second dimension can vary in size up to 100
elements.

For more information, see “Specify Variable-Size Inputs at the Command Line” on page 27-50.
• The second argument, coder.typeof(0), defines input tol as a real double scalar.

The -report option instructs codegen to generate a code generation report, regardless of
whether errors or warnings occur.

For more information, see the codegen reference page.

Code generation is successful. codegen does not detect issues. In the current folder, codegen
generates a MEX function for myuniquetol and provides a link to the code generation report.

2 Click the View report link.
3 In the code generation report, select the Variables tab.

27 Generating C/C++ Code from MATLAB Code

27-102

The size of A is 1x:100 because you specified that A is variable size with an upper bound of 100.
The size of variable B is 1x:?, indicating that it is variable size with no upper bounds.

Step 4: Generate C Code

Generate C code for variable-size inputs. By default, codegen allocates memory statically for data
whose size is less than the dynamic memory allocation threshold of 64 kilobytes. If the size of the
data is greater than or equal to the threshold or is unbounded, codegen allocates memory
dynamically on the heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');
2 Issue this command:

codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location, codegen\lib\myuniquetol and
provides a link to the code generation report.

3 Click the View report link.
4 In the list of generated files, click myuniquetol.h.

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,
 emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less than the default dynamic
memory allocation threshold of 64k bytes, allocates this memory statically. The generated code
contains:

• double A_data[]: the definition of A.
• int A_size[2]: the actual size of the input.

The code generator determines that B is variable size with unknown upper bounds. It represents
B as emxArray_real_T. MATLAB provides utility functions for creating and interacting with
emxArrays in your generated code. For more information, see “Use C Arrays in the Generated
Function Interfaces” on page 32-3.

Step 5: Specify an Upper Bound for the Output Vector

You specified that the input A is variable size with an upper bound of 100. Therefore, you know that
the output B cannot be larger than 100 elements.

• Use coder.varsize to indicate that B is variable size with an upper bound of 100.

 Generate Code for Variable-Size Data

27-103

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 100], [0 1]);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

• Generate code.
codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,
 double B_data[], int B_size[2]);

The code generator statically allocates the memory for B. It stores the size of B in int
B_size[2].

Step 6: Change the Dynamic Memory Allocation Threshold

In this step, you reduce the dynamic memory allocation threshold and generate code for an input that
exceeds this threshold. This step specifies that the second dimension of A has an upper bound of
10000.

1 Change the upper bound of B to match the upper bound of A.

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 10000], [0 1]);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

2 Set the dynamic memory allocation threshold to 4 kilobytes and generate code where the size of
input A exceeds this threshold.
cfg.DynamicMemoryAllocationThreshold=4096;
codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

3 View the generated code in the report. Because the maximum size of A and B now exceed the
dynamic memory allocation threshold, codegen allocates A and B dynamically on the heap. In the
generated code, A and B have type emxArray_real_T.

extern void myuniquetol(const emxArray_real_T *A, double tol, emxArray_real_T *B);

27 Generating C/C++ Code from MATLAB Code

27-104

See Also

More About
• “Using Dynamic Memory Allocation for an Atoms Simulation” on page 32-51

 Generate Code for Variable-Size Data

27-105

How MATLAB Coder Partitions Generated Code
In this section...
“Partitioning Generated Files” on page 27-106
“How to Select the File Partitioning Method” on page 27-106
“Partitioning Generated Files with One C/C++ File Per MATLAB File” on page 27-106
“Generated Files and Locations” on page 27-110
“File Partitioning and Inlining” on page 27-112

Partitioning Generated Files
By default, during code generation, MATLAB Coder partitions the code to match your MATLAB file
structure. This one-to-one mapping lets you easily correlate your files generated in C/C++ with the
compiled MATLAB code. MATLAB Coder cannot produce the same one-to-one correspondence for
MATLAB functions that are inlined in generated code (see “File Partitioning and Inlining” on page 27-
112).

Alternatively, you can select to generate all C/C++ functions into a single file. For more information,
see “How to Select the File Partitioning Method” on page 27-106. This option facilitates integrating
your code with existing embedded software.

How to Select the File Partitioning Method
Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Code Appearance tab, set the Generated file partitioning method to Generate one

file for each MATLAB file or Generate all functions into a single file.

At the Command Line

Use the codegen configuration object FilePartitionMethod option. For example, to compile the
function foo that has no inputs and generate one C/C++ file for each MATLAB function:

1 Create a MEX configuration object and set the FilePartitionMethod option:

mexcfg = coder.config('mex');
mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo
% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per MATLAB File
By default, for MATLAB functions that are not inlined, MATLAB Coder generates one C/C++ file for
each MATLAB file. In this case, MATLAB Coder partitions generated C/C++ code so that it
corresponds to your MATLAB files.

27 Generating C/C++ Code from MATLAB Code

27-106

How MATLAB Coder Partitions Entry-Point MATLAB Functions

For each entry-point (top-level) MATLAB function, MATLAB Coder generates one C/C++ source,
header, and object file with the same name as the MATLAB file.

For example, suppose you define a simple function foo that calls the function identity. The source
file foo.m contains the following code:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

Here is the code for identity.m :

function y = identity(u) %#codegen
y = u;

In the MATLAB Coder app, to generate a C static library for foo.m:

1 Define the inputs u and v. For more information, see “Specify Properties of Entry-Point Function
Inputs Using the App” on page 24-3.

2 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
3 Set the Build type to Static Library
4 Click More Settings.
5 On the All Settings tab, under Function Inlining, set the Inline threshold parameter to 0
6 Click Close
7 To generate the library, click Generate.

To generate a C static library for foo.m, at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and identity in your output
folder.

 How MATLAB Coder Partitions Generated Code

27-107

How MATLAB Coder Partitions Local Functions

For each local function, MATLAB Coder generates code in the same C/C++ file as the calling
function. For example, suppose you define a function foo that calls a local function identity:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

function y = identity(u)
y = u;

To generate a C++ library, before generating code, select a C++ compiler and set C++ as your
target language. For example, at the command line:

1 Select C++ as your target language:

cfg = coder.config('lib')
cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the identity local function.

27 Generating C/C++ Code from MATLAB Code

27-108

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files so that you can use a
C++ compiler and interface with external C++ applications. It does not generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

...
/* Function Definitions */
double foo(double u, double v)
{
 return (double)(float)u + v;
}
...

How MATLAB Coder Partitions Overloaded Functions

An overloaded function is a function that has multiple implementations to accommodate different
classes of input. For each implementation (that is not inlined), MATLAB Coder generates a separate
C/C++ file with a unique numeric suffix.

For example, suppose you define a simple function multiply_defined:

%#codegen
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle inputs of type single
(in an @single subfolder) and another for inputs of type double (in an @double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));

 How MATLAB Coder Partitions Generated Code

27-109

y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For example, at the MATLAB
command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

MATLAB Coder generates C source, header, and object files for each implementation of
multiply_defined, as highlighted. Use numeric suffixes to create unique file names.

Generated Files and Locations
The types and locations of generated files depend on the target that you specify. For all targets, if
errors or warnings occur during build or if you explicitly request a report, MATLAB Coder generates
reports.

Each time MATLAB Coder generates the same type of output for the same code or project, it removes
the files from the previous build. If you want to preserve files from a build, copy them to a different
location before starting another build.

Generated Files for MEX Targets

By default, MATLAB Coder generates the following files for MEX function (mex) targets.

27 Generating C/C++ Code from MATLAB Code

27-110

Type of Files Location
Platform-specific MEX files Current folder
MEX, and C/C++ source, header, and
object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets

By default, MATLAB Coder generates the following files for C/C++ static library targets.

Type of Files Location
C/C++ source, library, header, and object
files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets

By default, MATLAB Coder generates the following files for C/C++ dynamic library targets.

Type of Files Location
C/C++ source, library, header, and object
files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

Generated Files for C/C++ Executable Targets

By default, MATLAB Coder generates the following files for C/C++ executable targets.

Type of Files Location
C/C++ source, header, and object files codegen/exe/function_name
HTML reports codegen/exe/function_name/html

Changing Names and Locations of Generated Files
Using the MATLAB Coder App

To change Action
The output file name 1 To open the Generate dialog box, on the Generate Code page,

click the Generate arrow .
2 In the Output file name field, enter the file name.

 How MATLAB Coder Partitions Generated Code

27-111

To change Action
The output file location 1 To open the Generate dialog box, on the Generate Code page,

click the Generate arrow .
2 Click More Settings.
3 On the Paths tab, set Build folder to Specified folder.
4 For the Build folder name field, either browse to the output file

location or enter the full path. The output file location must not
contain:

• Spaces (Spaces can lead to code generation failures in certain
operating system configurations).

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters.

At the Command Line

You can change the name and location of generated files by using the codegen options -o and -d.

File Partitioning and Inlining
How MATLAB Coder partitions generated C/C++ code depends on whether you choose to generate
one C/C++ file for each MATLAB file and whether you inline your MATLAB functions.

If you MATLAB Coder
Generate all C/C++ functions
into a single file and disable
inlining

Generates a single C/C++ file without inlining functions.

Generate all C/C++ functions
into a single file and enable
inlining

Generates a single C/C++ file. Inlines functions whose sizes fall
within the inlining threshold.

Generate one C/C++ file for
each MATLAB file and disable
inlining

Partitions generated C/C++ code to match MATLAB file structure.
See “Partitioning Generated Files with One C/C++ File Per
MATLAB File” on page 27-106.

Generate one C/C++ file for
each MATLAB file and enable
inlining

Places inlined functions in the same C/C++ file as the function into
which they are inlined.

Even when you enable inlining, MATLAB Coder inlines only those
functions whose sizes fall within the inlining threshold. For
MATLAB functions that are not inlined, MATLAB Coder partitions
the generated C/C++ code, as described.

Tradeoffs Between File Partitioning and Inlining

Weighing file partitioning against inlining represents a trade-off between readability, efficiency, and
ease of integrating your MATLAB code with existing embedded software.

27 Generating C/C++ Code from MATLAB Code

27-112

If You Generate Generated C/C++
Code

Advantages Disadvantages

All C/C++ functions
into a single file

Does not match
MATLAB file structure

Easier to integrate with
existing embedded
software

Difficult to map C/C++
code to original
MATLAB file

One C/C++-file for each
MATLAB file and enable
inlining

Does not exactly match
MATLAB file structure

Program executes faster Difficult to map C/C++
code to original
MATLAB file

One C/C++-file for each
MATLAB file and disable
inlining

Matches MATLAB file
structure

Easy to map C/C++
code to original
MATLAB file

Program runs less
efficiently

How Disabling Inlining Affects File Partitioning

Inlining is enabled by default. Therefore, to generate one C/C++ file for each top-level MATLAB
function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function. For more information, see
“How to Select the File Partitioning Method” on page 27-106.

• Explicitly disable inlining, either globally or for individual MATLAB functions.

How to Disable Inlining Globally Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the All Settings tab, under Function Inlining set the Inline threshold to 0.

How to Disable Inlining Globally at the Command Line

To disable inlining of functions, use the -O disable:inline option with codegen. For example, to
disable inlining and generate a MEX function for a function foo that has no inputs:

codegen -O disable:inline foo

For more information, see the description of codegen.

How to Disable Inlining for Individual Functions

To disable inlining for an individual MATLAB function, add the directive coder.inline('never');
on a separate line in the source MATLAB file, after the function signature.

function y = foo(u,v) %#codegen
coder.inline('never');
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

codegen does not inline entry-point functions.

The coder.inline directive applies only to the function in which it appears. In this example,
inlining is disabled for function foo, but not for identity, a top-level function defined in a separate
MATLAB file and called by foo. To disable inlining for identity, add this directive after its function
signature in the source file identity.m. For more information, see coder.inline.

 How MATLAB Coder Partitions Generated Code

27-113

For a more efficient way to disable inlining for both functions, see “How to Disable Inlining Globally
at the Command Line” on page 27-113.

Correlating C/C++ Code with Inlined Functions

To correlate the C/C++ code that you generate with the original inlined functions, add comments in
the MATLAB code to identify the function. These comments will appear in the C/C++ code and help
you map the generated code back to the original MATLAB functions.

Modifying the Inlining Threshold

To change inlining behavior, adjust the inlining threshold parameter.

Modifying the Inlining Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the All Settings tab, under Function Inlining, set the value of the Inline threshold

parameter.

Modifying the Inlining Threshold at the Command Line

Set the value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

27 Generating C/C++ Code from MATLAB Code

27-114

Requirements for Signed Integer Representation
You must compile the code that is generated by the MATLAB Coder software on a target that uses a
two’s complement representation for signed integer values. The generated code does not verify that
the target uses a two’s complement representation for signed integer values.

 Requirements for Signed Integer Representation

27-115

Build Process Customization
For certain applications, you might want to control aspects of the build process that occur after C/C+
+ source code generation but before compilation. For example, you can specify compiler or linker
options. You can get and modify all the generated source files to add a copyright disclaimer. You can
control the build process in a variety of ways. Customize the build process by:

• Using the function coder.updateBuildInfo.
• Using the methods of an RTW.BuildInfo object.
• Modifying the build information by using a coder.ExternalDependency class.
• Modifying the build information with a script or function executed by the PostCodeGenCommand
configuration property. This script or function is called a post-code-generation command.

All of these approaches work by altering the makefile that is generated and used to build your code.
As a best practice, it is recommended to use the first three approaches, coder.updateBuildInfo,
RTW.BuildInfo, and coder.ExternalDependency. These approaches enable you to preconfigure
your MATLAB code with the build information that you require. Alternatively, the post-code
generation command can provide an additional, highly customizable approach, based around an
independent function or script.

The coder.ExternalDependency class and the post-code-generation command provide access to
the build information object, buildInfo. You can use build information methods on buildInfo to
configure project, build, and dependency information. MATLAB Coder creates buildInfo from the
class RTW.BuildInfo at the start of the build. This object is stored in a MAT-file buildInfo.mat
and saved in the build folder.

After code generation, you can access the build information object by loading it from
buildInfo.mat. Do not confuse the build information object with the build configuration object,
coder.BuildConfig, which provides specific functionality for configuring build within a
coder.ExternalDependency class.

RTW.BuildInfo Methods
To access or write data to the build information object, use RTW.BuildInfo methods. Using these
methods you can modify:

• Compiler options
• Linker options
• Preprocessor identifier definitions
• Source files and paths
• Include files and paths
• Precompiled external libraries
• Packaging options.

See “Package Code for Other Development Environments” on page 32-42.

To call the methods, use the syntax:

method_name(buildInfo,input_arg1,...,input_argN)

Alternatively, you can enter:

27 Generating C/C++ Code from MATLAB Code

27-116

buildInfo.method_name(input_arg1,...,input_argN)

To use the build information object after code generation is complete, load the buildInfo.mat file
from your generated code. For example:

load(fullfile('.','raspberrypi_generated_code','buildInfo.mat'));
packNGo(buildInfo, 'fileName','copy_to_raspberrypi');

coder.updateBuildInfo Function
The coder.updateBuildInfo function provides a convenient way to customize the build process
from within your MATLAB code. For more information and examples, see the
coder.updateBuildInfo and RTW.BuildInfo reference pages.

coder.ExternalDependency Class
When you are working with external code integration or you have multiple functions that use the
same build information, customize the build process by using the coder.ExternalDependency
class. The coder.ExternalDependency class provides access to the build information object and
methods. For more information and examples, see “Develop Interface for External C/C++ Code” on
page 34-12 and the coder.ExternalDependency reference page.

Post-Code-Generation Command
As a best practice, customize your build process by using the first two approaches,
coder.updateBuildInfo and coder.ExternalDependency. A third approach that provides
additional flexibility is a post-code-generation command. A post-code-generation command is a
function or script executed by the PostCodeGenCommand configuration object property. Set the
command by using your code generation configuration object (coder.MexCodeConfig,
coder.CodeConfig or coder.EmbeddedCodeConfig).

Command Format Result
Script Script can gain access to the project (top-level

function) name and the build information directly.
Function Function can receive the project name and the

build information as arguments.

To write the post code-generation command as a script, set PostCodeGenCommand to the script
name. You can access the project name in the variable projectName and the RTW.BuildInfo object
in the variable buildInfo. At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'ScriptName';

When you define the command as a function, you can specify an arbitrary number of input
arguments. If you want to access the project name, include projectName as an argument. If you
want to modify or access build information, add buildInfo as an argument. At the command line,
enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

 Build Process Customization

27-117

For example, consider the function setbuildargs that takes the build information object as a
parameter and adds linker options by using the addLinkFlags method.

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library be included
% in the build
linkFlags = {'-lpthread'};
buildInfo.addLinkFlags(linkFlags);

To use this function as a post-code-generation command, create a configuration object. Use this
configuration object when you generate code. For example:

cfg = coder.config('dll');
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';
codegen -config cfg foo

To set a post-code-generation command from the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Custom Code tab, set the Post-code-generation command parameter.

If your post-code-generation command calls user-defined functions, make sure that the functions are
on the MATLAB path. If the build process cannot find a function that you use in your command, the
process fails.

See Also
coder.MexCodeConfig | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.updateBuildInfo | coder.ExternalDependency

More About
• “Configure Build Settings” on page 27-13
• “Develop Interface for External C/C++ Code” on page 34-12
• “Configure Build for External C/C++ Code” on page 34-9
• “Package Code for Other Development Environments” on page 32-42

27 Generating C/C++ Code from MATLAB Code

27-118

Run-time Stack Overflow
If your C compiler reports a run-time stack overflow, set the value of the maximum stack usage
parameter to be less than the available stack size. In a project, in the project settings dialog box
Memory tab, set the Stack usage max parameter. For command-line configuration objects
(coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig), set the
StackUsageMax parameter.

 Run-time Stack Overflow

27-119

Compiler and Linker Errors
When you generate a library, MEX function, or executable from MATLAB Coder, the code generator
invokes the C/C++ compiler to build a binary artifact. Build errors can occur during this process.
These errors can occur during the compiling stage, or the linking stage, or at other stages of the
build. You can view compiling and linking errors and warnings on the Build Logs tab of the code
generation report.

The specific error messages and warnings that appear depend on the compiler and toolchain that you
use for your platform. To see the current compiler or select a different one, at the command prompt,
enter:

mex -setup

Build errors can occur for many different reasons. To diagnose and fix errors, you might have to
investigate the error messages listed in your compiler documentation. Following are some commonly
occurring issues that can lead to build errors when you generate code.

Failure to Specify a Main Function
Specify a main function to generate a C/C++ executable. If you do not specify a main function, a
build error occurs. The main function is contained in a separate main file. When you generate code,
MATLAB Coder creates an example main file, but does not automatically use it for compilation. The
example main function calls the generated code with mock input values. You must modify the example
main or create your own main function for realistic input and output handling.

You can specify the main file as a command-line parameter to the codegen command, or in the
MATLAB Coder app, or by using configuration parameters. For more information and examples, see:

• “Specifying main Functions for C/C++ Executables” on page 27-11
• “Configure Build Settings” on page 27-13
• “Use an Example C Main in an Application” on page 32-25
• codegen

If you want the code generator to automatically use the generated example main file to build an
executable for test purposes, you can set the GenerateExampleMain property of the configuration
object to 'GenerateCodeAndCompile'. See “Incorporate Generated Code Using an Example Main
Function” on page 32-23.

Failure to Specify External Code Files
If your code uses external C functions in coder.ceval, then you must specify the external files
containing those functions or build errors can occur. You can specify the files as command-line
parameters to the codegen command, or in the MATLAB Coder app, or by using configuration
parameters. For more information and examples, see:

• “Configure Build for External C/C++ Code” on page 34-9
• “Call Custom C/C++ Code from the Generated Code” on page 34-2
• coder.ceval
• codegen

27 Generating C/C++ Code from MATLAB Code

27-120

Errors Caused by External Code
When you introduce external code into the build process, the external code can inject its own errors.
You can introduce external code through multiple channels:

• External type definitions that you create by using coder.opaque that are defined in external
header files.

• Structure type definitions that you create by using coder.cstructname that are defined in
external header files.

• Calls to external code by using coder.ceval.
• Specification of external build files to the codegen command.
• Inclusion of external code files by coder.cinclude or coder.updateBuildInfo.
• Inclusion of external code through the app, on the Custom Code tab, or through code generation
configuration parameters CustomSource and CustomInclude.

This list is not exhaustive. To address errors caused by these methods, you must examine and fix the
issues with the external code or decouple the external code from your MATLAB code.

See Also

More About
• “Code Generation Reports” on page 29-7

External Websites
• https://www.mathworks.com/support.html

 Compiler and Linker Errors

27-121

https://www.mathworks.com/support.html

Pass Structure Arguments by Reference or by Value in
Generated Code

This example shows how to control whether structure arguments to generated entry-point functions
are passed by reference or by value.

Passing by reference uses a pointer to access the structure arguments. If the function writes to an
element of the input structure, it overwrites the input value. Passing by value makes a copy of the
input or output structure argument. To reduce memory usage and execution time, use pass by
reference.

If a structure argument is both an input and output, the generated entry-point function passes the
argument by reference. Generated MEX functions pass structure arguments by reference. For MEX
function output, you cannot specify that you want to pass structure arguments by value.

Specify Pass by Reference or by Value Using the MATLAB® Coder App

To open the Generate dialog box, on the Generate Code page, click the Generate arrow.

Set the Build type to one of the following:

• Source Code
• Static Library
• Dynamic Library
• Executable

Click More Settings.

On the All Settings tab, set the Pass structures by reference to entry-point functions option to:

• Yes, for pass by reference (default)
• No, for pass by value

Specify Pass by Reference or by Value Using the Command-Line Interface

Create a code configuration object for a static library, a dynamic library, or an executable program.
For example, create a code configuration object for a static library.

cfg = coder.config('lib');

Set the PassStructByReference property to:

• true, for pass by reference (default)
• false, for pass by value

For example:

cfg.PassStructByReference = true;

Pass Input Structure Argument by Reference

Write the MATLAB function my_struct_in that has an input structure argument.

type my_struct_in.m

27 Generating C/C++ Code from MATLAB Code

27-122

function y = my_struct_in(s)
%#codegen

y = s.f;

Define a structure variable mystruct in the MATLAB® workspace.

mystruct = struct('f', 1:4);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

Code generation successful.

View the generated C code.

type codegen/lib/my_struct_in/my_struct_in.c

/*
 * File: my_struct_in.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:19
 */

/* Include Files */
#include "my_struct_in.h"
#include "my_struct_in_types.h"

/* Function Definitions */
/*
 * Arguments : const struct0_T *s
 * double y[4]
 * Return Type : void
 */
void my_struct_in(const struct0_T *s, double y[4])
{
 y[0] = s->f[0];
 y[1] = s->f[1];
 y[2] = s->f[2];
 y[3] = s->f[3];
}

/*
 * File trailer for my_struct_in.c
 *
 * [EOF]
 */

The generated function signature for my_struct_in is

 Pass Structure Arguments by Reference or by Value in Generated Code

27-123

void my_struct_in(const struct0_T *s, double y[4])

my_struct_in passes the input structure s by reference.

Pass Input Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

Code generation successful.

View the generated C code.

type codegen/lib/my_struct_in/my_struct_in.c

/*
 * File: my_struct_in.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:22
 */

/* Include Files */
#include "my_struct_in.h"
#include "my_struct_in_types.h"

/* Function Definitions */
/*
 * Arguments : const struct0_T s
 * double y[4]
 * Return Type : void
 */
void my_struct_in(const struct0_T s, double y[4])
{
 y[0] = s.f[0];
 y[1] = s.f[1];
 y[2] = s.f[2];
 y[3] = s.f[3];
}

/*
 * File trailer for my_struct_in.c
 *
 * [EOF]
 */

The generated function signature for my_struct_in is

void my_struct_in(const struct0_T s, double y[4]

my_struct_in passes the input structure s by value.

27 Generating C/C++ Code from MATLAB Code

27-124

Pass Output Structure Argument by Reference

Write the MATLAB function my_struct_out that has an output structure argument.

type my_struct_out.m

function s = my_struct_out(x)
%#codegen

s.f = x;

Define a variable a in the MATLAB® workspace.

a = 1:4;

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable a.

codegen -config cfg -args {a} my_struct_out

Code generation successful.

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*
 * File: my_struct_out.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:26
 */

/* Include Files */
#include "my_struct_out.h"
#include "my_struct_out_types.h"

/* Function Definitions */
/*
 * Arguments : const double x[4]
 * struct0_T *s
 * Return Type : void
 */
void my_struct_out(const double x[4], struct0_T *s)
{
 s->f[0] = x[0];
 s->f[1] = x[1];
 s->f[2] = x[2];
 s->f[3] = x[3];
}

/*

 Pass Structure Arguments by Reference or by Value in Generated Code

27-125

 * File trailer for my_struct_out.c
 *
 * [EOF]
 */

The generated function signature for my_struct_out is

void my_struct_out(const double x[4], struct0_T *s)

my_struct_out passes the output structure s by reference.

Pass Output Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable a.

codegen -config cfg -args {a} my_struct_out

Code generation successful.

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*
 * File: my_struct_out.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:29
 */

/* Include Files */
#include "my_struct_out.h"
#include "my_struct_out_types.h"

/* Function Definitions */
/*
 * Arguments : const double x[4]
 * Return Type : struct0_T
 */
struct0_T my_struct_out(const double x[4])
{
 struct0_T s;
 s.f[0] = x[0];
 s.f[1] = x[1];
 s.f[2] = x[2];
 s.f[3] = x[3];
 return s;
}

/*
 * File trailer for my_struct_out.c
 *
 * [EOF]
 */

27 Generating C/C++ Code from MATLAB Code

27-126

The generated function signature for my_struct_out is

struct0_T my_struct_out(const double x[4])

my_struct_out returns an output structure.

Pass Input and Output Structure Argument by Reference

When an argument is both an input and an output, the generated C function passes the argument by
reference even when PassStructByReference is false.

Write the MATLAB function my_struct_inout that has a structure argument that is both an input
argument and an output argument.

type my_struct_inout.m

function [y,s] = my_struct_inout(x,s)
%#codegen

y = x + sum(s.f);

Define the variable a and structure variable mystruct in the MATLAB® workspace.

a = 1:4;
mystruct = struct('f',a);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the first input has the type of a and the second input has the type of
mystruct.

codegen -config cfg -args {a, mystruct} my_struct_inout

Code generation successful.

View the generated C code.

type codegen/lib/my_struct_inout/my_struct_inout.c

/*
 * File: my_struct_inout.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:32
 */

/* Include Files */
#include "my_struct_inout.h"
#include "my_struct_inout_types.h"

/* Function Definitions */
/*
 * Arguments : const double x[4]

 Pass Structure Arguments by Reference or by Value in Generated Code

27-127

 * const struct0_T *s
 * double y[4]
 * Return Type : void
 */
void my_struct_inout(const double x[4], const struct0_T *s, double y[4])
{
 double b_y;
 b_y = ((s->f[0] + s->f[1]) + s->f[2]) + s->f[3];
 y[0] = x[0] + b_y;
 y[1] = x[1] + b_y;
 y[2] = x[2] + b_y;
 y[3] = x[3] + b_y;
}

/*
 * File trailer for my_struct_inout.c
 *
 * [EOF]
 */

The generated function signature for my_struct_inout is

void my_struct_inout(const double x[4], const struct0_T *s, double y[4])

my_struct_inout passes the structure s by reference even though PassStructByReference is
false.

See Also

More About
• “Structure Definition for Code Generation” on page 7-2

27 Generating C/C++ Code from MATLAB Code

27-128

Name the C Structure Type to Use With a Global Structure
Variable

This example shows how to name the C structure type to use in code generated for a global structure.

To name the C structure type to use for a structure variable, you use coder.cstructname. However,
you cannot apply coder.cstructname directly to a global variable inside a function. Instead, specify
the C structure type name in one of these ways:

• At the command line, use coder.cstructname to create a type object that names the C structure
type. When you run codegen, specify that the global variable has that type.

• In the MATLAB® Coder™ app, after you define and initialize a global variable, specify the C
structure type name in the structure properties dialog box.

You can also use these approaches to name the C structure type for a global cell array.

Write a MATLAB Function That Uses a Global Variable

Write a MATLAB® function getmyfield that returns field a of global variable g.

type getmyfield

function y = getmyfield()
% Copyright 2018 The MathWorks, Inc.
%#codegen

global g;
y = g.a;
end

Specify the C Structure Type Name at the Command Line

1 Define and initialize a global structure g.
2 Use coder.cstructname to create a type object T that has the properties of g and names the

generated C structure type mytype.
3 Generate code for getmyfield, specifying that g is a global variable with the type T.

global g
g = struct('a',5);
T = coder.cstructname(g,'mytype');
codegen -config:lib -globals {'g',T} getmyfield

Code generation successful.

In the generated code, g has the type mytype.

mytype g;

The generated C structure type mytype is:

typedef struct {
 double a;
} mytype;

 Name the C Structure Type to Use With a Global Structure Variable

27-129

Specify the C Structure Type Name in the MATLAB Coder App

1 Open the MATLAB Coder app and specify that you want to generate code for getmyfields.
2 On the Define Input Types page, Click Add global.
3 Click the field next to the global variable g. Then, click Define Initial Value.
4 Enter struct('a',5).
5 To specify the C structure type name to use for g, click the gear icon.
6 In the Properties dialog box, next to C type definition name, enter mytype.

Alternatively, if you defined g or a type object for g in the workspace, you can enter g or the type
object as the initial value.

See Also
coder.cstructname

More About
• “Structure Definition for Code Generation” on page 7-2
• “Generate Code for Global Data” on page 27-88
• “Specify Cell Array Inputs at the Command Line” on page 27-52

27 Generating C/C++ Code from MATLAB Code

27-130

Generate Code for an LED Control Function That Uses
Enumerated Types

This example shows how to generate code for a function that uses enumerated types. In this example,
the enumerated types inherit from base type int32. The base type can be int8, uint8, int16,
uint16, or int32.

Define the enumerated type sysMode. Store it in sysMode.m on the MATLAB® path.

<include>sysMode.m</include>

Define the enumerated type LEDcolor. Store it in LEDcolor.m on the MATLAB path.

<include>LEDcolor.m</include>

Define the function displayState, which uses enumerated data to activate an LED display, based on
the state of a device. displayState lights a green LED display to indicate the ON state. It lights a
red LED display to indicate the OFF state.

<include>displayState.m</include>

Generate a MEX function for displayState. Specify that displayState takes one input argument
that has an enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

Code generation successful.

Test the MEX function.

displayState_mex(sysMode.OFF)

ans =
 LEDcolor enumeration

 RED

Generate a static library for the function displayState. Specify that displayState takes one
input argument that has an enumerated data type sysMode.

codegen -config:lib displayState -args {sysMode.ON}

Code generation successful.

codegen generates a C static library with the default name, displayState. It generates supporting
files in the default folder, codegen/lib/displayState.

View the header file displayState_types.h.

type codegen/lib/displayState/displayState_types.h

/*
 * File: displayState_types.h
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:08:57

 Generate Code for an LED Control Function That Uses Enumerated Types

27-131

 */

#ifndef DISPLAYSTATE_TYPES_H
#define DISPLAYSTATE_TYPES_H

/* Include Files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef enum_sysMode
#define enum_sysMode
enum sysMode
{
 OFF = 0, /* Default value */
 ON
};
#endif /* enum_sysMode */
#ifndef typedef_sysMode
#define typedef_sysMode
typedef enum sysMode sysMode;
#endif /* typedef_sysMode */

#ifndef enum_LEDcolor
#define enum_LEDcolor
enum LEDcolor
{
 GREEN = 1, /* Default value */
 RED
};
#endif /* enum_LEDcolor */
#ifndef typedef_LEDcolor
#define typedef_LEDcolor
typedef enum LEDcolor LEDcolor;
#endif /* typedef_LEDcolor */

#endif
/*
 * File trailer for displayState_types.h
 *
 * [EOF]
 */

The enumerated type LEDcolor is represented as a C enumerated type because the base type in the
class definition for LEDcolor is int32. When the base type is int8, uint8, int16, or uint16, the
code generator produces a typedef for the enumerated type. It produces #define statements for
the enumerated type values. For example:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

27 Generating C/C++ Code from MATLAB Code

27-132

See Also

More About
• “Code Generation for Enumerations” on page 14-2
• “Customize Enumerated Types in Generated Code” on page 14-7

 Generate Code for an LED Control Function That Uses Enumerated Types

27-133

Generate Code That Uses N-Dimensional Indexing
By default, the code generator uses one-dimensional indexing for arrays. The code generator creates
one-dimensional arrays in C/C++ code for N-dimensional arrays in MATLAB code. You can use N-
dimensional indexing to improve readability and adapt the interface to your generated code.

This table shows an example of the differences in the generated code with and without N-dimensional
indexing.

MATLAB Code Generated C Code (default) Generated C Code with N-D
Indexing Enabled

A = zeros(2,4,6) A[48] • With column-major array
layout (default):

A[6][4][2]
• With row-major array layout

enabled:

A[2][4][6]

The order of the indices is reversed for N-dimensional indexing because MATLAB generates code that
uses column-major array layout by default. To switch the order of the indices, you can enable row-
major array layout.

Conversion of an N-dimensional array to one dimension is also called array flattening. In computer
memory, all data is stored in terms of one-dimensional arrays. The choice of indexing does not change
computation results. However, if your code has inputs or outputs that are arrays, the interface to your
generated code can change.

To enable N-dimensional indexing:

• Use the -preservearraydims option:

codegen foo -preservearraydims
• Set the PreserveArrayDimensions property for your code generation configuration object to

true. For example:

cfg = coder.config('lib');
cfg.PreserveArrayDimensions = true;
codegen foo -config cfg

To enable N-dimensional indexing from the MATLAB Coder App:

• Navigate to the Generate Code page in the code generation workflow.
• Open the Generate dialog box by clicking the Generate arrow .
• Click More Settings.
• On the Memory tab, select the Preserve array dimensions check box.

Improve Readability with N-Dimensional Indexing and Row-Major
Layout
N-dimensional indexing can make it easier for you to trace your generated C/C++ code back to your
MATLAB code. The code generator preserves the dimensions of the original arrays, rather than

27 Generating C/C++ Code from MATLAB Code

27-134

converting arrays to one dimension. Furthermore, you can specify row-major layout to make the code
appearance even more intuitive.

Consider the MATLAB function addMatrices, which adds two matrices, element by element:

function sum = addMatrices(A,B)
%#codegen
sum = coder.nullcopy(A);
for row = 1:size(A,1)
 for col = 1:size(A,2)
 sum(row,col) = A(row,col) + B(row,col);
 end
end

Generate code for addMatrices so that it operates on 2-by-4 arrays. Enable N-dimensional indexing
and row-major array layout:

cfg = coder.config('lib');
cfg.PreserveArrayDimensions = true;
cfg.RowMajor = true;
codegen addMatrices -args {ones(2,4),ones(2,4)} -config cfg -launchreport

Code generation produces code with explicit two-dimensional array indexing:

/* N-d indexing on, row-major on */
void addMatrices(double A[2][4], double B[2][4], double sum[2][4])
{
 int row;
 int col;
 for (row = 0; row < 2; row++) {
 for (col = 0; col < 4; col++) {
 sum[row][col] = A[row][col] + B[row][col];
 }
 }
}

The generated code for addMatrices uses the same two-dimensional indexing as the original
MATLAB code. You can easily analyze the generated code in comparison with the original algorithm.
To understand how to use row-major layout, see “Generate Code That Uses Row-Major Array Layout”
on page 38-4.

Column-Major Layout and N-Dimensional Indexing
The choice of array layout affects the appearance of N-dimensional indexing. For example, generate
code for the addMatrices function using column-major array layout:

cfg.RowMajor = false;
codegen addMatrices -args {ones(2,4),ones(2,4)} -config cfg -launchreport

Code generation produces this C code:

/* N-d indexing on, row-major off */
void addMatrices(double A[4][2], double B[4][2], double sum[4][2])
{
 int row;
 int col;
 for (row = 0; row < 2; row++) {

 Generate Code That Uses N-Dimensional Indexing

27-135

 for (col = 0; col < 4; col++) {
 sum[col][row] = A[col][row] + B[col][row];
 }
 }
}

The input and output matrices in the C code are transposes of the original MATLAB matrices. To
understand why, consider how arrays are represented in computer memory. The MATLAB language
uses column-major layout by default, where the elements from the first (leftmost) dimension or index
are contiguous in memory. C uses row-major array layout by default, where elements from the last
(rightmost) dimension or index are contiguous. To preserve the original element adjacency, the code
generator must reverse the order of the array dimensions.

For example, in this case, if you define the MATLAB matrix A as:

A=reshape(1:8,2,4)

or

A =
 1 3 5 7
 2 4 6 8

then, because MATLAB uses column-major layout, the data is internally stored in the order:

A(:)' =
 1 2 3 4 5 6 7 8

In C code, you must transpose the original data, for this example, call it AA:

AA = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};

to attain the list of data elements with the same internal storage order. In other words, the C array
must be 4-by-2. (You can obtain an equivalent storage order by defining the array as a 2-by-4, with AA
= {{1, 2, 3, 4}, {5, 6, 7, 8}}. However, obtaining this order requires a manual reshape or
rearrangement of the data.)

The choice of array layout affects only internal data representation and does not change
computational or algorithmic results. To preserve the intuitive appearance of MATLAB arrays in
generated code, use N-dimensional indexing with row-major array layout. Note that row-major layout
can affect the efficiency of your generated code. For more information, see “Code Design for Row-
Major Array Layout” on page 5-26.

Other Code Generation Considerations
Consider other aspects of N-dimensional indexing. The code generator always produces one-
dimensional arrays for N-dimensional vectors, even when you specify N-dimensional indexing. For
example, if you generate code for a MATLAB vector:

A = zeros(1,10)

or

A = zeros(1,10,1)

the resulting C/C++ arrays are stored as:

27 Generating C/C++ Code from MATLAB Code

27-136

A[10]

N-dimensional indexing also applies to arrays and structures. For example, if you declare structures
in your code as:

x = struct('f1', ones(2,3));
coder.cstructname(x,'myStruct1');
y = struct('f2', ones(1,6,1));
coder.cstructname(y,'myStruct2');

then the generated code contains the structure definitions:

typedef struct {
 double f1[2][3];
} myStruct1;
typedef struct {
 double f2[6];
} myStruct2;

Avoid linear indexing on N-dimensional arrays. Linear indexing occurs, for example, when you use the
colon operator:

A(:)

To apply linear indexing, the code generator must cast an N-dimensional array into a one-dimensional
array. Casting operations make your code more complex for the code generator to analyze. This
increased complexity can hinder the ability of the code generator to optimize for performance.

Last, note the following:

• You can use N-dimensional indexing for arrays of any data type.
• Only fixed-size arrays, and not variable-size arrays, can use N-dimensional indexing.

See Also
codegen | reshape | coder.cstructname

More About
• “Generate Code That Uses Row-Major Array Layout” on page 38-4
• “Code Design for Row-Major Array Layout” on page 5-26
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Preserve Variable Names in Generated Code” on page 27-38

 Generate Code That Uses N-Dimensional Indexing

27-137

Install OpenMP Library on macOS Platform
You can generate parallel for-loops on the macOS platform by using parfor in your MATLAB code.
The code generator uses the OpenMP (Open Multiprocessing) application interface to support
shared-memory, multicore code generation. To run the code generated for a parfor-loop outside of
MATLAB, you must install an OpenMP library.

To install the OpenMP library libomp on the macOS platform, do one of the following:

• Install libomp from the LLVM download page.

1 Navigate to the LLVM download page.
2 Download the OpenMP source.
3 Compile the source and install.

• Install libomp by using homebrew. At the terminal, run this command.

brew install libomp

See Also
parfor

More About
• “Generate Code with Parallel for-Loops (parfor)” on page 35-33

External Websites
• https://releases.llvm.org/
• https://brew.sh/

27 Generating C/C++ Code from MATLAB Code

27-138

https://releases.llvm.org/
https://brew.sh/
https://releases.llvm.org/
https://brew.sh/

Generate Code to Detect Edges on Images
This example shows how to generate a standalone C library from MATLAB® code that implements a
simple Sobel filter that performs edge detection on images. The example also shows how to generate
and test a MEX function in MATLAB prior to generating C code to verify that the MATLAB code is
suitable for code generation.

About the sobel Function

The sobel.m function takes an image (represented as a double matrix) and a threshold value and
returns an image with the edges detected (based on the threshold value).

type sobel

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.
function edgeImage = sobel(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Generate the MEX Function

Generate a MEX function using the codegen command.

codegen sobel

Code generation successful.

Before generating C code, you should first test the MEX function in MATLAB to ensure that it is
functionally equivalent to the original MATLAB code and that no run-time errors occur. By default,
codegen generates a MEX function named sobel_mex in the current folder. This allows you to test
the MATLAB code and MEX function and compare the results.

Read in the Original Image

Use the standard imread command.

im = imread('hello.jpg');
image(im);

 Generate Code to Detect Edges on Images

27-139

Convert Image to a Grayscale Version

Convert the color image (shown above) to an equivalent grayscale image with normalized values (0.0
for black, 1.0 for white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

Run the MEX Function (The Sobel Filter)

Pass the normalized image and a threshold value.

edgeIm = sobel_mex(gray, 0.7);

Display the Result

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

27 Generating C/C++ Code from MATLAB Code

27-140

Generate Standalone C Code

codegen -config coder.config('lib') sobel

Code generation successful.

Using codegen with the -config coder.config('lib') option produces a standalone C library.
By default, the code generated for the library is in the folder codegen/lib/sobel/.

Inspect the Generated Function

type codegen/lib/sobel/sobel.c

/*
 * File: sobel.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:02:15
 */

/* Include Files */
#include "sobel.h"
#include "conv2AXPYSameCMP.h"
#include "sobel_data.h"
#include "sobel_emxutil.h"
#include "sobel_initialize.h"
#include "sobel_types.h"
#include <math.h>

 Generate Code to Detect Edges on Images

27-141

/* Function Declarations */
static void binary_expand_op(emxArray_real_T *in1, const emxArray_real_T *in2);

/* Function Definitions */
/*
 * Arguments : emxArray_real_T *in1
 * const emxArray_real_T *in2
 * Return Type : void
 */
static void binary_expand_op(emxArray_real_T *in1, const emxArray_real_T *in2)
{
 emxArray_real_T *b_in1;
 const double *in2_data;
 double *b_in1_data;
 double *in1_data;
 int aux_0_1;
 int aux_1_1;
 int b_loop_ub;
 int i;
 int i1;
 int loop_ub;
 int stride_0_0;
 int stride_0_1;
 int stride_1_0;
 int stride_1_1;
 in2_data = in2->data;
 in1_data = in1->data;
 emxInit_real_T(&b_in1, 2);
 i = b_in1->size[0] * b_in1->size[1];
 if (in2->size[0] == 1) {
 b_in1->size[0] = in1->size[0];
 } else {
 b_in1->size[0] = in2->size[0];
 }
 if (in2->size[1] == 1) {
 b_in1->size[1] = in1->size[1];
 } else {
 b_in1->size[1] = in2->size[1];
 }
 emxEnsureCapacity_real_T(b_in1, i);
 b_in1_data = b_in1->data;
 stride_0_0 = (in1->size[0] != 1);
 stride_0_1 = (in1->size[1] != 1);
 stride_1_0 = (in2->size[0] != 1);
 stride_1_1 = (in2->size[1] != 1);
 aux_0_1 = 0;
 aux_1_1 = 0;
 if (in2->size[1] == 1) {
 loop_ub = in1->size[1];
 } else {
 loop_ub = in2->size[1];
 }
 for (i = 0; i < loop_ub; i++) {
 if (in2->size[0] == 1) {
 b_loop_ub = in1->size[0];
 } else {
 b_loop_ub = in2->size[0];

27 Generating C/C++ Code from MATLAB Code

27-142

 }
 for (i1 = 0; i1 < b_loop_ub; i1++) {
 double in1_tmp;
 in1_tmp = in2_data[i1 * stride_1_0 + in2->size[0] * aux_1_1];
 b_in1_data[i1 + b_in1->size[0] * i] =
 in1_data[i1 * stride_0_0 + in1->size[0] * aux_0_1] *
 in1_data[i1 * stride_0_0 + in1->size[0] * aux_0_1] +
 in1_tmp * in1_tmp;
 }
 aux_1_1 += stride_1_1;
 aux_0_1 += stride_0_1;
 }
 i = in1->size[0] * in1->size[1];
 in1->size[0] = b_in1->size[0];
 in1->size[1] = b_in1->size[1];
 emxEnsureCapacity_real_T(in1, i);
 in1_data = in1->data;
 loop_ub = b_in1->size[1];
 for (i = 0; i < loop_ub; i++) {
 b_loop_ub = b_in1->size[0];
 for (i1 = 0; i1 < b_loop_ub; i1++) {
 in1_data[i1 + in1->size[0] * i] = b_in1_data[i1 + b_in1->size[0] * i];
 }
 }
 emxFree_real_T(&b_in1);
}

/*
 * Arguments : const emxArray_real_T *originalImage
 * double threshold
 * emxArray_uint8_T *edgeImage
 * Return Type : void
 */
void sobel(const emxArray_real_T *originalImage, double threshold,
 emxArray_uint8_T *edgeImage)
{
 emxArray_real_T *H;
 emxArray_real_T *V;
 double *H_data;
 double *V_data;
 int k;
 int nx;
 unsigned char *edgeImage_data;
 if (!isInitialized_sobel) {
 sobel_initialize();
 }
 emxInit_real_T(&H, 2);
 emxInit_real_T(&V, 2);
 /* edgeImage = sobel(originalImage, threshold) */
 /* Sobel edge detection. Given a normalized image (with double values) */
 /* return an image where the edges are detected w.r.t. threshold value. */
 conv2AXPYSameCMP(originalImage, H);
 H_data = H->data;
 b_conv2AXPYSameCMP(originalImage, V);
 V_data = V->data;
 if ((H->size[0] == V->size[0]) && (H->size[1] == V->size[1])) {
 nx = H->size[0] * H->size[1];
 for (k = 0; k < nx; k++) {

 Generate Code to Detect Edges on Images

27-143

 H_data[k] = H_data[k] * H_data[k] + V_data[k] * V_data[k];
 }
 } else {
 binary_expand_op(H, V);
 H_data = H->data;
 }
 emxFree_real_T(&V);
 nx = H->size[0] * H->size[1];
 for (k = 0; k < nx; k++) {
 H_data[k] = sqrt(H_data[k]);
 }
 k = edgeImage->size[0] * edgeImage->size[1];
 edgeImage->size[0] = H->size[0];
 edgeImage->size[1] = H->size[1];
 emxEnsureCapacity_uint8_T(edgeImage, k);
 edgeImage_data = edgeImage->data;
 nx = H->size[0] * H->size[1];
 for (k = 0; k < nx; k++) {
 edgeImage_data[k] = (unsigned char)((H_data[k] > threshold) * 255U);
 }
 emxFree_real_T(&H);
}

/*
 * File trailer for sobel.c
 *
 * [EOF]
 */

27 Generating C/C++ Code from MATLAB Code

27-144

C Code Generation for a MATLAB Kalman Filtering Algorithm
This example shows how to generate C code for a MATLAB® Kalman filter function, kalmanfilter,
which estimates the position of a moving object based on past noisy measurements. It also shows how
to generate a MEX function for this MATLAB code to increase the execution speed of the algorithm in
MATLAB.

Prerequisites

There are no prerequisites for this example.

About the kalmanfilter Function

The kalmanfilter function predicts the position of a moving object based on its past values. It uses
a Kalman filter estimator, a recursive adaptive filter that estimates the state of a dynamic system from
a series of noisy measurements. Kalman filtering has a broad range of application in areas such as
signal and image processing, control design, and computational finance.

About the Kalman Filter Estimator Algorithm

The Kalman estimator computes the position vector by computing and updating the Kalman state
vector. The state vector is defined as a 6-by-1 column vector that includes position (x and y), velocity
(Vx Vy), and acceleration (Ax and Ay) measurements in a 2-dimensional Cartesian space. Based on the
classical laws of motion:

X = X0 + Vxdt
Y = Y0 + Vydt

Vx = Vx0 + Axdt
Vy = Vy0 + Aydt

The iterative formula capturing these laws are reflected in the Kalman state transition matrix "A".
Note that by writing about 10 lines of MATLAB code, you can implement the Kalman estimator based
on the theoretical mathematical formula found in many adaptive filtering textbooks.

type kalmanfilter.m

% Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)
%#codegen
dt=1;
% Initialize state transition matrix
A=[1 0 dt 0 0 0;... % [x]
 0 1 0 dt 0 0;... % [y]
 0 0 1 0 dt 0;... % [Vx]
 0 0 0 1 0 dt;... % [Vy]
 0 0 0 0 1 0 ;... % [Ax]
 0 0 0 0 0 1]; % [Ay]
H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Initialize measurement matrix
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est % Initial state conditions
if isempty(x_est)
 x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]'
 p_est = zeros(6, 6);
end

 C Code Generation for a MATLAB Kalman Filtering Algorithm

27-145

% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;
% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';
% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements
y = H * x_est;
end % of the function

Load Test Data

The position of the object to track are recorded as x and y coordinates in a Cartesian space in a MAT
file called position_data.mat. The following code loads the MAT file and plots the trace of the
positions. The test data includes two sudden shifts or discontinuities in position which are used to
check that the Kalman filter can quickly re-adjust and track the object.

load position_data.mat
hold; grid;

Current plot held

for idx = 1: numPts
z = position(:,idx);
plot(z(1), z(2), 'bx');
axis([-1 1 -1 1]);
end
title('Test vector for the Kalman filtering with 2 sudden discontinuities ');
xlabel('x-axis');ylabel('y-axis');
hold;

27 Generating C/C++ Code from MATLAB Code

27-146

Current plot released

Inspect and Run the ObjTrack Function

The ObjTrack.m function calls the Kalman filter algorithm and plots the trajectory of the object in
blue and the Kalman filter estimated position in green. Initially, you see that it takes a short time for
the estimated position to converge with the actual position of the object. Then, three sudden shifts in
position occur. Each time the Kalman filter readjusts and tracks the object after a few iterations.

type ObjTrack

% Copyright 2010 The MathWorks, Inc.
function ObjTrack(position)
%#codegen
% First, setup the figure
numPts = 300; % Process and plot 300 samples
figure;hold;grid; % Prepare plot window
% Main loop
for idx = 1: numPts
 z = position(:,idx); % Get the input data
 y = kalmanfilter(z); % Call Kalman filter to estimate the position
 plot_trajectory(z,y); % Plot the results
end
hold;
end % of the function

ObjTrack(position)

 C Code Generation for a MATLAB Kalman Filtering Algorithm

27-147

Current plot held

Current plot released

Generate C Code

The codegen command with the -config:lib option generates C code packaged as a standalone C
library.

Because C uses static typing, codegen must determine the properties of all variables in the MATLAB
files at compile time. Here, the -args command-line option supplies an example input so that
codegen can infer new types based on the input types.

The -report option generates a compilation report that contains a summary of the compilation
results and links to generated files. After compiling the MATLAB code, codegen provides a hyperlink
to this report.

z = position(:,1);
codegen -config:lib -report -c kalmanfilter.m -args {z}

Code generation successful: To view the report, open('codegen\lib\kalmanfilter\html\report.mldatx')

Inspect the Generated Code

The generated C code is in the codegen/lib/kalmanfilter/ folder. The files are:

dir codegen/lib/kalmanfilter/

27 Generating C/C++ Code from MATLAB Code

27-148

. kalmanfilter_initialize.c

.. kalmanfilter_initialize.h

.gitignore kalmanfilter_rtw.bat
_clang-format kalmanfilter_rtw.mk
buildInfo.mat kalmanfilter_rtw.rsp
codeInfo.mat kalmanfilter_rtw_comp.rsp
codedescriptor.dmr kalmanfilter_rtw_ref.rsp
compileInfo.mat kalmanfilter_terminate.c
examples kalmanfilter_terminate.h
html kalmanfilter_types.h
interface rtw_proj.tmw
kalmanfilter.c rtwtypes.h
kalmanfilter.h setup_msvc.bat
kalmanfilter_data.c
kalmanfilter_data.h

Inspect the C Code for the kalmanfilter.c Function

type codegen/lib/kalmanfilter/kalmanfilter.c

/*
 * File: kalmanfilter.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:01:25
 */

/* Include Files */
#include "kalmanfilter.h"
#include "kalmanfilter_data.h"
#include "kalmanfilter_initialize.h"
#include <math.h>
#include <string.h>

/* Variable Definitions */
static double x_est[6];

static double p_est[36];

/* Function Definitions */
/*
 * Arguments : const double z[2]
 * double y[2]
 * Return Type : void
 */
void kalmanfilter(const double z[2], double y[2])
{
 static const short R[4] = {1000, 0, 0, 1000};
 static const signed char b_a[36] = {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1};
 static const signed char iv[36] = {1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1};
 static const signed char c_a[12] = {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0};
 static const signed char iv1[12] = {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0};
 double a[36];
 double p_prd[36];

 C Code Generation for a MATLAB Kalman Filtering Algorithm

27-149

 double B[12];
 double Y[12];
 double x_prd[6];
 double S[4];
 double b_z[2];
 double a21;
 double a22;
 double a22_tmp;
 double d;
 int i;
 int k;
 int r1;
 int r2;
 signed char Q[36];
 if (!isInitialized_kalmanfilter) {
 kalmanfilter_initialize();
 }
 /* Copyright 2010 The MathWorks, Inc. */
 /* Initialize state transition matrix */
 /* % [x] */
 /* % [y] */
 /* % [Vx] */
 /* % [Vy] */
 /* % [Ax] */
 /* [Ay] */
 /* Initialize measurement matrix */
 for (i = 0; i < 36; i++) {
 Q[i] = 0;
 }
 /* Initial state conditions */
 /* Predicted state and covariance */
 for (k = 0; k < 6; k++) {
 Q[k + 6 * k] = 1;
 x_prd[k] = 0.0;
 for (i = 0; i < 6; i++) {
 r1 = k + 6 * i;
 x_prd[k] += (double)b_a[r1] * x_est[i];
 d = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d += (double)b_a[k + 6 * r2] * p_est[r2 + 6 * i];
 }
 a[r1] = d;
 }
 }
 for (i = 0; i < 6; i++) {
 for (r2 = 0; r2 < 6; r2++) {
 d = 0.0;
 for (r1 = 0; r1 < 6; r1++) {
 d += a[i + 6 * r1] * (double)iv[r1 + 6 * r2];
 }
 r1 = i + 6 * r2;
 p_prd[r1] = d + (double)Q[r1];
 }
 }
 /* Estimation */
 for (i = 0; i < 2; i++) {
 for (r2 = 0; r2 < 6; r2++) {
 d = 0.0;

27 Generating C/C++ Code from MATLAB Code

27-150

 for (r1 = 0; r1 < 6; r1++) {
 d += (double)c_a[i + (r1 << 1)] * p_prd[r2 + 6 * r1];
 }
 B[i + (r2 << 1)] = d;
 }
 for (r2 = 0; r2 < 2; r2++) {
 d = 0.0;
 for (r1 = 0; r1 < 6; r1++) {
 d += B[i + (r1 << 1)] * (double)iv1[r1 + 6 * r2];
 }
 r1 = i + (r2 << 1);
 S[r1] = d + (double)R[r1];
 }
 }
 if (fabs(S[1]) > fabs(S[0])) {
 r1 = 1;
 r2 = 0;
 } else {
 r1 = 0;
 r2 = 1;
 }
 a21 = S[r2] / S[r1];
 a22_tmp = S[r1 + 2];
 a22 = S[r2 + 2] - a21 * a22_tmp;
 for (k = 0; k < 6; k++) {
 double d1;
 i = k << 1;
 d = B[r1 + i];
 d1 = (B[r2 + i] - d * a21) / a22;
 Y[i + 1] = d1;
 Y[i] = (d - d1 * a22_tmp) / S[r1];
 }
 for (i = 0; i < 2; i++) {
 for (r2 = 0; r2 < 6; r2++) {
 B[r2 + 6 * i] = Y[i + (r2 << 1)];
 }
 }
 /* Estimated state and covariance */
 for (i = 0; i < 2; i++) {
 d = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d += (double)c_a[i + (r2 << 1)] * x_prd[r2];
 }
 b_z[i] = z[i] - d;
 }
 for (i = 0; i < 6; i++) {
 d = B[i + 6];
 x_est[i] = x_prd[i] + (B[i] * b_z[0] + d * b_z[1]);
 for (r2 = 0; r2 < 6; r2++) {
 r1 = r2 << 1;
 a[i + 6 * r2] = B[i] * (double)c_a[r1] + d * (double)c_a[r1 + 1];
 }
 for (r2 = 0; r2 < 6; r2++) {
 d = 0.0;
 for (r1 = 0; r1 < 6; r1++) {
 d += a[i + 6 * r1] * p_prd[r1 + 6 * r2];
 }
 r1 = i + 6 * r2;

 C Code Generation for a MATLAB Kalman Filtering Algorithm

27-151

 p_est[r1] = p_prd[r1] - d;
 }
 }
 /* Compute the estimated measurements */
 for (i = 0; i < 2; i++) {
 d = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d += (double)c_a[i + (r2 << 1)] * x_est[r2];
 }
 y[i] = d;
 }
}

/*
 * Arguments : void
 * Return Type : void
 */
void kalmanfilter_init(void)
{
 int i;
 for (i = 0; i < 6; i++) {
 x_est[i] = 0.0;
 }
 /* x_est=[x,y,Vx,Vy,Ax,Ay]' */
 memset(&p_est[0], 0, 36U * sizeof(double));
}

/*
 * File trailer for kalmanfilter.c
 *
 * [EOF]
 */

Accelerate the Execution Speed of the MATLAB Algorithm

You can accelerate the execution speed of the kalmanfilter function that is processing a large data
set by using the codegen command to generate a MEX function from the MATLAB code.

Call the kalman_loop Function to Process Large Data Sets

First, run the Kalman algorithm with a large number of data samples in MATLAB. The kalman_loop
function runs the kalmanfilter function in a loop. The number of loop iterations is equal to the
second dimension of the input to the function.

type kalman_loop

% Copyright 2010 The MathWorks, Inc.
function y=kalman_loop(z)
% Call Kalman estimator in the loop for large data set testing
%#codegen
[DIM, LEN]=size(z);
y=zeros(DIM,LEN); % Initialize output
for n=1:LEN % Output in the loop
 y(:,n)=kalmanfilter(z(:,n));
end;

27 Generating C/C++ Code from MATLAB Code

27-152

Baseline Execution Speed Without Compilation

Now time the MATLAB algorithm. Use the randn command to generate random numbers and create
the input matrix position composed of 100,000 samples of (2x1) position vectors. Remove all MEX
files from the current folder. Use the MATLAB stopwatch timer (tic and toc commands) to measure
how long it takes to process these samples when running the kalman_loop function.

clear mex
delete(['*.' mexext])
position = randn(2,100000);
tic, kalman_loop(position); a=toc;

Generate a MEX Function for Testing

Next, generate a MEX function using the command codegen followed by the name of the MATLAB
function kalman_loop. The codegen command generates a MEX function called
kalman_loop_mex. You can then compare the execution speed of this MEX function with that of the
original MATLAB algorithm.

codegen -args {position} kalman_loop.m

Code generation successful.

which kalman_loop_mex

C:\TEMP\Bdoc22a_1891349_13144\ibC86E06\12\tp708fb8a4\coder-ex53054096\kalman_loop_mex.mexw64

Time the MEX Function

Now, time the MEX function kalman_loop_mex. Use the same signal position as before as the
input, to ensure a fair comparison of the execution speed.

tic, kalman_loop_mex(position); b=toc;

Comparison of the Execution Speeds

Notice the speed execution difference using a generated MEX function.

display(sprintf('The speedup is %.1f times using the generated MEX over the baseline MATLAB function.',a/b));

The speedup is 27.4 times using the generated MEX over the baseline MATLAB function.

 C Code Generation for a MATLAB Kalman Filtering Algorithm

27-153

Generate Code to Optimize Portfolio by Using Black Litterman
Approach

This example shows how to generate a MEX function and C source code from MATLAB® code that
performs portfolio optimization using the Black Litterman approach.

Prerequisites

There are no prerequisites for this example.

About the hlblacklitterman Function

The hlblacklitterman.m function reads in financial information regarding a portfolio and
performs portfolio optimization using the Black Litterman approach.

type hlblacklitterman

function [er, ps, w, pw, lambda, theta] = hlblacklitterman(delta, weq, sigma, tau, P, Q, Omega)%#codegen
% hlblacklitterman
% This function performs the Black-Litterman blending of the prior
% and the views into a new posterior estimate of the returns as
% described in the paper by He and Litterman.
% Inputs
% delta - Risk tolerance from the equilibrium portfolio
% weq - Weights of the assets in the equilibrium portfolio
% sigma - Prior covariance matrix
% tau - Coefficiet of uncertainty in the prior estimate of the mean (pi)
% P - Pick matrix for the view(s)
% Q - Vector of view returns
% Omega - Matrix of variance of the views (diagonal)
% Outputs
% Er - Posterior estimate of the mean returns
% w - Unconstrained weights computed given the Posterior estimates
% of the mean and covariance of returns.
% lambda - A measure of the impact of each view on the posterior estimates.
% theta - A measure of the share of the prior and sample information in the
% posterior precision.

% Reverse optimize and back out the equilibrium returns
% This is formula (12) page 6.
pi = weq * sigma * delta;
% We use tau * sigma many places so just compute it once
ts = tau * sigma;
% Compute posterior estimate of the mean
% This is a simplified version of formula (8) on page 4.
er = pi' + ts * P' * inv(P * ts * P' + Omega) * (Q - P * pi');
% We can also do it the long way to illustrate that d1 + d2 = I
d = inv(inv(ts) + P' * inv(Omega) * P);
d1 = d * inv(ts);
d2 = d * P' * inv(Omega) * P;
er2 = d1 * pi' + d2 * pinv(P) * Q;
% Compute posterior estimate of the uncertainty in the mean
% This is a simplified and combined version of formulas (9) and (15)
ps = ts - ts * P' * inv(P * ts * P' + Omega) * P * ts;
posteriorSigma = sigma + ps;
% Compute the share of the posterior precision from prior and views,
% then for each individual view so we can compare it with lambda

27 Generating C/C++ Code from MATLAB Code

27-154

theta=zeros(1,2+size(P,1));
theta(1,1) = (trace(inv(ts) * ps) / size(ts,1));
theta(1,2) = (trace(P'*inv(Omega)*P* ps) / size(ts,1));
for i=1:size(P,1)
 theta(1,2+i) = (trace(P(i,:)'*inv(Omega(i,i))*P(i,:)* ps) / size(ts,1));
end
% Compute posterior weights based solely on changed covariance
w = (er' * inv(delta * posteriorSigma))';
% Compute posterior weights based on uncertainty in mean and covariance
pw = (pi * inv(delta * posteriorSigma))';
% Compute lambda value
% We solve for lambda from formula (17) page 7, rather than formula (18)
% just because it is less to type, and we've already computed w*.
lambda = pinv(P)' * (w'*(1+tau) - weq)';
end

% Black-Litterman example code for MatLab (hlblacklitterman.m)
% Copyright (c) Jay Walters, blacklitterman.org, 2008.
%
% Redistribution and use in source and binary forms,
% with or without modification, are permitted provided
% that the following conditions are met:
%
% Redistributions of source code must retain the above
% copyright notice, this list of conditions and the following
% disclaimer.
%
% Redistributions in binary form must reproduce the above
% copyright notice, this list of conditions and the following
% disclaimer in the documentation and/or other materials
% provided with the distribution.
%
% Neither the name of blacklitterman.org nor the names of its
% contributors may be used to endorse or promote products
% derived from this software without specific prior written
% permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
% CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
% INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
% BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
% DAMAGE.
%
% This program uses the examples from the paper "The Intuition
% Behind Black-Litterman Model Portfolios", by He and Litterman,
% 1999. You can find a copy of this paper at the following url.
% http:%papers.ssrn.com/sol3/papers.cfm?abstract_id=334304
%
% For more details on the Black-Litterman model you can also view

 Generate Code to Optimize Portfolio by Using Black Litterman Approach

27-155

% "The BlackLitterman Model: A Detailed Exploration", by this author
% at the following url.
% http:%www.blacklitterman.org/Black-Litterman.pdf
%

The %#codegen directive indicates that the MATLAB code is intended for code generation.

Generate the MEX Function for Testing

Generate a MEX function using the codegen command.

codegen hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}

Code generation successful.

Before generating C code, you should first test the MEX function in MATLAB to ensure that it is
functionally equivalent to the original MATLAB code and that no run-time errors occur. By default,
codegen generates a MEX function named hlblacklitterman_mex in the current folder. This
allows you to test the MATLAB code and MEX function and compare the results.

Run the MEX Function

Call the generated MEX function

testMex();

View 1
Country P mu w*
Australia 0 4.328 1.524
Canada 0 7.576 2.095
France -29.5 9.288 -3.948
Germany 100 11.04 35.41
Japan 0 4.506 11.05
UK -70.5 6.953 -9.462
USA 0 8.069 58.57
q 5
omega/tau 0.0213
lambda 0.317
theta 0.0714
pr theta 0.929

View 1
Country P mu w*
Australia 0 4.328 1.524
Canada 0 7.576 2.095
France -29.5 9.288 -3.948
Germany 100 11.04 35.41
Japan 0 4.506 11.05
UK -70.5 6.953 -9.462
USA 0 8.069 58.57
q 5
omega/tau 0.0213
lambda 0.317
theta 0.0714
pr theta 0.929

Execution Time - MATLAB function: 0.021524 seconds
Execution Time - MEX function : 0.0051998 seconds

27 Generating C/C++ Code from MATLAB Code

27-156

Generate C Code

cfg = coder.config('lib');
codegen -config cfg hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}

Code generation successful.

Using codegen with the specified -config cfg option produces a standalone C library.

Inspect the Generated Code

By default, the code generated for the library is in the folder codegen/lib/hbblacklitterman/.

The files are:

dir codegen/lib/hlblacklitterman/

. hlblacklitterman_terminate.c

.. hlblacklitterman_terminate.h

.gitignore hlblacklitterman_terminate.obj
_clang-format hlblacklitterman_types.h
buildInfo.mat interface
codeInfo.mat inv.c
codedescriptor.dmr inv.h
compileInfo.mat inv.obj
examples pinv.c
hlblacklitterman.c pinv.h
hlblacklitterman.h pinv.obj
hlblacklitterman.lib rtGetInf.c
hlblacklitterman.obj rtGetInf.h
hlblacklitterman_data.c rtGetInf.obj
hlblacklitterman_data.h rtGetNaN.c
hlblacklitterman_data.obj rtGetNaN.h
hlblacklitterman_initialize.c rtGetNaN.obj
hlblacklitterman_initialize.h rt_nonfinite.c
hlblacklitterman_initialize.obj rt_nonfinite.h
hlblacklitterman_rtw.bat rt_nonfinite.obj
hlblacklitterman_rtw.mk rtw_proj.tmw
hlblacklitterman_rtw.rsp rtwtypes.h
hlblacklitterman_rtw_comp.rsp setup_msvc.bat
hlblacklitterman_rtw_ref.rsp

Inspect the C Code for the hlblacklitterman.c Function

type codegen/lib/hlblacklitterman/hlblacklitterman.c

/*
 * File: hlblacklitterman.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:07:47
 */

/* Include Files */
#include "hlblacklitterman.h"
#include "inv.h"
#include "pinv.h"
#include "rt_nonfinite.h"

 Generate Code to Optimize Portfolio by Using Black Litterman Approach

27-157

/* Function Definitions */
/*
 * hlblacklitterman
 * This function performs the Black-Litterman blending of the prior
 * and the views into a new posterior estimate of the returns as
 * described in the paper by He and Litterman.
 * Inputs
 * delta - Risk tolerance from the equilibrium portfolio
 * weq - Weights of the assets in the equilibrium portfolio
 * sigma - Prior covariance matrix
 * tau - Coefficiet of uncertainty in the prior estimate of the mean (pi)
 * P - Pick matrix for the view(s)
 * Q - Vector of view returns
 * Omega - Matrix of variance of the views (diagonal)
 * Outputs
 * Er - Posterior estimate of the mean returns
 * w - Unconstrained weights computed given the Posterior estimates
 * of the mean and covariance of returns.
 * lambda - A measure of the impact of each view on the posterior estimates.
 * theta - A measure of the share of the prior and sample information in the
 * posterior precision.
 *
 * Arguments : double delta
 * const double weq[7]
 * const double sigma[49]
 * double tau
 * const double P[7]
 * double Q
 * double Omega
 * double er[7]
 * double ps[49]
 * double w[7]
 * double pw[7]
 * double *lambda
 * double theta[3]
 * Return Type : void
 */
void hlblacklitterman(double delta, const double weq[7], const double sigma[49],
 double tau, const double P[7], double Q, double Omega,
 double er[7], double ps[49], double w[7], double pw[7],
 double *lambda, double theta[3])
{
 double b_er_tmp[49];
 double dv[49];
 double posteriorSigma[49];
 double ts[49];
 double er_tmp[7];
 double pi[7];
 double unusedExpr[7];
 double y_tmp[7];
 double b;
 double b_P;
 double b_b;
 double b_y_tmp;
 int i;
 int i1;
 int ps_tmp;
 /* Reverse optimize and back out the equilibrium returns */

27 Generating C/C++ Code from MATLAB Code

27-158

 /* This is formula (12) page 6. */
 for (i = 0; i < 7; i++) {
 b = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 b += weq[i1] * sigma[i1 + 7 * i];
 }
 pi[i] = b * delta;
 }
 /* We use tau * sigma many places so just compute it once */
 for (i = 0; i < 49; i++) {
 ts[i] = tau * sigma[i];
 }
 /* Compute posterior estimate of the mean */
 /* This is a simplified version of formula (8) on page 4. */
 b_y_tmp = 0.0;
 b_P = 0.0;
 for (i = 0; i < 7; i++) {
 b = 0.0;
 b_b = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 double d;
 d = P[i1];
 b += ts[i + 7 * i1] * d;
 b_b += d * ts[i1 + 7 * i];
 }
 y_tmp[i] = b_b;
 er_tmp[i] = b;
 b = P[i];
 b_y_tmp += b_b * b;
 b_P += b * pi[i];
 }
 b_b = 1.0 / (b_y_tmp + Omega);
 b = Q - b_P;
 for (i = 0; i < 7; i++) {
 er[i] = pi[i] + er_tmp[i] * b_b * b;
 }
 /* We can also do it the long way to illustrate that d1 + d2 = I */
 b_y_tmp = 1.0 / Omega;
 pinv(P, unusedExpr);
 /* Compute posterior estimate of the uncertainty in the mean */
 /* This is a simplified and combined version of formulas (9) and (15) */
 b = 0.0;
 for (i = 0; i < 7; i++) {
 b += y_tmp[i] * P[i];
 }
 b_b = 1.0 / (b + Omega);
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i1 + 7 * i] = er_tmp[i1] * b_b * P[i];
 }
 }
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += b_er_tmp[i + 7 * ps_tmp] * ts[ps_tmp + 7 * i1];
 }
 ps_tmp = i + 7 * i1;

 Generate Code to Optimize Portfolio by Using Black Litterman Approach

27-159

 ps[ps_tmp] = ts[ps_tmp] - b;
 }
 }
 for (i = 0; i < 49; i++) {
 posteriorSigma[i] = sigma[i] + ps[i];
 }
 /* Compute the share of the posterior precision from prior and views, */
 /* then for each individual view so we can compare it with lambda */
 inv(ts, dv);
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += dv[i + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];
 }
 ts[i + 7 * i1] = b;
 }
 }
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += ts[ps_tmp + 7 * ps_tmp];
 }
 theta[0] = b / 7.0;
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i1 + 7 * i] = P[i1] * b_y_tmp * P[i];
 }
 }
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += b_er_tmp[i + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];
 }
 ts[i + 7 * i1] = b;
 }
 }
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += ts[ps_tmp + 7 * ps_tmp];
 }
 theta[1] = b / 7.0;
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i1 + 7 * i] = P[i1] * b_y_tmp * P[i];
 }
 }
 for (i = 0; i < 7; i++) {
 for (i1 = 0; i1 < 7; i1++) {
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 b += b_er_tmp[i + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];
 }
 ts[i + 7 * i1] = b;
 }
 }
 b = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {

27 Generating C/C++ Code from MATLAB Code

27-160

 b += ts[ps_tmp + 7 * ps_tmp];
 }
 theta[2] = b / 7.0;
 /* Compute posterior weights based solely on changed covariance */
 for (i = 0; i < 49; i++) {
 b_er_tmp[i] = delta * posteriorSigma[i];
 }
 inv(b_er_tmp, dv);
 for (i = 0; i < 7; i++) {
 b = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 b += er[i1] * dv[i1 + 7 * i];
 }
 w[i] = b;
 }
 /* Compute posterior weights based on uncertainty in mean and covariance */
 for (i = 0; i < 49; i++) {
 posteriorSigma[i] *= delta;
 }
 inv(posteriorSigma, dv);
 for (i = 0; i < 7; i++) {
 b = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 b += pi[i1] * dv[i1 + 7 * i];
 }
 pw[i] = b;
 }
 /* Compute lambda value */
 /* We solve for lambda from formula (17) page 7, rather than formula (18) */
 /* just because it is less to type, and we've already computed w*. */
 pinv(P, er_tmp);
 *lambda = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 *lambda += er_tmp[ps_tmp] * (w[ps_tmp] * (tau + 1.0) - weq[ps_tmp]);
 }
}

/*
 * File trailer for hlblacklitterman.c
 *
 * [EOF]
 */

 Generate Code to Optimize Portfolio by Using Black Litterman Approach

27-161

Generate Code for Persistent Variables
This example shows how to generate a MEX function from a MATLAB® function, compute_average,
that uses persistent variables. It illustrates that you must clear the state of persistent variables before
using the function to compute the average of a new set of values.

This example also shows how to initialize and terminate the state of the persistent variables for the
same MATLAB function in standalone generated code. You must clear the state of persistent variables
in the generated code before using the function to compute the average of a new set of values.

Prerequisites

There are no prerequisites for this example.

About the compute_average Function

The compute_average.m function uses two persistent variables, the accumulated sum and the
number of values added so far, so that you can call the function with one value at a time.

type compute_average

% y = compute_average(x)
% This function takes an input scalar value 'x' and returns the average
% value so far.
function y = compute_average(x) %#codegen
assert(isa(x,'double')); % Input is scalar double

% Declare two persistent variables 'sum' and 'cnt'.
persistent sum cnt;

% Upon the first call we need to initialize the variables.
if isempty(sum)
 sum = 0;
 cnt = 0;
end

% Compute the accumulated sum and the number of values so far.
sum = sum + x;
cnt = cnt + 1;

% Return the current average.
y = sum / cnt;

The %#codegen directive indicates that the MATLAB code is intended for code generation.

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the MATLAB
file to compile.

codegen compute_average

Code generation successful.

By default, codegen generates a MEX function named hello_world_mex in the current folder. This
allows you to test the MATLAB code and MEX function and compare the results.

27 Generating C/C++ Code from MATLAB Code

27-162

Run the MEX Function

(10 + 20 + 100) / 3 = 43.3333

compute_average_mex(10)

ans = 10

compute_average_mex(20)

ans = 15

compute_average_mex(100)

ans = 43.3333

Clear the Internal State of Persistent Variables

Clear the persistent variables by using the clear mex command.

clear mex

Run the MEX Function Again to Calculate the Average of a Different Set of Values

(10 + 20 + 30 + 40) / 4 = 25

compute_average_mex(10)

ans = 10

compute_average_mex(20)

ans = 15

compute_average_mex(30)

ans = 20

compute_average_mex(40)

ans = 25

Clear the Internal State of Persistent Variables in Standalone Generated Code

The states of persistent variables in standalone generated code are cleared by calling the initiate and
terminate functions in the main function.These functions are generated by the code generator. These
files are in the codegen directory.

You can edit the example main file, main.c to invoke the initiate and terminate functions. For
example:

type main.c

/*
 * File: main.c
 */
/* Include Files */
#include "main.h"
#include "compute_average.h"
#include "compute_average_terminate.h"

 Generate Code for Persistent Variables

27-163

#include "compute_average_initialize.h"

/* Function Declarations */
static double argInit_real_T(void);
static void main_compute_average(void);

/* Function Definitions */
/*
 * Arguments : void
 * Return Type : double
 */
static double argInit_real_T(void)
{
 return 0.0;
}

/*
 * Arguments : void
 * Return Type : void
 */
static void main_compute_average(void)
{
 double y;

 /* Initialize function 'compute_average' input arguments. */
 /* Call the entry-point 'compute_average'. */
 y = compute_average(argInit_real_T());
}

/*
 * Arguments : int argc
 * const char * const argv[]
 * Return Type : int
 */
int main(int argc, const char * const argv[])
{
 (void)argc;
 (void)argv;

 /* Initialize the entry-point function. */
 compute_average_initiatlize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_compute_average();

 /* Terminate the application. */
 compute_average_terminate();

 /*Once the application is terminated, the state of the persistent variables is cleared. */

 /* Re-initialize the entry-point function. */
 compute_average_initialize();

 /* You can run the application for a new set of values.*/
 main_compute_average();

 /* Terminate the application after your process is complete.*/

27 Generating C/C++ Code from MATLAB Code

27-164

 compute_average_terminate();

 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

As you can see, the main.c file has been edited to call the terminate function,
compute_average_terminate() to clear the state of the persistent variables. A new set of
computations is run by calling compute_average_initialize() and main_compute_average()
with a new set of values.

 Generate Code for Persistent Variables

27-165

Generate Code for Structure Arrays
This example shows how to write a MATLAB® function that uses structure arrays so that it is suitable
for code generation. For code generation, you must first create a scalar template version of the
structure before growing it into an array. The code generation inference engine uses the type of this
scalar value as the base type of the array.

Prerequisites

There are no prerequisites for this example.

About the struct_array Function

The struct_array.m file uses a structure array.

type struct_array

% y = struct_array(n)
% Take an input scalar number 'n' which will designate the size of the
% structure array return.
function y = struct_array(n) %#codegen

% Copyright 2010-2013 The MathWorks, Inc.

assert(isa(n,'double')); % Input is scalar double

% To create a structure array you start to define the base scalar element
% first. Typically, we initialize all the fields with "dummy" (or zero)
% values so the type/shape of all its contents are well defined.
s.x = 0;
s.y = 0;
s.vx = 0;
s.vy = 0;

% To create a structure array of fixed size you can do this in multiple
% ways. One example is to use the library function 'repmat' which takes a
% scalar element and repeats it to its desired size.
arr1 = repmat(s, 3, 5); % Creates a 3x5 matrix of structure 's'

% At this point you can now modify the fields of this structure array.
arr1(2,3).x = 10;
arr1(2,3).y = 20;
arr1(2,4).x = 5;
arr1(2,4).y = 7;

% Another way of creating a structure array of fixed size is to use the
% concatenation operator.
arr2 = [s s s; s s s; s s s; s s s; s s s];

% If two variables agree on base type and shape you can copy one structure
% array to the other using standard assignment.
arr2 = arr1;

% To create a structure array of variable size with a known upper bound can
% be done in multiple ways as well. Again, we can use repmat for this, but
% this time we will add a constraint to the (non constant) input variable.
% This guarantees that the input 'n' of this function is less than or equal to 10.

27 Generating C/C++ Code from MATLAB Code

27-166

assert(n <= 10);

% Create a row vector with at most 10 elements of structures based on 's'
arr3 = repmat(s, 1, n);

% Or we can use a for-loop with the concatenation operator. The compiler is
% unable to analyze that 'arr4' will be at most 10 elements big, so we
% add a hint on 'arr4' using coder.varsize. This will specify that the
% dimensions of 'arr4' is exactly one row with at most 10 columns. Look at
% the documentation for coder.varsize for further information.
coder.varsize('arr4', [1 10]);
arr4 = repmat(s, 1, 0);
for i = 1:n
 arr4 = [arr4 s];
end

% Let the top-level function return 'arr4'.
y = arr4;

In MATLAB, when building up a structure array, you would typically just add fields as you go. For
example, s(1).x = 10; s(2).y = 20; This "dynamic" style of building structures is not supported for
code generation. One reason is that it is possible in MATLAB to have different structure fields for two
different elements of a structure array, which conflicts with the more static approach of type
inference. Therefore, you need to fully specify the base scalar element first, and then grow a
structure array from this fully specified element. This method guarantees that two elements of a
structure array always share the same type (fields).

Generate the MEX Function

Generate a MEX function using the command codegen followed by the name of the MATLAB file to
compile.

codegen struct_array

Code generation successful.

By default, codegen generates a MEX function named struct_array_mex in the current folder.
This allows you to test the MATLAB code and MEX function and compare the results.

Run the MEX Function

struct_array_mex(10)

ans=1×10 struct array with fields:
 x
 y
 vx
 vy

 Generate Code for Structure Arrays

27-167

Add Custom Toolchains to MATLAB® Coder™ Build Process
This example shows how to register and use a toolchain to compile an executable. This example uses
Intel® Compiler, but the concepts and API shown below can be used for any toolchain. The registered
toolchain can be selected from a list of toolchains and a makefile will be generated to build the code
using that toolchain.

About the coderrand Function

In this example, you generate code for the coderrand function. This MATLAB® function simply
generates a random scalar value from the standard uniform distribution on the open interval (0,1).

type coderrand

function y = coderrand %#codegen

% Copyright 2012 The MathWorks, Inc.

y = rand();

Toolchain Info

A toolchain is a collection of tools that is required for compiling and linking generated code for a
specified platform. A toolchain has multiple tools, such as a compiler, linker and archiver. Each of
these tools can take multiple options, which can be grouped into configurations like Faster Builds,
Faster Runs, Debug. A toolchain object describes the basic information of the toolchain. The toolchain
object has methods to describe all of the above. The object can be saved into a MATLAB file and
shared across installations.

This example uses the toolchain definition file intel_tc.m.

tc = intel_tc

tc =
###
Toolchain Name: Intel v14 | nmake makefile (64-bit Windows)
Supported Toolchain Version: 14
Toolchain Specification Format Version: 2022a
Toolchain Specification Revision: 1.0
###

Supported Host Platform = win64
Supported Languages = C/C++

Setup/Cleanup

MATLAB Setup: (none)
MATLAB Cleanup: (none)
Shell Setup:
 call %ICPP_COMPILER14%\bin\compilervars.bat intel64
Shell Cleanup: (none)

Attributes

RequiresBatchFile = true

27 Generating C/C++ Code from MATLAB Code

27-168

RequiresCommandFile = true
TransformPathsWithSpaces = true

--
Macros intrinsic to the toolchain or assumed to be defined elsewhere
--
ldebug
conflags
cflags

MACROS

MW_EXTERNLIB_DIR = $(MATLAB_ROOT)\extern\lib\win64\microsoft
MW_LIB_DIR = $(MATLAB_ROOT)\lib\win64
CFLAGS_ADDITIONAL = -D_CRT_SECURE_NO_WARNINGS
CPPFLAGS_ADDITIONAL = -EHs -D_CRT_SECURE_NO_WARNINGS
LIBS_TOOLCHAIN = $(conlibs)
CVARSFLAG =

###
Build Tool: Intel C Compiler
###

Language : 'C'
OptionsRegistry : {'C Compiler', 'CFLAGS'}
InputFileExtensions : {Source}
OutputFileExtensions : {Object}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

CC = icl
CC_PATH =

Directives

CompileFlag =
Debug = -Zi
ErrorPattern =
FileNamePattern =
FileSeparator = \
Include =
IncludeSearchPath = -I
LineNumberPattern =
OutputFlag = -Fo
PreprocessFile =
PreprocessorDefine = -D
WarningPattern =

File Extensions

 Add Custom Toolchains to MATLAB® Coder™ Build Process

27-169

Header = .h
Object = .obj
Source = .c

###
Build Tool: Intel C/C++ Linker
###

Language : 'C'
OptionsRegistry : {'Linker', 'LDFLAGS', 'Shared Library Linker', 'SHAREDLIB_LDFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {'Executable', 'Shared Library'}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE, coder.make.enum.BuildOutput.SHARED_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

LD = xilink
LD_PATH =

Directives

Debug =
FileSeparator = \
Library = -L
LibrarySearchPath = -I
LibrarySearchPathRuntime =
OutputFlag = -out:

File Extensions

Executable = .exe
Shared Library = .dll

###
Build Tool: Intel C++ Compiler
###

Language : 'C++'
OptionsRegistry : {'C++ Compiler', 'CPPFLAGS'}
InputFileExtensions : {Source}
OutputFileExtensions : {Object}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

CPP = icl
CPP_PATH =

Directives

27 Generating C/C++ Code from MATLAB Code

27-170

CompileFlag =
Debug = -Zi
ErrorPattern =
FileNamePattern =
FileSeparator = \
Include =
IncludeSearchPath = -I
LineNumberPattern =
OutputFlag = -Fo
PreprocessFile =
PreprocessorDefine = -D
WarningPattern =

File Extensions

Header = .hpp
Object = .obj
Source = .cpp

###
Build Tool: Intel C/C++ Linker
###

Language : 'C++'
OptionsRegistry : {'C++ Linker', 'CPP_LDFLAGS', 'C++ Shared Library Linker', 'CPP_SHAREDLIB_LDFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {'Executable', 'Shared Library'}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE, coder.make.enum.BuildOutput.SHARED_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

CPP_LD = xilink
CPP_LD_PATH =

Directives

Debug =
FileSeparator = \
Library = -L
LibrarySearchPath = -I
LibrarySearchPathRuntime =
OutputFlag = -out:

File Extensions

Executable = .exe
Shared Library = .dll

###
Build Tool: Intel C/C++ Archiver
###

 Add Custom Toolchains to MATLAB® Coder™ Build Process

27-171

Language : 'C'
OptionsRegistry : {'Archiver', 'ARFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {Static Library}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.STATIC_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

AR = xilib
AR_PATH =

Directives

Debug =
FileSeparator = \
LibrarySearchPath =
OutputFlag = -out:

File Extensions

Static Library = .lib

###
Build Tool: Download
###

Language : ''
OptionsRegistry : {'Download', 'DOWNLOAD_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

DOWNLOAD =
DOWNLOAD_PATH =

Directives

(none)

File Extensions

(none)

###
Build Tool: Execute

27 Generating C/C++ Code from MATLAB Code

27-172

###

Language : ''
OptionsRegistry : {'Execute', 'EXECUTE_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

EXECUTE = $(PRODUCT)
EXECUTE_PATH =

Directives

(none)

File Extensions

(none)

###
Build Tool: NMAKE Utility
###

Language : ''
OptionsRegistry : {'Make Tool', 'MAKE_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

MAKE = nmake
MAKE_PATH =

Directives

Comment = #
DeleteCommand = @del
DisplayCommand = @echo
FileSeparator = \
ImpliedFirstDependency = $<
ImpliedTarget = $@
IncludeFile = !include
LineContinuation = \
MoveCommand = @ren
ReferencePattern = \$\($1\)
RunScriptCommand = @cmd /C

 Add Custom Toolchains to MATLAB® Coder™ Build Process

27-173

File Extensions

Makefile = .mk

###
Build Configuration : Faster Runs
Description : Minimize run time
###

ARFLAGS = /nologo
CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /O2
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /O2
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =
LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE)

###
Build Configuration : Faster Builds
Description : Minimize compilation and linking time
###

ARFLAGS = /nologo
CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /Od
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /Od
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =
LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE)

###
Build Configuration : Debug
Description : Build with debug information
###

ARFLAGS = /nologo $(ARDEBUG)
CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /Od $(CDEBUG)
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /Od $(CPPDEBUG)
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) $(CPPLDDEBUG)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =

27 Generating C/C++ Code from MATLAB Code

27-174

LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) $(LDDEBUG)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE) $(LDDEBUG)

save intel_tc tc

Registering a Toolchain

Toolchains are registered through RTW.TargetRegistry. To register the toolchain, you can also use
rtwTargetInfo which will be loaded by the system automatically.

copyfile myRtwTargetInfoCustom.txt rtwTargetInfo.m
type rtwTargetInfo

function rtwTargetInfo(tr)
%RTWTARGETINFO Registration file for custom toolchains.

% Copyright 2012-2016 The MathWorks, Inc.

tr.registerTargetInfo(@loc_createToolchain);

end

% ---
% Create the ToolchainInfoRegistry entries
% ---
function config = loc_createToolchain

config(1) = coder.make.ToolchainInfoRegistry;
config(1).Name = 'Intel v14 | nmake makefile (64-bit Windows)';
config(1).FileName = fullfile(fileparts(mfilename('fullpath')), 'intel_tc.mat');
config(1).TargetHWDeviceType = {'*'};
config(1).Platform = {computer('arch')};

end

Now, you can reset the TargetRegistry to pick up the new rtwTargetInfo.

RTW.TargetRegistry.getInstance('reset');

Choosing the Toolchain

You can now create the config object that is configured to create an executable using the new
toolchain.

cfg = coder.config('exe');
cfg.CustomSource = 'coderrand_main.c';
cfg.CustomInclude = pwd;
cfg.Toolchain = 'Intel v14';

If you do not have the Intel compilers installed, you can use the following command to generate the
code and makefile only.

 Add Custom Toolchains to MATLAB® Coder™ Build Process

27-175

cfg.GenCodeOnly = true;

Run the codegen to generate the code and makefile that uses the new toolchain.

codegen -config cfg coderrand

Code generation successful.

Once the codegen is finished, and you had Intel compilers installed, you can use
system('coderrand.exe') to run the executable.

Cleanup

You can reset the TargetRegistry to remove the toolchain that you registered above.

delete ./rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

27 Generating C/C++ Code from MATLAB Code

27-176

Generate Code for Sobel Edge Detection That Uses Half-
Precision Data Type

This example shows how to generate a standalone C++ library from a MATLAB® function that
performs Sobel edge detection of images by using half-precision floating point numbers. The Sobel
edge algorithm accepts an image that is represented as a matrix and returns an image emphasizing
the high spatial frequency regions that correspond to its edges. This example also shows how to test
the generated code by using a MEX function.

Sobel Edge Detection Algorithm

In the Sobel edge detection algorithm, a 2-D spatial gradient operation is performed on a grayscale
image. This operation emphasizes the high spatial frequency regions that correspond to the edges in
the image.

type sobelEdgeDetectionAlg

function edgeImg = sobelEdgeDetectionAlg(img,thresh) %#codegen
% Entry-point function for half-precision Sobel edge detection example.
% Copyright 2018-2022 The MathWorks, Inc.

kern = half([1 2 1; 0 0 0; -1 -2 -1]);

% Finding horizontal and vertical gradients.
h = conv2(img(:,:,2),kern,'same');
v = conv2(img(:,:,2),kern','same');

% Finding magnitude of the gradients.
e = sqrt(h.*h + v.*v);

% Threshold the edges
edgeImg = uint8((e > thresh) * 240);

end

The Sobel edge algorithm computes the horizontal gradient h and the vertical gradient v of the input
image by using two orthogonal filter kernels maskX and maskY. After the filtering operation, the
algorithm computes the gradient magnitude and applies a threshold to find the regions of the image
that correspond to the edges.

Read Images and Pack Data Into RGBA Packed Column Major Order

Use the imread function to read the images. imread represents the RGB channels of an images with
integers, one for each pixel. The integers range from 0 to 255. Simply casting inputs to half type
might result in overflow during convolutions. To avoid this issue, scale the images to values between
0 and 1.

im = imread('peppers.png');
figure();
image(im);
imPacked = half(im)/255;
thresh = half(100)/255;

 Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type

27-177

Generate MEX

Generate a C++ MEX function for the sobelEdgeDetectionAlg function by using the codegen
command.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.GenerateReport = true;
codegen -config cfg -args {imPacked,thresh} sobelEdgeDetectionAlg

Code generation successful: To view the report, open('codegen\mex\sobelEdgeDetectionAlg\html\report.mldatx')

Run Generated MEX and Display Detected Edge

Before generating C++ code, you must first test the MEX function inside MATLAB environment to
make sure that it is functionally equivalent to the original MATLAB code and that no run-time errors
occur. By default, codegen generates a MEX function named sobelEdgeDetectionAlg_mex in the
current folder. This allows you to test the MATLAB code and MEX function and compare the results.

out_disp = sobelEdgeDetectionAlg_mex(imPacked,thresh);
figure();
imagesc(out_disp);

27 Generating C/C++ Code from MATLAB Code

27-178

Generate Static C++ Library

Use the codegen command to produces a C++ static library. By default, the generated library is
located in the folder codegen/lib/sobelEdgeDetectionAlg/.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenerateReport = true;
codegen -config cfg -args {imPacked,thresh} sobelEdgeDetectionAlg;

Code generation successful: To view the report, open('codegen\lib\sobelEdgeDetectionAlg\html\report.mldatx')

Inspect the Generated Function

type codegen/lib/sobelEdgeDetectionAlg/sobelEdgeDetectionAlg.cpp

//
// File: sobelEdgeDetectionAlg.cpp
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 12:00:01
//

// Include Files
#include "sobelEdgeDetectionAlg.h"
#include "conv2MovingWindowSameCM.h"

 Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type

27-179

#include "rtwhalf.h"
#include "sobelEdgeDetectionAlg_data.h"
#include "sobelEdgeDetectionAlg_initialize.h"
#include <cmath>

// Function Definitions
//
// Entry-point function for half-precision Sobel edge detection example.
// Copyright 2018-2022 The MathWorks, Inc.
//
// Arguments : const real16_T img[589824]
// real16_T thresh
// unsigned char edgeImg[196608]
// Return Type : void
//
void sobelEdgeDetectionAlg(const real16_T img[589824], real16_T thresh,
 unsigned char edgeImg[196608])
{
 static const real16_T hv[9]{real16_T(1.0F), real16_T(0.0F), real16_T(-1.0F),
 real16_T(2.0F), real16_T(0.0F), real16_T(-2.0F),
 real16_T(1.0F), real16_T(0.0F), real16_T(-1.0F)};
 static const real16_T hv1[9]{
 real16_T(1.0F), real16_T(2.0F), real16_T(1.0F),
 real16_T(0.0F), real16_T(0.0F), real16_T(0.0F),
 real16_T(-1.0F), real16_T(-2.0F), real16_T(-1.0F)};
 static real16_T h[196608];
 static real16_T v[196608];
 if (!isInitialized_sobelEdgeDetectionAlg) {
 sobelEdgeDetectionAlg_initialize();
 }
 // Finding horizontal and vertical gradients.
 coder::conv2MovingWindowSameCM(*(real16_T(*)[196608]) & img[196608], hv, h);
 coder::conv2MovingWindowSameCM(*(real16_T(*)[196608]) & img[196608], hv1, v);
 // Finding magnitude of the gradients.
 // Threshold the edges
 for (int k{0}; k < 196608; k++) {
 real16_T b_h;
 real16_T h1;
 b_h = h[k];
 h1 = v[k];
 b_h = static_cast<real16_T>(
 std::sqrt(static_cast<float>(b_h * b_h + h1 * h1)));
 h[k] = b_h;
 edgeImg[k] = static_cast<unsigned char>((b_h > thresh) * 240U);
 }
}

//
// File trailer for sobelEdgeDetectionAlg.cpp
//
// [EOF]
//

See Also
half | codegen | coder.config

27 Generating C/C++ Code from MATLAB Code

27-180

More About
• “Floating-Point Numbers” (Fixed-Point Designer)

 Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type

27-181

Half Precision in MATLAB

• “Code Generation Workflow” on page 27-3
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 27-4
• “Configure Build Settings” on page 27-13
• “Specify Configuration Parameters in Command-Line Workflow Interactively” on page 27-22
• “Specify Data Types Used in Generated Code” on page 27-24
• “Use Generated Initialize and Terminate Functions” on page 27-25
• “Change the Language Standard” on page 27-29
• “Convert codegen Command to Equivalent MATLAB Coder Project” on page 27-30
• “Share Build Configuration Settings” on page 27-33
• “Convert MATLAB Coder Project to MATLAB Script” on page 27-35
• “Preserve Variable Names in Generated Code” on page 27-38
• “Reserved Keywords” on page 27-39
• “Specify Properties of Entry-Point Function Inputs” on page 27-43
• “Specify Cell Array Inputs at the Command Line” on page 27-52
• “Constant Input Checking in MEX Functions” on page 27-57
• “Define Input Properties Programmatically in the MATLAB File” on page 27-60
• “Create and Edit Input Types by Using the Coder Type Editor” on page 27-69
• “Speed Up Compilation by Generating Only Code” on page 27-74
• “Disable Creation of the Code Generation Report” on page 27-75
• “Paths and File Infrastructure Setup” on page 27-76
• “Generate Code for Multiple Entry-Point Functions” on page 27-78
• “Generate One MEX Function for Multiple Signatures” on page 27-82
• “Pass an Entry-Point Function Output as an Input” on page 27-85
• “Generate Code for Global Data” on page 27-88
• “Specify Global Cell Arrays at the Command Line” on page 27-96
• “Generate Code for Enumerations” on page 27-97
• “Generate Code for Variable-Size Data” on page 27-98
• “How MATLAB Coder Partitions Generated Code” on page 27-106
• “Requirements for Signed Integer Representation” on page 27-115
• “Build Process Customization” on page 27-116
• “Run-time Stack Overflow” on page 27-119
• “Compiler and Linker Errors” on page 27-120
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page 27-122
• “Name the C Structure Type to Use With a Global Structure Variable” on page 27-129
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page 27-131

28

• “Generate Code That Uses N-Dimensional Indexing” on page 27-134
• “Install OpenMP Library on macOS Platform” on page 27-138
• “Generate Code to Detect Edges on Images” on page 27-139
• “C Code Generation for a MATLAB Kalman Filtering Algorithm” on page 27-145
• “Generate Code to Optimize Portfolio by Using Black Litterman Approach” on page 27-154
• “Generate Code for Persistent Variables” on page 27-162
• “Generate Code for Structure Arrays” on page 27-166
• “Add Custom Toolchains to MATLAB® Coder™ Build Process” on page 27-168
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” on page 27-177
• “Half Precision Code Generation Support” on page 28-3
• “Generate Native Half-Precision C Code Using MATLAB Coder” on page 28-14
• “What is Half Precision?” on page 28-20
• “Build Process Support for Folder Names” on page 28-25
• “Generate Code That Reads Data from a File” on page 28-29

28 Half Precision in MATLAB

28-2

Half Precision Code Generation Support
To assign a half-precision data type to a number or variable, use the half constructor. A half-
precision data type occupies 16 bits of memory, but its floating-point representation enables it to
handle wider dynamic ranges than integer or fixed-point data types of the same size. For more
information, see “Floating-Point Numbers” (Fixed-Point Designer).

A subset of MATLAB functions are supported for use with half-precision inputs. Additionally, some
functions support code generation with half-precision data types. C and C++ code generation
requires MATLAB Coder. CUDA code generation for NVIDIA® GPUs requires GPU Coder. Supported
functions appear in alphabetical order in the following table. For general information regarding code
generation with half precision, see half.

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

abs ✔ ✔ ✔

acos ✔ ✔ ✔

acosh ✔ ✔ ✔

activations ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

all ✔ ✔ ✔

and, & ✔ ✔ ✔

any ✔ ✔ ✔

area ✔
asin ✔ ✔ ✔

asinh ✔ ✔ ✔

atan ✔ ✔ ✔

atan2 ✔ ✔ ✔

atanh ✔ ✔ ✔

bar ✔
barh ✔

 Half Precision Code Generation Support

28-3

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

cast ✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)

✔

Supported syntax:

cast(＿,'half')

cast(＿,'like',p)
cat ✔ ✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

✔

• Dimension argument
must be a constant.

• Dimension argument
cannot be half
precision.

ceil ✔ ✔ ✔

cell ✔ ✔ ✔

circshift ✔ ✔ ✔

classify ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

coder.ceval ✔ ✔

colon, : ✔ ✔ ✔

complex ✔ ✔
conj ✔ ✔ ✔

conv ✔ ✔ ✔

conv2 ✔ ✔ ✔

cos ✔ ✔ ✔

cosh ✔ ✔ ✔

cospi ✔ ✔ ✔

ctranspose ✔ ✔ ✔

cumsum ✔
dot ✔

28 Half Precision in MATLAB

28-4

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

double ✔ ✔ ✔

empty ✔
eps ✔

Supported syntax:

eps('half')

eps(half(1))

eps('like',half(1)
)

✔

eps(half(1))

✔

eps(half(1))

eq, == ✔ ✔ ✔

exp ✔ ✔ ✔

expm1 ✔ ✔ ✔

eye ✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

✔

Supported syntax:

eye(＿,'half')

eye(＿,'like',p)
where p is half
precision. Other input
arguments cannot be
half precision.

fft ✔ ✔
fft2 ✔ ✔
fftn ✔ ✔
fftshift ✔ ✔ ✔

fix ✔ ✔ ✔

flintmax ✔

Supported syntax:

flintmax('half')

flintmax('like',ha
lf(1))

flip ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

fliplr ✔ ✔ ✔

 Half Precision Code Generation Support

28-5

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

flipud ✔ ✔ ✔

floor ✔ ✔ ✔

fma ✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

✔

Complex half-precision
inputs are not
supported.

fplot ✔
ge, >= ✔ ✔ ✔

gt, > ✔ ✔ ✔

half ✔ ✔ ✔

horzcat ✔ ✔ ✔

hypot ✔ ✔ ✔

ifft ✔ ✔
ifft2 ✔ ✔
ifftn ✔ ✔
ifftshift ✔ ✔ ✔

imag ✔ ✔
Inf ✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)

✔

Supported syntax:

Inf(＿,'half')

Inf(＿,'like',p)
int16 ✔ ✔ ✔

int32 ✔ ✔ ✔

int64 ✔ ✔ ✔

int8 ✔ ✔ ✔

isa ✔ ✔ ✔

iscolumn ✔ ✔ ✔

isempty ✔ ✔ ✔

isequal ✔ ✔ ✔

isequaln ✔ ✔ ✔

isfinite ✔ ✔ ✔

isfloat ✔ ✔ ✔

isinf ✔ ✔ ✔

isinteger ✔ ✔ ✔

islogical ✔ ✔ ✔

28 Half Precision in MATLAB

28-6

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

ismatrix ✔ ✔ ✔

isnan ✔ ✔ ✔

isnumeric ✔ ✔ ✔

isobject ✔

Returns true with half-
precision input.

✔

Returns false with half-
precision input.

✔

Returns false with half-
precision input.

isreal ✔ ✔ ✔

isrow ✔ ✔ ✔

isscalar ✔ ✔ ✔

issorted ✔
isvector ✔ ✔ ✔

ldivide ✔ ✔ ✔

le, <= ✔ ✔ ✔

length ✔ ✔ ✔

line ✔
log ✔ ✔ ✔

log10 ✔ ✔ ✔

log1p ✔ ✔ ✔

log2 ✔ ✔

Two output syntax is not
supported.

✔

Two output syntax is not
supported.

logical ✔ ✔ ✔

Logical Operators:
Short-Circuit &&
||

✔ ✔ ✔

lt, < ✔ ✔ ✔

max ✔ ✔ ✔

mean ✔ ✔ ✔

min ✔ ✔ ✔

minus, - ✔ ✔ ✔

mldivide, \ ✔

Left-hand side must be
scalar

mod ✔ ✔ ✔

 Half Precision Code Generation Support

28-7

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

mrdivide, / ✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

✔

Right-hand side must be
scalar

mtimes, * ✔ ✔ ✔

For GPU Code
generation, you can
perform half-precision
matrix multiplication
with real inputs.

NaN ✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)

✔

Supported syntax:

NaN(＿,'half')

NaN(＿,'like',p)
ndims ✔ ✔ ✔

ne, ~= ✔ ✔ ✔

not ✔ ✔ ✔

numel ✔ ✔ ✔

ones ✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)

✔

Supported syntax:

ones(＿,'half')

ones(＿,'like',p)
or, || ✔ ✔ ✔

permute ✔ ✔ ✔

plot ✔
plot3 ✔
plotmatrix ✔
plus, + ✔ ✔ ✔

pow10 ✔ ✔ ✔

pow2 ✔ ✔ ✔

power, .^ ✔ ✔ ✔

28 Half Precision in MATLAB

28-8

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

predict ✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

predictAndUpdateSt
ate

✔ ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision.

✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. To perform
computations in half, set
the library target to
'tensorrt' and set
the data type to 'FP16'
in
coder.DeepLearning
Config.

 Half Precision Code Generation Support

28-9

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

prod ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalf = half.realmax;
isequal(prod([maxhalf 2 0.5]), maxhalf)

ans =

 logical

 1

maxsingle = realmax('single');
isequal(prod([maxsingle 2 0.5]), maxsingle)

ans =

 logical

 0

✔ ✔

rdivide ✔ ✔ ✔

real ✔ ✔ ✔

realmax ✔

Supported syntax:

realmax('half')

realmax('like',hal
f(1))

realmin ✔

Supported syntax:

realmin('half')

realmin('like',hal
f(1))

rem ✔ ✔ ✔

repelem ✔ ✔ ✔

28 Half Precision in MATLAB

28-10

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

repmat ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

reshape ✔ ✔

Dimension argument
cannot be half
precision.

✔

Dimension argument
cannot be half
precision.

rgbplot ✔
round ✔

Only one input
supported

✔

Only one input
supported

✔

Only one input
supported

rsqrt ✔

Complex half-precision
inputs are not
supported

scatter ✔
scatter3 ✔
sign ✔ ✔ ✔

sin ✔ ✔ ✔

single ✔ ✔ ✔

sinh ✔ ✔ ✔

sinpi ✔ ✔ ✔

size ✔ ✔ ✔

sort ✔
sqrt ✔ ✔ ✔

squeeze ✔ ✔ ✔

storedInteger ✔

 Half Precision Code Generation Support

28-11

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

sum ✔

Half inputs are cast to
single precision and
computations are
performed in single
precision. As a result,
saturation behavior
differs between single
and half inputs:

maxhalfint = half.flintmax;
isequal(sum([maxhalfint, 1, -1]), maxhalfint)

ans =

 logical

 1

maxsingleint = flintmax('single');
isequal(sum([maxsingleint, 1, -1]), maxsingleint)

ans =

 logical

 0

✔ ✔

tan ✔ ✔ ✔

tanh ✔ ✔ ✔

times, .* ✔ ✔ ✔

transpose ✔ ✔ ✔

typecast ✔
uint16 ✔ ✔ ✔

uint32 ✔ ✔ ✔

uint64 ✔ ✔ ✔

uint8 ✔ ✔ ✔

uminus ✔ ✔ ✔

uplus ✔ ✔ ✔

vertcat ✔ ✔ ✔

xlim ✔
ylim ✔

28 Half Precision in MATLAB

28-12

Function MATLAB Simulation
Support

C/C++ Code
Generation Support

GPU Code Generation
Support

zeros ✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)

✔

Supported syntax:

zeros(＿,'half')

zeros(＿,'like',p)
zlim ✔

See Also
half

More About
• “Floating-Point Numbers” (Fixed-Point Designer)
• “What is Half Precision?” (Fixed-Point Designer)
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” on page 27-177

 Half Precision Code Generation Support

28-13

Generate Native Half-Precision C Code Using MATLAB Coder
Some embedded hardware targets natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM® compilers. You can use MATLAB Coder to generate native
half-precision C code for ARM Cortex®-A processors that natively support half precision floating-point
data types.

The process to generate native half C code is as follows:

• Register a new hardware target device that natively supports half precision using the target
package.

• Configure code generation configuration for half precision.
• Generate native half type code.

Fixed-Point Designer and MATLAB Coder include preconfigured language implementations for
Armclang and GCC compilers. For other hardware targets, you can specify a custom language
implementation based on your hardware specifications.

Generate Native Half-Precision C Code for ARM® Cortex®-A with GCC
Compiler
In this example, an ARM Cortex®-A processor is used as the hardware target. The model is
configured to use this ARM target and the GNU GCC compiler toolchain.

Register Target Hardware

Use the target.create function to create an ARM processor target that is compatible with half
precision.

arm_half = target.create('Processor','Manufacturer',"Broadcom",'Name','BCM2711 ARM Cortex A72');

Add the language implementation. Use the target.get function to retrieve the target object from the
internal database.

li = target.get('LanguageImplementation',"GNU GCC ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.

arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

target.add summary:

 Objects added to internal database for current MATLAB session:
 target.Processor "Broadcom-BCM2711 ARM Cortex A72"

 1 object not added because they already exist.

Open MATLAB Code that Uses Half-Precision Data Type

edit testNativeHalffp16.m

28 Half Precision in MATLAB

28-14

https://www.mathworks.com/help/rtw/ref/target.create.html
https://www.mathworks.com/help/rtw/ref/target.get.html
https://www.mathworks.com/help/rtw/ref/target.add.html

Configure Code Generation Configuration for Half Precision

Create the code generation configuration object.

cfg = coder.config('lib');

Specify the production hardware device type.

cfg.HardwareImplementation.ProdHWDeviceType = 'Broadcom->BCM2711 ARM Cortex A72';

Select the toolchain compatible with the selected hardware.

cfg.Toolchain = 'GNU Tools for ARM Embedded Processors';

Add the half-precision flags for compilation.

cfg.BuildConfiguration = 'Specify';
cfg.CustomToolchainOptions{4} = '-c -MMD -MP -MF"$(@:%.o=%.dep)" -MT"$@" -O0 -mfp16-format=ieee -mfpu=neon-fp16';

Generate Code

codegen testNativeHalffp16 -args {half(3)} -launchreport -config cfg

You can inspect the code generation report to confirm that the custom half-precision type definitions
are used.

 Generate Native Half-Precision C Code Using MATLAB Coder

28-15

The half-precision constants use the f16 suffix.

28 Half Precision in MATLAB

28-16

Generate Native Half-Precision C Code for ARM Cortex-A with
Armclang Compiler
In this example, an ARM Cortex-A processor is used as the hardware target. The model is configured
to use this ARM target and the Armclang compiler toolchain.

Register Target Hardware

Use the target.create function to create an ARM processor target that is compatible with half
precision.

arm_half = target.create('Processor','Manufacturer',"Broadcom",'Name','ARM Cortex A75');

Add the language implementation. Use the target.get function to retrieve the target object from
the internal database.

li = target.get('LanguageImplementation',"Clang ARM 32-bit");

Replace the default language implementation for ARM Cortex with Armclang.

 Generate Native Half-Precision C Code Using MATLAB Coder

28-17

arm_half.LanguageImplementations = li;

Use the target.add function to add the target object to the internal database.

target.add(arm_half);

Configure Code Generation Configuration for Half Precision

Create the code generation configuration object.

cfg = coder.config('lib');

Specify the production hardware type.

cfg.HardwareImplementation.ProdHWDeviceType = 'Broadcom->ARM Cortex A75';

Select the toolchain compatible with the selected hardware.

cfg.Toolchain = 'Armclang Compiler';

Add the half-precision flags for compilation.

cfg.BuildConfiguration = 'Specify';
cfg.CustomToolchainOptions{4} = '-c -MMD -MP -MF"$(@:%.o=%.dep)" -MT"$@" -O0 --target=arm-arm-none-eabi -march=armv8.2-a+fp16';

Generate Code

codegen testNativeHalffp16 -args {half(3)} -launchreport -config cfg

Register ARM Target Hardware with Custom Language Implementation
In this example, create a new custom language implementation with half precision for a compatible
ARM target.

Register Target Hardware

Use the target.create function to copy the ARM Compatible-ARM Cortex language
implementation.

languageImplementation = target.create('LanguageImplementation','Name','ARM with half',...
 'Copy','ARM Compatible-ARM Cortex');

Specify custom half information and target specific headers, as given by your target hardware
documentation. For more information, see “Register New Hardware Devices” (Simulink Coder). For
example,

customHalf = target.create('FloatingPointDataType','Name','BCM2711 Half Type', ...
 'TypeName','_Float16','LiteralSuffix','f16','Size',16, ...
 'SystemIncludes',["arm_fp16.h" "arm_neon.h"]);
languageImplementation.DataTypes.NonStandardDataTypes = customHalf;

Provide information about your target processor. For example,

% Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
pi4a72 = target.create('Processor','Manufacturer','Broadcom','Name','BCM2711');

Add the custom half-precision language implementation.

28 Half Precision in MATLAB

28-18

pi4a72.LanguageImplementations = languageImplementation;

Use the target.add function to add the target object to the internal database.

target.add(pi4a72);

See Also
half | target.FloatingPointDataType | target.add | target.create | target.get |
target.remove

Related Examples
• “Half Precision Code Generation Support” (Fixed-Point Designer)
• “Register New Hardware Devices” (Simulink Coder)
• “Set Up and Configuring Armclang Compiler Toolchain for Code Generation” (Embedded Coder

Support Package for STMicroelectronics STM32 Processors)

External Websites
• Clang Language Extensions for Half-Precision Floating Point
• Arm Compiler armclang Reference Guide: Half-precision floating-point data types
• GCC Half-Precision Floating Point
• Reduce the Program Data Size with Ease! Introducing Half-Precision Floating-Point Feature in

Renesas Compiler Professional Edition

 Generate Native Half-Precision C Code Using MATLAB Coder

28-19

https://clang.llvm.org/docs/LanguageExtensions.html#half-precision-floating-point
https://developer.arm.com/documentation/100067/0612/Other-Compiler-specific-Features/Half-precision-floating-point-data-types
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
https://www.renesas.com/us/en/document/tnf/featured-tool-reduce-program-data-size-ease-introducing-half-precision-floating-point-feature
https://www.renesas.com/us/en/document/tnf/featured-tool-reduce-program-data-size-ease-introducing-half-precision-floating-point-feature

What is Half Precision?
The IEEE® 754 half-precision floating-point format is a 16-bit word divided into a 1-bit sign indicator
s, a 5-bit biased exponent e, and a 10-bit fraction f.

Because numbers of type half are stored using 16 bits, they require less memory than numbers of
type single, which uses 32 bits, or double, which uses 64 bits. However, because they are stored
with fewer bits, numbers of type half are represented to less precision than numbers of type
single or double.

The range, bias, and precision for supported floating-point data types are given in the table below.

Data Type Low Limit High Limit Exponent Bias Precision
Half 2−14 ≈ 6.1·10−5 (2−2-10) ·215≈ 6.5·104 15 2−10 ≈ 10−3

Single 2−126 ≈ 10−38 2128 ≈ 3 · 1038 127 2−23 ≈ 10−7

Double 2−1022 ≈ 2 · 10−308 21024 ≈ 2 · 10308 1023 2−52 ≈ 10−16

For a video introduction to the half-precision data type, see What Is Half Precision? and Half-
Precision Math in Modeling and Code Generation.

Half Precision Applications
When an algorithm contains large or unknown dynamic ranges (for example integrators in feedback
loops) or when the algorithm uses operations that are difficult to design in fixed-point (for example
atan2), it can be advantageous to use floating-point representations. The half-precision data type
occupies only 16 bits of memory, but its floating-point representation enables it to handle wider
dynamic ranges than integer or fixed-point data types of the same size. This makes half precision
particularly suitable for some image processing and graphics applications. When half-precision is
used with deep neural networks, the time needed for training and inference can be reduced. By using
half precision as a storage time for lookup tables, the memory footprint of the lookup table can be
reduced.

MATLAB Examples

• “Fog Rectification” (GPU Coder) — The fog rectification image processing algorithm uses
convolution, image color space conversion, and histogram-based contrast stretching to enhance
the input image. This example shows how to generate and execute CUDA MEX with half-precision
data types for these image processing operations.

28 Half Precision in MATLAB

28-20

https://www.mathworks.com/videos/what-is-half-precision-1577955732633.html
https://www.youtube.com/watch?v=05pAQjTH6iM
https://www.youtube.com/watch?v=05pAQjTH6iM

• “Edge Detection with Sobel Method in Half-Precision” (GPU Coder) — The sobel edge detection
algorithm takes an input image and returns an output image that emphasizes high spatial
frequency regions that correspond to edges in the input image. This example shows how to
generate and execute CUDA MEX with the half-precision data type used for the input image and
Sobel operator kernel values.

• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” on page 27-177 —
This example shows how to generate a standalone C++ library from a MATLAB function that
performs Sobel edge detection of images by using half-precision floating point numbers.

Simulink Examples

• “Half-Precision Field-Oriented Control Algorithm” (Fixed-Point Designer) — This example
implements a Field-Oriented Control (FOC) algorithm using both single precision and half
precision.

• “Image Quantization with Half-Precision Data Types” (Fixed-Point Designer) — This example
shows the effects of quantization on images. While the fixed-point data type does not always
produce an acceptable results, the half-precision data type, which uses the same number of bits as
the fixed-point data type, produces a result comparable to the single-precision result.

 What is Half Precision?

28-21

• “Digit Classification with Half-Precision Data Types” (Fixed-Point Designer) — This example
compares the results of a trained neural network classification model in double precision and half
precision.

• “Convert Single Precision Lookup Table to Half Precision” (Fixed-Point Designer) — This example
demonstrates how to convert a single-precision lookup table to use half precision. Half precision is
the storage type; the lookup table computations are performed using single precision. After
converting to half precision, the memory size of the Lookup Table blocks are reduced by half while
maintaining the desired system performance.

Benefits of Using Half Precision in Embedded Applications
The half precision data type uses less memory than other floating-point types like single and double.
Though it occupies only 16 bits of memory, its floating-point representations enables it to handle
wider dynamic ranges than integer or fixed-point data types of the same size.

FPGA

The half precision data type uses significantly less area and has low latency compared to the single
precision data type when used on hardware. Half precision is particularly advantageous for low
dynamic range applications.

The following plot shows the advantage of using half precision for an implementation of a field-
oriented control algorithm in Xilinx® Virtex® 7 hardware.

28 Half Precision in MATLAB

28-22

GPU

In GPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision.

In applications like deep learning, which require a large number of computations, using half precision
can provide significant performance benefits without significant loss of precision. With GPU Coder,
you can generate optimized code for prediction of a variety of trained deep learning networks from
the Deep Learning Toolbox™. You can configure the code generator to take advantage of the NVIDIA
TensorRT high performance inference library for NVIDIA GPUs. TensorRT provides improved latency,
throughput, and memory efficiency by combining network layers and optimizing kernel selection. You
can also configure the code generator to take advantage TensorRT's precision modes (FP32, FP16, or
INT8) to further improve performance and reduce memory requirements.

CPU

In CPUs that support the half-precision data type, arithmetic operations are faster as compared to
single or double precision. For ARM targets that natively support half-precision data types, you can
generate native half C code from MATLAB or Simulink. See “Code Generation with Half Precision”
(Fixed-Point Designer).

Half Precision in MATLAB
Many functions in MATLAB support the half-precision data type. For a full list of supported functions,
see half.

 What is Half Precision?

28-23

Half Precision in Simulink
Signals and block outputs in Simulink can specify a half-precision data type. The half-precision data
type is supported for simulation and code generation for parameters and a subset of blocks. To view
the blocks that support half precision, at the command line, type:

showblockdatatypetable

Blocks that support half precision display an X in the column labeled Half. For detailed information
about half precision support in Simulink, see “The Half-Precision Data Type in Simulink” (Fixed-Point
Designer).

Code Generation with Half Precision
The half precision data type is supported for C/C++ code generation, CUDA code generation using
GPU Coder, and HDL code generation using HDL Coder. For GPU targets, the half-precision data type
uses the native half data type available in NVIDIA GPU for maximum performance.

For detailed code generation support for half precision in MATLAB and Simulink, see “Half Precision
Code Generation Support” (Fixed-Point Designer) and “The Half-Precision Data Type in Simulink”
(Fixed-Point Designer).

For embedded hardware targets that natively support special types for half precision, such as
_Float16 and _fp16 data types for ARM compilers, you can generate native half precision C code
using Embedded Coder or MATLAB Coder. For more information, see “Generate Native Half-Precision
C Code from Simulink Models” (Fixed-Point Designer) and “Generate Native Half-Precision C Code
Using MATLAB Coder” (Fixed-Point Designer).

See Also
half | “The Half-Precision Data Type in Simulink” (Fixed-Point Designer) | "Half Precision" 16-bit
Floating Point Arithmetic | “Floating-Point Numbers” (Fixed-Point Designer)

Related Examples
• “Fog Rectification” (GPU Coder)
• “Edge Detection with Sobel Method in Half-Precision” (GPU Coder)
• “Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type” on page 27-177
• “Half-Precision Field-Oriented Control Algorithm” (Fixed-Point Designer)
• “Image Quantization with Half-Precision Data Types” (Fixed-Point Designer)
• “Digit Classification with Half-Precision Data Types” (Fixed-Point Designer)
• “Convert Single Precision Lookup Table to Half Precision” (Fixed-Point Designer)

28 Half Precision in MATLAB

28-24

https://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/

Build Process Support for Folder Names

Folder Names with Spaces
On a Windows system, the code generator maps a drive corresponding to the MATLAB installation
folder for either of these conditions:

• The matlabroot folder is a UNC location.
• The path the matlabroot folder contains spaces, and the system has no alternative name

support.

These folder paths can contain spaces:

• The path to your MATLAB installation folder (matlabroot). For example, C:\Program Files
\MATLAB\R2015b

• The path to the current working folder where you start the build (pwd). For example, C:\Users
\username\Documents\My Work.

• The path to the installation folder for a compiler that the build process uses.

If your work environment includes one or more of the preceding scenarios, use the following support
mechanisms for the build process:

• If you are using the toolchain approach to build generated code, the system support for spaces in
folder names influences toolchain operation:

• For Linux systems and Windows systems with 8.3 name creation enabled, the toolchain
manages spaces in folder names by using alternative names from the operating system. The
toolchain uses the TransformPathsWithSpaces attribute to manage these names.

addAttribute(toolchainObject, 'TransformPathsWithSpaces', true);

The security permissions of drives and folders can determine whether the toolchain transforms
the path. For example, if the path contains a folder with a security configuration that forbids
8.3 path transformations, the toolchain does not transform the path and the build process
produces a warning.

• For Windows systems with 8.3 name creation disabled, the toolchain manages spaces in folder
names by mapping a network drive using a batch file (.bat). This operation requires adding the
RequiresBatchFile attribute to the toolchain definition.

addAttribute(toolchainObject, 'RequiresBatchFile', true);

When developing a toolchain for a Windows system, set both attributes. For more information
about the toolchain attributes, see addAttribute.

When there is an issue with support for creation of alternate names (short names), build errors can
occur on Windows. If a build generates an error message similar to the following message, see
“Troubleshooting Errors When Folder Names Have Spaces” on page 28-26.

NMAKE : fatal error U1073: don't know how to make ' ...

When using operating system commands, such as system or dos, enclose paths that specify
executable files or command parameters in double quotes (" "). For example:
system('dir "D:\Applications\Common Files"')

This table provides a summary of build folder support and limitations for Windows.

Build Process
Folders

Approach for Paths with UNC or
Spaces

Support for Windows

matlabroot
folder

The matlabroot
value is derived
from the MATLAB
installation
location.

During a build, a UNC location such as:
\\networkdrive\matlab\R20xxb

could be remapped as:
T:\

During a build on a Windows system
with short file name (8.3) support
(default for Windows using NTFS), the
build process uses the Windows API
getShortPathName() for the folder
location.

During a build on a Windows system
without short file name (8.3) support
(systems using ReFS or using NTFS
with 8.3 support disabled), a location
with spaces in the path such as:
C:\Program Files\MATLAB\R20xxb

could be remapped as:
T:\R20xxb

Build process folder support available
independent of file system (NTFS or
ReFS) or file system configuration for
short file name support.

Limitations:

On systems that require drive mapping
for the installation location, the build
process requires that a drive letter is
available for mapping.

On systems without short file name
(8.3) support (using ReFS or using
NTFS with 8.3 support disabled), the
final folder in the installation location
cannot contain spaces. For example, a
final folder name:
C:\Program Files\MATLAB\R20xxb sp1

is not supported.

Code generation
folder

Custom code
source file
locations—among
others, these
locations include
folders specified by
a Code
Replacement
Library

For UNC locations, build process
temporarily maps a drive by using the
shell commands pushd and popd.

Build process folder support is
available independent of file system
(NTFS or ReFS) or file system
configuration for short path name
support.

For paths with spaces, build process
uses the Windows short path name
(8.3) by using the Windows API:
getShortPathName()

Build process folder support depends
on NTFS file system and requires
Windows default support. Registry sets
value of 2 or 0 for:
NtfsDisable8dot3NameCreation

Limitations: Build process does not
support spaces in the path to these
folders for:

• NTFS file system with short path
name support disabled

• ReFS file system (this file system
does not support short path names)

Troubleshooting Errors When Folder Names Have Spaces
On Windows, when there is an issue with support for creation of short file names, build process
errors can occur. When this issue affects a build, you see an error message similar to:
NMAKE : fatal error U1073: don't know how to make 'C:\Work\My'

27 Generating C/C++ Code from MATLAB Code

27-26

This message can occur if a space in the folder name (C:\Work\My Models) prevents the build
process from finding a file to build. For descriptions of the build-related folders that are sensitive to a
space in the folder name or path, see “Folder Names with Spaces” on page 28-25.

To avoid issues from folder names with spaces when Windows short file name support for file names
is disabled, do not use paths with spaces. For example, install third-party software to paths without
spaces. Do not use paths with spaces for folders containing your models, source files, or libraries.

An issue can occur with builds that use folder names with spaces, because it is possible to disable
Windows alternate name support. The build process uses this alternate name support on Windows
systems. There are many terms for this file, folder, and path alternate name support:

• 8.3 name
• DOS path
• short file name (SFN, ShortFileName)
• long name alias
• Windows path alias

Verify the type of file system that the drive uses. In Windows Explorer, right-click the drive icon and
select properties.

• If the file system is ReFS (Resilient File System), it is an issue. The ReFS does not provide short
file name support. Except for the MATLAB installation folder, the build process does not support
folder names with spaces for the ReFS file system. If your work environment requires short file
name support for the build folder or for additional external code folders, do not use ReFS.

• If the file system is NTFS (New Technology File System), it is possible that the build error is
related to a registry setting incompatibility. Continue with troubleshooting steps.

The error could stem from an issue with short file name support on a system using NTFS. Check the
Windows registry setting that enables the creation of short names for files, folders, and paths.

1 Open the Windows command prompt, running as administrator. For example, from the Windows
Start menu, type cmd, right-click the cmd.exe icon, and select Run as administrator.

2 Change to the windows\system32 folder and query the NtfsDisable8dot3NameCreation
status by typing:
> fsutil 8dot3name query

3 If the registry state of NtfsDisable8dot3NameCreation is not 2, the default (Volume level
setting), change the value to 2 by typing:
> fsutil 8dot3name set 2

For more information about enabling creation of short names. See https://docs.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ff621566(v=ws.11).

Changing the registry setting enables creation of short names only for files and folders that are
created after the change.

4 To create short names for files created while short name creation was disabled, at the Windows
command line, use the fsutil utility.

To set the short name, the syntax is:
> fsutil file setshortname <FileName> <ShortName>

 Build Process Support for Folder Names

27-27

https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS

For example, to create the short name PROGRA~1 for the long name C:\Program Files, type:
> fsutil file setshortname "C:\Program Files" PROGRA~1

The C:\Program Files folder name is in quotations because it has spaces.
5 To verify that the short name was created, use the dir command with /x option to show short

names.
> dir C:\ /x

Folder Names with Special Characters
The build process might produce an error if a build-related folder path contains:

• Unicode characters that do not belong to the system locale. This limitation does not apply if the
build process uses a Microsoft® Visual C++® compiler.

• A Japanese (multibyte) character where the final byte is equal to the 5C hexadecimal character.
The make and compiler tools might incorrectly interpret the final byte as the '\' (backslash)
character.

Very Long Folder Paths
For the MinGW® compiler, the build process produces an error when the command line length
exceeds the Windows limit of 32,767 characters. If this error occurs, check the length of include
paths. You can reduce the command line length by building the generated code in a code generation
folder that has a shorter name

See Also
addAttribute

External Websites
• MATLAB Answers: “Why is the build process failing ...?”
• https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/

cc959352(v=technet.10)
• https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-

and-2012/ff621566(v=ws.11)

27 Generating C/C++ Code from MATLAB Code

27-28

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

Generate Code That Reads Data from a File
This example shows how to generate C code from your MATLAB® code that reads data from a CSV
file and stores the data in a table.

Inspect Data File

The goal of this example is to generate code that reads a comma separated values (CSV) file that
contains temperature measurements (in units of degrees Celsius) of a furnace taken at various times
over a course of several days. The file begins with several lines of description. This is followed by the
data listed as comma-separated values in a table format.

type mydata.csv

Temperature of a furnace in degrees Celsius
measured at various times over a course of
one week
time, temp
19-Aug-2021 10:32:35, 81
20-Aug-2021 10:40:28, 72
22-Aug-2021 10:19:36, 98
23-Aug-2021 11:00:02, 70
24-Aug-2021 10:54:27, 90
25-Aug-2021 11:03:00, 87

Create and Test MATLAB Entry-Point Function

Write a MATLAB® function my_readtable that reads the file mydata.csv, ignores the initial
description lines, and creates a MATLAB table containing the datetime and numeric values.
Because the MATLAB function readtable is not supported for code generation, this example uses
low-level file I/O functions like fopen, fgetl, fscanf, feof, and fclose to open the file, read data,
and finally close the file.

type my_readtable.m

function T = my_readtable(filename,numRecords) %#codegen

f = fopen(filename,"r");

% Scan and ignore a variable number of description lines at the beginning
% of the CSV file.
line = fgetl(f);
coder.varsize("line");
while(~ismember(',',line))
 line = fgetl(f);
end

% Table variable names.
names = {'time' 'temp'};

% Initialize variables. Define 'months' cell array that is used to convert
% name of month to serial number of month in the next code block.
i = 1;
months = {'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' 'Nov' 'Dec'};

dateAndTime = repmat(datetime,1,numRecords);
temperature = zeros(1,numRecords);

 Generate Code That Reads Data from a File

27-29

% Read each line in the CSV file till you reach EOF. Construct an array of
% datetime and double values (for time and temp columns).
while(~feof(f))
 day = fscanf(f,'%u-');
 month_name = string(fscanf(f,'%3c',1));
 month_number = find(month_name == months);
 [result,count] = fscanf(f,'-%u %u:%u:%u, %u');

 % Check that the last fscanf call read all remaining data in the line
 assert(count == 5)

 year = result(1);
 hour = result(2);
 minute = result(3);
 second = result(4);
 dateAndTime(i) = datetime(year,month_number,day,hour,minute,second);
 temperature(i) = result(5);
 i = i + 1;
end

% Construct the table from the values read in the previous code block.
T = table(dateAndTime',temperature','VariableNames',names);
fclose(f);

end

This entry-point function (top-level MATLAB function for which you generate code) uses these coding
patterns that make it suitable for code generation:

• The size of the character vector line changes as the function reads each line of the initial
description. The coder.varsize directive instructs the code generator to produce code that
dynamically allocates memory for the variable line.

• The function hardcodes the column header names 'time' and 'temp' instead of reading them
from the CSV file at run time. This is because code generation requires table variable names to be
compile-time constants.

• The variable months is defined as a character array instead of a string array because code
generation does not support string arrays.

• The function preinitializes the arrays dateAndTime and temperature before populating them
with actual data (in the while loop).

Run the MATLAB entry-point function.

T_matlab = my_readtable("mydata.csv",6)

T_matlab=6×2 table
 time temp
 ____________________ ____

 19-Aug-2021 10:32:35 81
 20-Aug-2021 10:40:28 72
 22-Aug-2021 10:19:36 98
 23-Aug-2021 11:00:02 70
 24-Aug-2021 10:54:27 90
 25-Aug-2021 11:03:00 87

27 Generating C/C++ Code from MATLAB Code

27-30

Generate and Run MEX

To test the output of code generation inside the MATLAB environment, generate and run a MEX
(MATLAB executable) by using the codegen command. A MEX is compliled C/C++ code that you can
run inside the MATLAB environment. By default, the codegen command produces a MEX.

In the codegen command, specify the following data types for the input arguments of the function
my_readtable:

• filename is an unbounded variable-length string
• numRecords is a double scalar

s = "mystring";
t = coder.typeof(s);
t.Properties.Value = coder.typeof('a',[1 inf]);

codegen my_readtable -args {t,0} -report

Code generation successful: To view the report, open('codegen\mex\my_readtable\html\report.mldatx')

The code generator produces the MEX function my_readtable_mex. Run the generated MEX.

T_mex = my_readtable_mex("mydata.csv",6)

T_mex=6×2 table
 time temp
 ____________________ ____

 19-Aug-2021 10:32:35 81
 20-Aug-2021 10:40:28 72
 22-Aug-2021 10:19:36 98
 23-Aug-2021 11:00:02 70
 24-Aug-2021 10:54:27 90
 25-Aug-2021 11:03:00 87

Generate Standalone Code

Generate a static C library for my_readtable for deployment on target hardware.

codegen -config:lib my_readtable -args {t,0} -report

Code generation successful: To view the report, open('codegen\lib\my_readtable\html\report.mldatx')

The file I/O functions are implemented differently between the MEX and the standalone code. For
example, for MEX code generation, the code generator automatically treats fscanf as an extrinsic
function. So, the generated MEX dispatches the fscanf calls to the MATLAB engine for execution. If
you generate standalone code, the code generator actually produces C/C++ code for the body of the
MATLAB fscanf function.

For MEX target, If you want to generate C/C++ code for the body of the MATLAB fscanf function,
disable extrinsic function calls by setting the ExtrinsicCalls property of the
coder.MexCodeConfig object to false. Alternatively, in the MATLAB Coder app, on the More
Settings tab, set Keep extrinsic calls to No.

 Generate Code That Reads Data from a File

27-31

If you have Embedded Coder®, you can verify the generated standalone code by using Software-In-
the-Loop (SIL) or Processor-In-the-Loop (PIL) execution before deployment. For an example, see “SIL
and PIL Verification for Deployment on Raspberry Pi” (Embedded Coder).

27 Generating C/C++ Code from MATLAB Code

27-32

Verify Generated C/C++ Code

• “Tracing Generated C/C++ Code to MATLAB Source Code” on page 29-2
• “Code Generation Reports” on page 29-7
• “Access Code Generation Report Information Programmatically” on page 29-13
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
• “Example: Generate Standalone C Code That Detects and Reports Run-Time Errors”

on page 29-24
• “Testing Code Generated from MATLAB Code” on page 29-26
• “Unit Test Generated Code with MATLAB Coder” on page 29-27
• “Unit Test External C Code with MATLAB Coder” on page 29-33
• “Calculate Number of Lines of Code by Using Report Information Object” on page 29-43

29

Tracing Generated C/C++ Code to MATLAB Source Code
In this section...
“Generate Traceability Tags” on page 29-2
“Format of Traceability Tags” on page 29-2
“Location of Comments in Generated Code” on page 29-2
“Traceability Tag Limitations” on page 29-6

Tracing the generated C/C++ code to the original MATLAB source code helps you to:

• Understand how the generated code implements your algorithm.
• Evaluate the quality of the generated code.

You can trace by using one of these methods:

• Configure MATLAB Coder to generate code that includes the MATLAB source code as comments.
In the comments, a traceability tag immediately precedes each line of source code. The
traceability tag provides details about the location of the source code. If you have Embedded
Coder, in the code generation report, the traceability tags link to the corresponding MATLAB
source code.

• With Embedded Coder, produce a code generation report that includes interactive traceability.
Interactive tracing in the report helps you to visualize the mapping between the MATLAB source
code and the generated C/C++ code. See “Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder).

Generate Traceability Tags
To produce traceability tags in the generated code, enable generation of MATLAB source code as
comments.

• In the MATLAB Coder app, set MATLAB source code as comments to Yes.
• In a code generation configuration object, set MATLABSourceComments to true.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the MATLAB source code in the
comment. The format of the tag is:
<filename>:<line number>.

For example, this comment indicates that the code x = r * cos(theta); appears at line 4 in the
source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Location of Comments in Generated Code
The generated comments containing the source code and traceability tag appear in the generated
code as follows.

29 Verify Generated C/C++ Code

29-2

Straight-Line Source Code

In straight-line source code without if, while, for or switch statements, the comment containing
the source code precedes the generated code that implements the source code statement. This
comment appears after user comments that precede the generated code.

For example, in the following code, the user comment, /* Convert polar to Cartesian */,
appears before the generated comment containing the first line of source code, together with its
traceability tag,
/* 'straightline:4' x = r * cos(theta); */.
MATLAB Code

function [x, y] = straightline(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Commented C Code

void straightline(double r, double theta, double *x, double *y)
{
 /* Convert polar to Cartesian */
 /* 'straightline:4' x = r * cos(theta); */
 *x = r * cos(theta);

 /* 'straightline:5' y = r * sin(theta); */
 *y = r * sin(theta);
}

If Statements

The comment for the if statement immediately precedes the code that implements the statement.
This comment appears after user comments that precede the generated code. The comments for the
elseif and else clauses appear immediately after the code that implements the clause, and before
the code generated for statements in the clause.
MATLAB Code

function y = ifstmt(u,v)
%#codegen
if u > v
 y = v + 10;
elseif u == v
 y = u * 2;
else
 y = v - 10;
end

Commented C Code

double ifstmt(double u, double v)
{
 double y;

 /* 'ifstmt:3' if u > v */
 if (u > v) {
 /* 'ifstmt:4' y = v + 10; */

 Tracing Generated C/C++ Code to MATLAB Source Code

29-3

 y = v + 10.0;
 } else if (u == v) {
 /* 'ifstmt:5' elseif u == v */
 /* 'ifstmt:6' y = u * 2; */
 y = u * 2.0;
 } else {
 /* 'ifstmt:7' else */
 /* 'ifstmt:8' y = v - 10; */
 y = v - 10.0;
 }

 return y;
}

For Statements

The comment for the for statement header immediately precedes the generated code that
implements the header. This comment appears after user comments that precede the generated code.
MATLAB Code

function y = forstmt(u)
%#codegen
y = 0;
for i = 1:u
 y = y + 1;
end

Commented C Code

double forstmt(double u)
{
 double y;
 int i;

 /* 'forstmt:3' y = 0; */
 y = 0.0;

 /* 'forstmt:4' for i = 1:u */
 for (i = 0; i < (int)u; i++) {
 /* 'forstmt:5' y = y + 1; */
 y++;
 }

 return y;
}

While Statements

The comment for the while statement header immediately precedes the generated code that
implements the statement header. This comment appears after user comments that precede the
generated code.
MATLAB Code

function y = subfcn(y)
coder.inline('never');
while y < 100
 y = y + 1;

29 Verify Generated C/C++ Code

29-4

end

Commented C Code

void subfcn(double *y)
{
 /* 'subfcn:2' coder.inline('never'); */
 /* 'subfcn:3' while y < 100 */
 while (*y < 100.0) {
 /* 'subfcn:4' y = y + 1; */
 (*y)++;
 }
}

Switch Statements

The comment for the switch statement header immediately precedes the generated code that
implements the statement header. This comment appears after user comments that precede the
generated code. The comments for the case and otherwise clauses appear immediately after the
generated code that implements the clause, and before the code generated for statements in the
clause.
MATLAB Code

function y = switchstmt(u)
%#codegen
y = 0;
switch u
 case 1
 y = y + 1;
 case 3
 y = y + 2;
 otherwise
 y = y - 1;
end

Commented C Code

double switchstmt(double u)
{
 double y;

 /* 'switchstmt:3' y = 0; */
 /* 'switchstmt:4' switch u */
 switch ((int)u) {
 case 1:
 /* 'switchstmt:5' case 1 */
 /* 'switchstmt:6' y = y + 1; */
 y = 1.0;
 break;

 case 3:
 /* 'switchstmt:7' case 3 */
 /* 'switchstmt:8' y = y + 2; */
 y = 2.0;
 break;

 default:

 Tracing Generated C/C++ Code to MATLAB Source Code

29-5

 /* 'switchstmt:9' otherwise */
 /* 'switchstmt:10' y = y - 1; */
 y = -1.0;
 break;
 }

 return y;
}

Traceability Tag Limitations
• You cannot include MATLAB source code as comments for:

• MathWorks toolbox functions
• P-code

• The appearance or location of comments can vary:

• Even if the implementation code is eliminated, for example, due to constant folding, comments
can still appear in the generated code.

• If a complete function or code block is eliminated, comments can be eliminated from the
generated code.

• For certain optimizations, the comments can be separated from the generated code.
• Even if you do not choose to include source code comments in the generated code, the

generated code includes legally required comments from the MATLAB source code.

See Also

More About
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Include Comments in Generated C/C++ Code” (Embedded Coder)
• “Code Generation Reports” on page 29-7

29 Verify Generated C/C++ Code

29-6

Code Generation Reports

In this section...
“Report Generation” on page 29-7
“Report Location” on page 29-8
“Errors and Warnings” on page 29-8
“Files and Functions” on page 29-8
“MATLAB Source” on page 29-9
“MATLAB Variables” on page 29-10
“Tracing Code” on page 29-11
“Code Insights” on page 29-11
“Additional Reports” on page 29-12
“Report Limitations” on page 29-12

MATLAB Coder produces a code generation report that helps you to:

• Debug code generation issues and verify that your MATLAB code is suitable for code generation.
• View generated C/C++ code.
• Trace between MATLAB source code and generated C/C++ code.
• See how the code generator determines and propagates type information for variables and

expressions in your MATLAB code.
• Identify potential issues in the generated code.
• Access additional reports available with Embedded Coder.

Report Generation
When you enable report generation or when an error occurs, the code generator produces a code
generation report. To control production and opening of a code generation report, use app settings,
codegen options, or configuration object properties.

In the MATLAB Coder app:

• To generate a report, set Always create a report to Yes.
• If you want the app to open the report for you, set Automatically launch a report if one is

generated to Yes.

At the command line, use codegen options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use configuration object properties:

• To generate a report, set GenerateReport to true.
• If you want codegen to open the report for you, set LaunchReport to true.

 Code Generation Reports

29-7

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder of the code
generation output folder. If you have MATLAB R2018a or later, you can open the report.mldatx file
by double-clicking it.

Errors and Warnings
View code generation error, warning, and information messages on the All Messages tab. To
highlight the source code for an error or warning, click the message. It is a best practice to address
the first message because subsequent errors and warnings can be related to the first message.

View compilation and linking errors and warnings on the Build Logs tab. The code generator detects
compilation warnings only for MEX output or if you use a supported compiler for other types of
output. See .https://www.mathworks.com/support/compilers/current_release/.

Files and Functions
The report lists MATLAB source functions and generated files. In the MATLAB Source pane, the
Function List view organizes functions according to the containing file. To visualize functions
according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a function
opens the file that contains the function. To edit the selected file in the MATLAB Editor, click Edit in
MATLAB or click a line number in the code pane.

If you have Embedded Coder and generate the report with traceability enabled, to view the source
code and generated code next to each other in the code pane, click Trace Code. You can interactively
trace between the source code and the generated code. See “Interactively Trace Between MATLAB
Code and Generated C/C++ Code” (Embedded Coder).

If you want to move the generated files for standalone code (library or executable) to another
development environment, you can put them into a zip file by clicking Package Code.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for its
properties, the code generator produces specializations. In the MATLAB Source pane, numbered
functions (or classes) indicate specializations. For example:

Functions List After Fixed-Point Conversion

If you convert floating-point MATLAB code to fixed-point MATLAB code, and then generate fixed-point
C/C++ code, the MATLAB Source pane lists the original MATLAB functions and the fixed-point
MATLAB functions. For example:

29 Verify Generated C/C++ Code

29-8

MATLAB Source
To view a MATLAB function in the code pane, click the name of the function in the MATLAB Source
pane. In the code pane, when you pause on a variable or expression, a tooltip displays information
about its size, type, and complexity. Additionally, syntax highlighting helps you to identify MATLAB
syntax elements and certain code generation attributes, such as whether a function is extrinsic or
whether an argument is constant.

Extrinsic Functions

The report identifies an extrinsic function with purple text. The tooltip indicates that the function is
extrinsic.

Constant Arguments

Orange text indicates a compile-time constant argument to an entry-point function or a specialized
function. The tooltip includes the constant value.

 Code Generation Reports

29-9

Knowing the value of a constant argument helps you to understand the generated function
signatures. It also helps you to see when code generation creates function specializations for different
constant argument values.

To export the value to a variable in the workspace, click the Export icon .

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB function. To
select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types
• Whether an array is sparse
• Array layout

This information helps you to debug errors, such as type mismatch errors, and to understand how the
code generator propagates types and represents data in the generated code.

Visual Indicators on the Variables Tab

This table describes the symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see by
clicking the expander.

Name {:} Homogenous cell array (all
elements have the same
properties).

Name {n} nth element of a heterogeneous
cell array.

Class v > n v is reused with a different
class, size, and complexity. The
number n identifies a reuse with
a unique set of properties. When
you pause on a renamed
variable, the report highlights
only the instances of this
variable that share the class,
size, and complexity. See “Reuse
the Same Variable with Different
Properties” on page 4-10.

Size :n Variable-size array with an
upper bound of n.

29 Verify Generated C/C++ Code

29-10

Column in the Variables
Table

Indicator Description

Size :? Variable-size array with no
upper bound.

Size italics Variable-size array whose
dimensions do not change size
during execution.

Class sparse prefix Sparse array.
Class complex prefix Complex number.
Class Fixed-point type.

To see the fixed-point
properties, click the badge.

Array Layout Indicators on the Variables Tab

This table describes the badges that indicate array layout in the variables table.

Badge Description
Row-major array layout.

Column-major array layout.

A mixture of row-major and column-major
layouts.

See “Row-Major and Column-Major Array Layouts” on page 38-2.

Tracing Code
You can trace between MATLAB source code and generated C/C++ code by using one of these
methods:

• Interactively visualize the mapping between the MATLAB code and the generated code. To access
interactive tracing, in the report, click Trace Code.

The Trace Code button is enabled only if you have Embedded Coder and you enabled code
traceability when you generated code. See “Interactively Trace Between MATLAB Code and
Generated C/C++ Code” (Embedded Coder).

• Include source code as comments in the generated C/C++ code.

In a comment, the code generator produces a tag that helps you find the corresponding MATLAB
source code. If you have Embedded Coder, the tag is a link to the source code. See “Tracing
Generated C/C++ Code to MATLAB Source Code” on page 29-2.

Code Insights
The code generator can detect and report issues that can potentially occur in the generated code.
View the messages on the Code Insights tab. The issues include:

 Code Generation Reports

29-11

• Potential differences between the behavior of the generated code and the behavior of the MATLAB
code. The report includes potential differences messages only if you enabled potential differences
reporting. See “Potential Differences Reporting” on page 2-18.

• Potential data type issues in the generated code, such as single-precision and double-precision
operations.

The report includes potential data type issues only if you have Embedded Coder and you enabled
potential data type issues reporting. If you have Fixed-Point Designer, the report also identifies
expensive fixed-point operations. See “Highlight Potential Data Type Issues in a Report”
(Embedded Coder).

• Potential row-major issues. See “Code Design for Row-Major Array Layout” on page 5-26.
• Automatic parallelization issues. See “Automatically Parallelize for Loops in Generated Code” on

page 35-73.

Additional Reports
The Summary tab can have links to these additional reports:

• Static code metrics report (requires Embedded Coder). See “Generating a Static Code Metrics
Report for Code Generated from MATLAB Code” (Embedded Coder).

• Code replacements report (requires Embedded Coder). See “Verify Code Replacement Library”
(Embedded Coder).

• Fixed-point conversion report (requires Fixed-Point Designer). See “Convert MATLAB Code to
Fixed-Point C Code” on page 21-5.

Report Limitations
• The entry-point summary shows the individual elements of varargin and varargout, but the

variables table does not show them.
• The report does not show full information for unrolled loops. It displays data types of one arbitrary

iteration.
• The report does not show information about dead code.

See Also

More About
• “Generating a Static Code Metrics Report for Code Generated from MATLAB Code” (Embedded

Coder)
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder)
• “Tracing Generated C/C++ Code to MATLAB Source Code” on page 29-2
• “Convert MATLAB Code to Fixed-Point C Code” on page 21-5
• “Row-Major and Column-Major Array Layouts” on page 38-2
• “Basic HDL Code Generation and FPGA Synthesis from MATLAB” (HDL Coder)
• “Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL Coder)

29 Verify Generated C/C++ Code

29-12

Access Code Generation Report Information Programmatically
You can export information about code generation to a variable in your base MATLAB workspace.
This variable contains a coder.ReportInfo object whose properties contain this information:

• A code generation summary that includes information about code generation success, date and
time, path of the output file, processor, version of MATLAB Coder, toolbox licenses checked out
during code generation, toolchain, and build configuration.

• The code generation configuration object.
• The text, path, and extension of the input files.
• The text, path, and extension of the generated files.
• For all MATLAB functions and methods involved in code generation: name, specialization, file,

start index, and end index.
• Code generation error, warning, and information messages.
• Code insights indicating potential issues with the generated code.
• Build logs produced during code generation.

See coder.ReportInfo Properties.

You can use the report information object to programmatically access this information about code
generation. For example, you can display the code generation messages at the MATLAB command
line. To perform this action, in your build script, access the property that contains these messages.

Create Report Information Object
Suppose that you want to export the code generation report information to the variable info in your
base MATLAB workspace. Do one of the following:

• In the MATLAB Coder app, on the Debugging tab, set Export report information to variable to
the variable name info.

• At the command line, use the codegen command with the -reportinfo option. Specify the
variable name after the -reportinfo option.

codegen myFunction -reportinfo info
• At the command line, set the code configuration object property ReportInfoVarName to the

character vector 'info'.
• Generate and open the code generation report. Click Export Report Information. In the dialog

box, specify the variable name info.

Example: Create Report Information Object for Successful Code
Generation
Create a report information object for a successful code generation process. Inspect the properties of
this object.

1 Define the MATLAB function foo:

function b = foo(a)
c = svd(a,0);

 Access Code Generation Report Information Programmatically

29-13

b = sum(c);
end

Generate a MEX function for foo. Specify the input a as a variable-size matrix whose first
dimension has an upper bound of 3 and second dimension has an upper bound of 5. Export the
code generation report information to the variable info in your base MATLAB workspace.

codegen -config:mex foo -args {coder.typeof(ones(1,1),[3 5],[1 1])} -reportinfo info

The code generator produces the MEX function foo_mex. The code generator also creates the
report information object info in the base MATLAB workspace.

2 Inspect the structure of the report information object. The object has eight properties that
contain information about code generation.

 ReportInfo with properties:

 Summary: [1×1 coder.Summary]
 Config: [1×1 coder.MexCodeConfig]
 InputFiles: [1×1 coder.CodeFile]
 GeneratedFiles: [21×1 coder.CodeFile]
 Functions: [1×1 coder.Function]
 Messages: [0×1 coder.Message]
 CodeInsights: [1×1 coder.Message]
 BuildLogs: [1×1 coder.BuildLog]

3 Inspect each property of info separately.

• info.Summary is a coder.Summary object whose properties contain information about code
generation success, code generation date and time, path of the output file, processor, toolbox
licenses checked out during code generation, and version of MATLAB Coder.

 Summary with properties:

 Success: true
 Date: '08-May-2020 09:15:07'
 OutputFile: 'C:\coder\R2020b\License discovery\foo_mex.mexw64'
 Processor: 'Generic->MATLAB Host Computer'
 Version: 'MATLAB Coder 5.1 (R2020b)'
 ToolboxLicenses: [1×0 string]

If you generate standalone code, info.Summary also contains information about toolchain
and build configuration.

• info.Config is the code configuration object. In this example, because you generated a
MEX function for foo, it is a coder.MexCodeConfig object.

• info.InputFiles is an array of coder.CodeFile objects. Each element of the array
contains the text, path, and extension of a code generation input file. In this example, the
array has just one element because there is only one input file foo.m.

 CodeFile with properties:

 Text: 'function b = foo(a)←↵b = svd(a,0);←↵end←↵'
 Path: 'C:\coder\R2019a\Report Info Object\foo.m'
 Extension: '.m'

• info.GeneratedFiles is an array of coder.CodeFile objects. Each element of the array
contains the text, path, and extension of a generated file. In this example, it is a 21-by-1 array
because there are 25 generated files.

29 Verify Generated C/C++ Code

29-14

 21×1 CodeFile array with properties:

 Text
 Path
 Extension

• info.Functions is an array of coder.Function objects. Each element of the array
contains the following information about a MATLAB function or method:

• Name and specialization.
• The coder.CodeFile object for the input file that contains the function or method. This

object is also contained in info.InputFiles.
• The start and end index of the function or the method in the text of the file.

In this example, info.Functions has one element because there is only one MATLAB
function in the input file foo.m.

 Function with properties:

 Name: 'foo'
 Specialization: 0
 File: [1×1 coder.CodeFile]
 StartIndex: 1
 EndIndex: 52

• info.Messages is an array of coder.Message objects that contain the code generation
error, warning, and information messages. In this example, there are no such messages. So,
this property is an empty array.

 0×1 Message array with properties:

 Identifier
 Type
 Text
 File
 StartIndex
 EndIndex

• info.CodeInsights is an array of coder.Message objects that contain the code insights.
These insights are messages about potential issues in the generated code such as potential
differences from MATLAB code and potential row-major array layout issues. These messages
also appear in the code generation report Code Insights tab. Each element of the array
contains the following information about one code insight:

• The identifier and the type of the message.
• The text of the message.
• The category and the subcategory that the message belongs to.
• The coder.File or coder.CodeFile object for the input file that produced the message.
• The start and end index of the part of the file text that produced the message.

In this example, there is one code insight.

 Message with properties:

 Identifier: 'Coder:potentialDifferences:autoDimIncompatibility'
 Type: 'Info'

 Access Code Generation Report Information Programmatically

29-15

 Text: 'In the generated code, the dimension to operate along is selected automatically, and might be different from MATLAB. Consider specifying the working dimension explicitly as a constant value.'
 Category: 'PotentialDifferencesFromMATLAB'
 File: [1×1 coder.CodeFile]
 StartIndex: 41
 EndIndex: 46

To index into the text of the file, use the StartIndex and EndIndex properties.

info.CodeInsights.File.Text(41:46)

This command displays the part of the file text that produced the code insight.

'sum(c)'

• info.BuildLogs is an array of coder.BuildLog objects that contain the build logs
produced during code generation. The build logs contain compilation and linking errors and
warnings. The same build logs also appear in the code generation report Build Logs tab.
Each element of the array contains the type and the text of one build log. In this example,
there is one build log of type 'Target'.

Example: Create Report Information Object for Successful Code
Generation That Checks Out Toolbox Licenses
Create a report information object for a code generation process that checks out toolbox licenses.
Inspect the properties of this object.

1 Define the MATLAB function bar that calls the functions iqr and haart.

function [u,v,w] = bar(x) %#codegen
u = iqr(x);
[v,w] = haart(x);
end

Generate C source code for bar. Specify the type of the input argument as a 1-by-100 row vector
of doubles. Export the code generation report information to the variable info in your base
MATLAB workspace.

codegen -c bar -args {zeros(1,100)} -reportinfo info
2 Code generation succeeds. Inspect the info.Summary.ToolboxLicenses property.

 1×2 string array

 "statistics_toolbox" "wavelet_toolbox"

This property shows that the Statistics and Machine Learning Toolbox™ and Wavelet Toolbox™
licenses were checked out during code generation.

Note If you generate MEX code, these licenses are checked out again when you load the MEX
function.

If you generate static library or dynamically linked library, the toolbox licenses are checked out
only during code generation. The code generator does not write license checkouts into generated
standalone code.

29 Verify Generated C/C++ Code

29-16

Example: Create Report Information Object for Failed Code Generation
Create a report information object for a code generation process that fails. Inspect the properties of
this object.

1 Define the MATLAB function foo:

function b = foo(a)
b = svd(a,0);
end

Generate a MEX function for foo. Specify the input a as a string scalar. Export the code
generation report information to the variable info in your base MATLAB workspace.

codegen -config:mex foo -args {"A string scalar"} -reportinfo info

Code generation fails because a string scalar is not a valid input for the MATLAB function svd.
The code generator creates the report information object info in the base MATLAB workspace.

2 Inspect the info.Summary and info.Messages properties.

• info.Summary indicates that code generation has failed.

 Summary with properties:

 Success: false
 Date: '08-May-2020 10:20:35'
 OutputFile: 'C:\coder\R2020b\License discovery\codegen\mex\foo'
 Processor: 'Generic->MATLAB Host Computer'
 Version: 'MATLAB Coder 5.1 (R2020b)'
 ToolboxLicenses: [1×0 string]

• info.Messages is an array of coder.Message objects that contain the code generation
error, warning, and information messages. Each element of the array contains the following
information about one message:

• The identifier and the type of the message.
• The text of the message.
• The coder.CodeFile object for the input file that caused the message.
• The start and end index of the part of the file text that caused the message.

In this example, there are two error messages. So, info.Messages is a 2-by-1 array.

 2×1 Message array with properties:

 Identifier
 Type
 Text
 File
 StartIndex
 EndIndex

View the first element of the array info.Messages(1).

 Message with properties:

 Identifier: 'Coder:toolbox:unsupportedClass'
 Type: 'Error'

 Access Code Generation Report Information Programmatically

29-17

 Text: 'Function 'svd' is not defined for values of class 'string'.'
 File: [1×1 coder.CodeFile]
 StartIndex: 26
 EndIndex: 33

Use the StartIndex and EndIndex properties to index into the text of the file.

info.Messages(1).File.Text(26:33)

This command displays the part of the file text that caused the error message.

'svd(a,0)'

Inspect Code Manually
To manually inspect the text of the input files, the line and column numbers corresponding to the
StartIndex and EndIndex values are useful. Use the getLineColumn function to obtain this
information. This function returns two structures that contain the line and column numbers
corresponding to StartIndex and EndIndex respectively.

In the preceding example, to manually inspect the part of foo.m that caused the first error message,
display the text of the file.

info.Messages(1).File.Text

The text of the file is displayed as:

'function b = foo(a)
 b = svd(a,0);
 end
 '

Access the line and column numbers of the part of the text that caused the first error message.

[startLoc,endLoc] = getLineColumn(info.messages(1))

The output is:

startLoc =

 struct with fields:

 Line: 2
 Column: 5

endLoc =

 struct with fields:

 Line: 2
 Column: 12

These locations correspond to the beginning and the end of the function call 'svd(a,0)' in the text
of foo.m.

29 Verify Generated C/C++ Code

29-18

Transferring Code Configuration Objects to a New MATLAB Session
Suppose that you create a report information object info in a MATLAB session, and then use it in
another MATLAB session. If info.Config is a configuration object for standalone code generation
(coder.CodeConfig or coder.EmbeddedCodeConfig), the following behavior might occur:

• If the MATLAB host computer for the second session does not have the hardware board specified
in the info.Config.Hardware property installed on it, the configuration parameter
info.Config.Hardware reverts to its default value. The default value is [].

• If the MATLAB host computer for the second session does not have the toolchain specified in the
info.Config.Toolchain property installed on it, the configuration parameter
info.Config.Toolchain reverts to its default value. The default value is 'Automatically
locate an installed toolchain'.

See Also
coder.BuildLog Properties | coder.ReportInfo Properties | coder.Summary Properties | coder.File
Properties | coder.CodeFile Properties | coder.Function Properties | coder.Method Properties |
coder.Message Properties | getLineColumn

More About
• “Code Generation Reports” on page 29-7

 Access Code Generation Report Information Programmatically

29-19

Generate Standalone C/C++ Code That Detects and Reports
Run-Time Errors

During development, before you generate C/C++ code, it is a best practice to test the generated code
by running the MEX version of your algorithm. However, some errors occur only on the target
hardware. To detect these errors, generate standalone libraries and executables that detect and
report run-time errors, such as out-of-bounds array indexing.

By default, run-time error detection is disabled for standalone libraries and executables. To enable
run-time error detection and reporting for standalone libraries and executables:

• At the command line, use the code configuration property RuntimeChecks.

cfg = coder.config('lib'); % or 'dll' or 'exe'
cfg.RuntimeChecks = true;
codegen -config cfg myfunction

• In the MATLAB Coder app, in the project settings dialog box, on the Debugging pane, select the
Generate run-time error checks check box.

Run-time error detection can affect the performance of the generated code. If performance is a
consideration for your application, do not generate production code with run-time error detection
enabled.

Generated C Code vs. Generated C++ Code
If your target language is C, the generated code uses fprintf to write error messages to stderr.
Then, the code uses abort to terminate the application. If fprintf and abort are not available, you
must provide them. The abort function abruptly terminates the program. If your system supports
signals, you can catch the abort signal (SIGABRT) so that you can control the program termination.

If your target language is C++, the generated code throws std::runtime_error exceptions for the
run-time errors. When you call the generated C++ entry-point functions, you can catch and handle
these exceptions by using a try-catch block in your external C++ code.

However, for run-time error checks inside parallel regions (either parfor loops or automatically
parallelized for loops), the generated C++ code does not throw an exception. In such situations, the
generated code uses fprintf to write error messages to stderr, and then uses abort to terminate
the application. To learn more about automatic parallelization, see “Automatically Parallelize for
Loops in Generated Code” on page 35-73.

Example: Compare Generated C and C++ Code That Include Run-Time
Checks
In this example, you compare the run-time behavior of generated C and C++ code for a MATLAB®
function that calculates the square root of its input argument. The generated code can accept only
nonnegative real values and produces a run-time error for negative inputs:

• The generated C code uses fprintf to write the error message to stderr. Then, the code uses
abort to terminate the application.

• The the generated C++ code throws a std::runtime_error exception for this run-time error. In
the C++ main function that you write to call the generated function, you catch and handle this
exception by using a try-catch block.

29 Verify Generated C/C++ Code

29-20

Define MATLAB Function

Define the MATLAB function errorCheckExample in a separate file. This function calculates the
square root of its input argument:

type errorCheckExample

function y = errorCheckExample(x)
y = sqrt(x);
end

Generate C Library and Executable

Generate a dynamically linked C library for errorCheckExample that accepts a double scalar input.
Use a code configuration object with the RuntimeChecks parameter set to true. Also, use the -d
option to name the code generation folder as codegen_c_dll.

cfg = coder.config('dll');
cfg.RuntimeChecks = true;
codegen -config cfg errorCheckExample -args 1 -d codegan_c_dll -report

Code generation successful: To view the report, open('codegan_c_dll\html\report.mldatx')

Open the code generation report and inspect the file errorCheckExample.c. The C function
generated for your MATLAB function has the signature double errorCheckExample(double x).
To calculate the square root, errorCheckExample invokes the sqrt library function which
calculates only real square roots. So, errorCheckExample can accept only positive inputs. For
negative inputs, errorCheckExample calls the generated utility function rtErrorWithMessageID
that uses fprintf to write an error message to stderr and then uses abort to terminate the
application.

static void rtErrorWithMessageID(const int b, const char *c,
 const char *aFcnName, int aLineNum)
{
 fprintf(stderr,
 "Domain error. To compute complex results from real x, use "
 "\'%.*s(complex(x))\'.",
 b, c);
 fprintf(stderr, "\n");
 fprintf(stderr, "Error in %s (line %d)", aFcnName, aLineNum);
 fprintf(stderr, "\n");
 fflush(stderr);
 abort();
}

When generating library code, the code generator also produces example main files main.h and
main.c in the examples subfolder of the build folder. The supporting C files
main_runtime_check.h and main_runtime_check.c are modified versions of these example
files. The modified main function invokes errorCheckExample(-4), which produces a run-time
error.

Run these commands to generate a C executable using the modified main files. Name the code
generation folder codegen_c_exe. Name the executable file errorCheckExample_c by using the -
o option with the codegen command.

cfg = coder.config('exe');
cfg.RuntimeChecks = true;

 Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors

29-21

cfg.CustomSource = 'main_runtime_check.c';
cfg.CustomInclude = pwd;

codegen -config cfg main_runtime_check.c main_runtime_check.h errorCheckExample -args 1 -o errorCheckExample_c -d codegen_c_exe

Code generation successful.

Run the generated executable. Observe that it prints the error message that is hard-coded in the
utility function rtErrorWithMessageID.

if isunix
 system('./errorCheckExample_c');
elseif ispc
 system('errorCheckExample_c.exe');
else
 disp('Platform is not supported');
end

Domain error. To compute complex results from real x, use 'sqrt(complex(x))'.
Error in sqrt (line 13)

Generate C++ Library and Executable

Generate a dynamically linked C++ library for errorCheckExample that accepts a scalar double
input. Use a code configuration object with the RuntimeChecks parameter set to true. Also, use the
-d option to name the code generation folder as codegen_cpp_dll.

cfg = coder.config('dll');
cfg.RuntimeChecks = true;
codegen -config cfg -lang:c++ errorCheckExample -args 1 -d codegen_cpp_dll -report

Code generation successful: To view the report, open('codegen_cpp_dll\html\report.mldatx')

Open the code generation report and inspect the file errorCheckExample.cpp. Similar to the C
function generated in the previous section, errorCheckExample can accept only positive inputs. For
negative inputs, errorCheckExample calls the utility function rtErrorWithMessageID. But in this
case, the utility function throws a std:runtime_error exception that you can catch and handle in
your hand-written main function.

static void rtErrorWithMessageID(const char *b, const char *aFcnName,
 int aLineNum)
{
 std::stringstream outStream;
 ((outStream << "Domain error. To compute complex results from real x, use \'")
 << b)
 << "(complex(x))\'.";
 outStream << "\n";
 ((((outStream << "Error in ") << aFcnName) << " (line ") << aLineNum) << ")";
 throw std::runtime_error(outStream.str());
}

When generating library code, the code generator also produces example main files main.h and
main.c in the examples subfolder of the build folder. The supporting C++ files
main_runtime_check.hpp and main_runtime_check.cpp are modified versions of these
example files. The modified main() function invokes errorCheckExample(-4) inside a try-catch
block. The block catches the exception and prints a modified message by prepending the string
"Caught excaption: " to the message that the caught exception contains.

29 Verify Generated C/C++ Code

29-22

Run these commands to generate a C++ executable using the modified main files. Name the code
generation folder codegen_cpp_exe. Name the executable file errorCheckExample_cpp.

cfg = coder.config('exe');
cfg.RuntimeChecks = true;
cfg.CustomSource = 'main_runtime_check.cpp';
cfg.CustomInclude = pwd;

codegen -config cfg -lang:c++ main_runtime_check.cpp main_runtime_check.hpp errorCheckExample -args 1 -o errorCheckExample_cpp -d codegen_cpp_exe

Code generation successful.

Run the generated executable. Observe that it prints the modified error message.

if isunix
 system('./errorCheckExample_cpp');
elseif ispc
 system('errorCheckExample_cpp.exe');
else
 disp('Platform is not supported');
end

Caught exception: Domain error. To compute complex results from real x, use 'sqrt(complex(x))'.
Error in sqrt (line 13)

Limitations
Run-time error detection and reporting in standalone code has these limitations:

• Error messages are in English only.
• Some error checks require double-precision support. Therefore, the hardware on which the

generated code runs must support double-precision operations.
• If the program terminates, the error detection and reporting software does not display the run-

time stack. To inspect the stack, attach a debugger.
• If the generated C code terminates, the error detection and reporting software does not release

resources, such as allocated memory. The generated C++ code does not have this limitation. If the
generated C++ code terminates, allocated memory and other resources are released.

• In standalone code, the function error displays a message that indicates that an error occurred.
To see the actual message specified by error, you must generate and run a MEX function.

• In standalone code, if called with more than one argument, the function assert does not report
an error and does not terminate execution. If called with a single argument, for example,
assert(cond), if cond is not a constant true value, reports an error and terminates execution.

See Also
codegen | coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “Why Test MEX Functions in MATLAB?” on page 26-2

 Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors

29-23

Example: Generate Standalone C Code That Detects and
Reports Run-Time Errors

This example shows how to generate C libraries or executables that detect and report run-time errors
such as out-of-bounds array indexing. If the generated C code detects an error, it reports a message
and terminates the program. This allows you to detect and fix errors that occur only on the target
hardware.

Write the function getelement that indexes into one structure field using the value of the other
structure field.

function y = getelement(S) %#codegen
y = S.A(S.u);
end

Create a code configuration object for a standalone library or executable. For example, create a code
configuration object for a static library. Enable the code generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Enable generation of run-time error detection and reporting.

cfg.RuntimeChecks = true;

Define an example input that you can use to specify the properties of the input argument.

S.A = ones(2,2);
S.u = 1;

Generate code.

codegen -config cfg getelement -args {S}

To open the code generation report, click the View report link.

In the list of generated files, click getelement.c.

You can see the code that checks for an error and calls a function to report the error. For example, if
the code detects an out-of-bounds array indexing error, it calls rtDynamicBoundsError to report
the error and terminate the program.

/* Include files */
#include "getelement.h"
#include "getelement_rtwutil.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

/* Variable Definitions */
static rtBoundsCheckInfo emlrtBCI = { 1,/* iFirst */
 4, /* iLast */
 2, /* lineNo */
 5, /* colNo */
 "S.A", /* aName */
 "getelement", /* fName */

29 Verify Generated C/C++ Code

29-24

 "C:\\Users\\username\\Documents\\MATLAB\\runtime-error-ex\\getelement.m",/* pName */
 0 /* checkKind */
};

static rtDoubleCheckInfo emlrtDCI = { 2,/* lineNo */
 5, /* colNo */
 "getelement", /* fName */
 "C:\\Users\\username\\Documents\\MATLAB\\runtime-error-ex\\getelement.m",/* pName */
 1 /* checkKind */
};

/* Function Definitions */
double getelement(const struct0_T *S)
{
 int i;
 if (S->u != (int)floor(S->u)) {
 rtIntegerError(S->u, &emlrtDCI);
 }

 i = (int)S->u;
 if ((i < 1) || (i > 4)) {
 rtDynamicBoundsError(i, 1, 4, &emlrtBCI);
 }

 return S->A[i - 1];
}

The error reporting software uses fprintf to write error messages to stderr. It uses abort to
terminate the application. If fprintf and abort are not available, you must provide them. The
abort function abruptly terminates the program. If your system supports signals, you can catch the
abort signal (SIGABRT) so that you can control the program termination.

See Also

More About
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

 Example: Generate Standalone C Code That Detects and Reports Run-Time Errors

29-25

Testing Code Generated from MATLAB Code
MATLAB Coder helps you to test your generated code.

If you use the MATLAB Coder app to generate a MEX function, you can test the MEX function in the
app. If you use codegen to generate a MEX function, test the MEX function by using
coder.runTest. Alternatively, use the codegen -test option.

If you have Embedded Coder, you can verify the numerical behavior of generated C/C++ code by
using software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. You can also produce a
profile of execution times.

See Also

More About
• “Verify MEX Functions in the MATLAB Coder App” on page 26-7
• “Verify MEX Functions at the Command Line” on page 26-8
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop Execution”

(Embedded Coder)
• “Execution Time Profiling for SIL and PIL” (Embedded Coder)
• “Unit Test Generated Code with MATLAB Coder” on page 29-27
• “Unit Test External C Code with MATLAB Coder” on page 29-33

29 Verify Generated C/C++ Code

29-26

Unit Test Generated Code with MATLAB Coder
This example shows how to test the output of generated code by using MATLAB® unit tests with
MATLAB® Coder™.

To monitor for regressions in code functionality, you can write unit tests for your code. In MATLAB,
you can create and run unit tests by using the MATLAB testing framework. To test MEX code and
standalone code that you generate from MATLAB code, you can use the same unit tests that you use
to test MATLAB code.

A MEX function includes instrumentation that helps you to detect issues before you generate
production code. Running unit tests on a MEX function tests the instrumented code in MATLAB.
Generated standalone code (static library or shared library) does not include the instrumentation and
can include optimizations that are not present in the MEX code. To run unit tests on standalone code
in a separate process outside of MATLAB, use software-in-the-loop (SIL) or processor-in-the-loop (PIL)
execution. To use SIL or PIL execution, you must have Embedded Coder®.

This example shows how to:

1 Create MATLAB unit tests that call your MATLAB function. This example uses class-based unit
tests.

2 Generate a MEX function from your MATLAB function.
3 Run the unit tests on the MEX function.
4 Run the unit tests on standalone code by using SIL.

Examine the Files

To access the files that this example uses, click Open Script.

addOne.m

The example performs unit tests on the MEX function generated from the MATLAB function addOne.
This function adds 1 to its input argument.

function y = addOne(x)
% Copyright 2014 - 2016 The MathWorks, Inc.

%#codegen
y = x + 1;
end

TestAddOne.m

The file TestAddOne.m contains a class-based unit test with two tests.

• reallyAddsOne verifies that when the input is 1, the answer is 2.
• addsFraction verifies that when the input is pi, the answer is pi + 1.

For more information about writing class based-unit tests, see “Author Class-Based Unit Tests in
MATLAB”.

classdef TestAddOne < matlab.unittest.TestCase

 Unit Test Generated Code with MATLAB Coder

29-27

 % Copyright 2014 - 2016 The MathWorks, Inc.

 methods (Test)

 function reallyAddsOne(testCase)
 x = 1;
 y = addOne(x);
 testCase.verifyEqual(y, 2);
 end

 function addsFraction(testCase)
 x = pi;
 y = addOne(x);
 testCase.verifyEqual(y, x+1);
 end
 end
end

run_unit_tests.m

The file run_unit_tests.m calls runtests to run the tests in TestAddOne.m.

% Run unit tests
% Copyright 2014 - 2016 The MathWorks, Inc.

runtests('TestAddOne')

Run Unit Tests on a MEX Function with the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code Generation, click
the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is addOne.
• On the Define Input Types page, specify that the input argument x is a double scalar.
• On the Check for Run-Time Issues step, enter code that calls addOne with representative input.

For example, addOne(2). Perform this step to make sure that you can generate code for your
MATLAB function and that the generated code does not have run-time issues.

For more complicated MATLAB functions, you might want to provide a test file for the Define Input
Types and Check for Run-Time Issues steps. This test file calls the MATLAB function with
representative types. The app uses this file to determine the input types for you. The test file can be
different from the test file that you use for unit testing.

To generate the MEX function, on the Generate Code page:

1 For Build type, specify MEX.
2 Click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.

29 Verify Generated C/C++ Code

29-28

2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

The app displays the test output on the Test Output tab. The unit tests pass.

Run Unit Tests After Modifying MATLAB Code

Modify addOne so that the constant 1 is single-precision. To edit addOne, in the upper-left corner of
the app, under Source Code, click addOne.

 Unit Test Generated Code with MATLAB Coder

29-29

To generate a MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to Generated code
3 Click Run Generated Code.

The unit tests fail.

• reallyAddsOne fails because the class of the output type is single, not double.
• addsFraction fails because the output class and value do not match the expected class and

value. The output type is single, not double. The value of the single-precision output, 4.1415930, is
not the same as the value of the double-precision output, 4.141592653589793.

Run Unit Tests With Software-in-the-Loop Execution in the App (Requires Embedded Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code (static library
or shared library) by using software-in-the-loop (SIL) execution.

Generate a library for addOne. For example, generate a static library.

On the Generate Code page:

1 For Build type, specify Static Library.
2 Click Generate.

Run the unit tests on the generated code.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

29 Verify Generated C/C++ Code

29-30

To terminate the SIL execution, click Stop SIL Verification.

Run Unit Tests on a MEX Function by Using the Command-Line Workflow

If you use the command-line workflow to generate code, you can run unit tests on a MEX function by
using coder.runTest with a test file that runs the unit tests.

Generate a MEX function for the function that you want to test. For this example, specify that the
input argument is a double scalar by providing a sample input value.

codegen addOne -args {2}

Code generation successful.

Run the units tests on the MEX function. Specify that the test file is run_unit_tests and that the
function is addOne. When coder.runTest runs the test file, it replaces calls to addOne with calls to
addOne_mex. The unit tests run on the MEX function instead of the original MATLAB function.

coder.runTest('run_unit_tests', 'addOne')

Running TestAddOne
..
Done TestAddOne

ans =

 1x2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.

 Unit Test Generated Code with MATLAB Coder

29-31

 0.04808 seconds testing time.

Run Unit Tests With Software-in-the-Loop Execution at the Command Line (Requires
Embedded Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code (static library
or shared library) by using software-in-the-loop (SIL) execution.

Create a coder.EmbeddedCodeConfig object for a static library.

cfg = coder.config('lib');

Configure the object for SIL.

cfg.VerificationMode = 'SIL';

Generate code for the MATLAB function and the SIL interface.

codegen -config cfg -args {2} addOne

Run a test file that runs the unit tests with the SIL interface.

coder.runTest('run_unit_tests', ['addOne_sil.', mexext])

Terminate the SIL execution.

Click clear addOne_sil.

See Also
coder.runTest

More About
• “Author Class-Based Unit Tests in MATLAB”
• “Software-in-the-Loop Execution with the MATLAB Coder App” (Embedded Coder)
• “Software-in-the-Loop Execution From Command Line” (Embedded Coder)
• “Unit Test External C Code with MATLAB Coder” on page 29-33

29 Verify Generated C/C++ Code

29-32

Unit Test External C Code with MATLAB Coder
This example shows how to test external C code by using MATLAB® unit tests with MATLAB®
Coder™.

If you want to test C code, you can use MATLAB Coder to bring the code into MATLAB. You can then
write unit tests by using the MATLAB testing framework. You can write richer, more flexible tests by
taking advantage of the advanced numerical computing and visualization capabilities of MATLAB.

This example shows how to:

1 Bring your C code into MATLAB as a MEX function that you generate with MATLAB Coder.
2 Write a unit test by using the MATLAB testing framework.
3 Run the test on the MEX function.

If you have Embedded Coder®, you can run unit tests on generated standalone code (static library or
shared library) by using the unit tests with software-in-the-loop (SIL) execution or processor-in-the-
loop (PIL) execution.

Examine the Files

To access the files that this example uses, click Open Script.

kalmanfilter.c

kalmanfilter.c is the C function that the example tests. It estimates the position of a moving
object based on its past positions.

kalmanfilter.h

kalmanfilter.h is the header file for kalmanfilter.c.

position.mat

position.mat contains the positions of the object.

callKalmanFilter.m

callKalmanFilter calls kalmanfilter by using coder.ceval.

function [a,b] = callKalmanFilter(position)
% Copyright 2014 - 2016 The MathWorks, Inc.

numPts = size(position,2);

a = zeros(2,numPts,'double');
b = zeros(2,numPts,'double');
y = zeros(2,1,'double');

% Main loop
for idx = 1: numPts
 z = position(:,idx); % Get the input data

 % Call the initialize function

 Unit Test External C Code with MATLAB Coder

29-33

 coder.ceval('kalmanfilter_initialize');

 % Call the C function
 coder.ceval('kalmanfilter',z,coder.ref(y));

 % Call the terminate function
 coder.ceval('kalmanfilter_terminate');

 a(:,idx) = [z(1); z(2)];
 b(:,idx) = [y(1); y(2)];
end
end

TestKalmanFilter.m

TestKalmanFilter tests whether the error between the predicted position and actual position
exceeds the specified tolerance. The unit tests are class-based unit tests. For more information, see
“Author Class-Based Unit Tests in MATLAB”.

Although you want to test the MEX function, the unit tests in TestKalmanFilter call the original
MATLAB function from which you generated the MEX function. When MATLAB Coder runs the tests,
it replaces the calls to the MATLAB function with calls to the MEX function. You cannot run these
tests directly in MATLAB because MATLAB does not recognize the coder.ceval calls in
callKalmanFilter.

classdef TestKalmanFilter < matlab.unittest.TestCase
 % Copyright 2014 - 2016 The MathWorks, Inc.

 methods (Test)

 function SSE_LessThanTolerance(testCase)
 load position.mat;
 [z,y] = callKalmanFilter(position);

 tolerance = 0.001; % tolerance of 0.0001 will break
 A = z-1000*y;
 error = sum(sum(A.^2));

 testCase.verifyLessThanOrEqual(error, tolerance);

 % For debugging
 plot_kalman_filter_trajectory(z,1000*y);
 end

 function SampleErrorLessThanTolerance(testCase)
 load position.mat;
 [z,y] = callKalmanFilter(position);

 tolerance = 0.01; % tolerance of 0.001 will break
 A = z-1000*y;

 testCase.verifyEqual(1000*y, z, 'AbsTol', tolerance);
 % For debugging
 plot_kalman_filter_trajectory(z,1000*y);

29 Verify Generated C/C++ Code

29-34

 [value, location] = max(A(:));
 [R,C] = ind2sub(size(A),location);
 disp(['Max value ' num2str(value) ' is located at [' num2str(R) ',' num2str(C) ']']);
 end
 end
end

run_unit_tests_kalman.m

run_unit_tests_kalman calls runtests to run the tests in TestKalmanFilter.m.

% Run unit tests
% Copyright 2014 - 2016 The MathWorks, Inc.

runtests('TestKalmanFilter')

plot_kalman_filter_trajectory.m

plot_kalman_filter_trajectory plots the trajectory of the estimated and actual positions of the
object. Each unit test calls this function.

Generate MEX and Run Unit Tests in the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code Generation, click
the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is callKalmanFilter.
• On the Define Input Types page, specify that the input argument x is a 2-by-310 array of

doubles.

The unit tests load the variable position from position.mat and pass position to
callKalmanFilter. Therefore, the input to callKalmanFilter must have the properties that
position has. In the MATLAB workspace, if you load position.mat, you see that position is a 2-
by-310 array of doubles.

• Skip the Check for Run-Time Issues step for this example.

Configure the app for MEX code generation. Specify the names of the C source and header files
because callKalmanFilter integrates external C code.

1 For Build type, specify MEX.
2 Click More Settings.
3 On the Custom Code tab:

• Under Custom C Code for Generated Files, select Header file. In the custom code field, enter
#include "kalmanfilter.h".

• In the Additional source files field, enter kalmanfilter.c.

 Unit Test External C Code with MATLAB Coder

29-35

To generate the MEX function, click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests_kalman.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

When the app runs the test file, it replaces calls to callKalmanFilter in the unit test with calls to
callKalmanFilter_mex. The unit tests run on the MEX function instead of the original MATLAB
function.

The app displays the test output on the Test Output tab. The unit tests pass.

29 Verify Generated C/C++ Code

29-36

From the plots, you can see that the trajectory of the estimated position converges with the trajectory
of the actual position.

 Unit Test External C Code with MATLAB Coder

29-37

Run Unit Tests After Modifying C Code

When you modify the C code, to run the unit tests:

1 Regenerate the MEX function for the MATLAB function that calls the C code.
2 Repeat the verification step.

For example, modify kalmanfilter.c so that the value assigned to y[r2] is multiplied by 1.1.

y[r2] += (double)d_a[r2 + (i0 << 1)] * x_est[i0] * 1.1;

Edit kalmanfilter.c outside of the app because you can use the app to edit only MATLAB files
listed in the Source Code pane of the app.

To generate the MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to Generated code

29 Verify Generated C/C++ Code

29-38

3 Click Run Generated Code.

The tests fail because the error exceeds the specified tolerance.

The plots show the error between the trajectory for the estimated position and the trajectory for the
actual position.

Generate MEX and Run Unit Tests by Using the Command-Line Workflow

You can use the command-line workflow to run unit tests on external C code by using
coder.runTest. Specify a test file that runs the unit tests on the MATLAB function that calls your C
code.

Generate a MEX function for the MATLAB function that calls your C code. For this example, generate
MEX for callKalmanFilter.

Create a configuration object for MEX code generation.

cfg = coder.config('mex');

Specify the external source code and header file.

 Unit Test External C Code with MATLAB Coder

29-39

cfg.CustomSource = 'kalmanfilter.c';
cfg.CustomHeaderCode = '#include "kalmanfilter.h"';

To determine the type for the input to callKalmanFilter, load the position file.

load position.mat

To generate the MEX function, run codegen. Specify that the input to callKalmanFilter has the
same type as position.

codegen -config cfg callKalmanFilter -args position

Code generation successful.

Run the units tests on the MEX function. Specify that the test file is run_unit_tests_kalman and
that the function is callKalmanfilter. When coder.runTest runs the test file, it replaces calls to
callKalmanFilter in the unit test with calls to callKalmanFilter_mex. The unit tests run on the
MEX function instead of the original MATLAB function.

coder.runTest('run_unit_tests_kalman', 'callKalmanFilter')

Running TestKalmanFilter
Current plot held
.Current plot held
Max value 0.0010113 is located at [2,273]
.
Done TestKalmanFilter

ans =

 1x2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 21.5289 seconds testing time.

29 Verify Generated C/C++ Code

29-40

 Unit Test External C Code with MATLAB Coder

29-41

See Also
coder.runTest

More About
• “Author Class-Based Unit Tests in MATLAB”
• “Software-in-the-Loop Execution with the MATLAB Coder App” (Embedded Coder)
• “Software-in-the-Loop Execution From Command Line” (Embedded Coder)
• “Unit Test Generated Code with MATLAB Coder” on page 29-27

29 Verify Generated C/C++ Code

29-42

Calculate Number of Lines of Code by Using Report
Information Object

This example shows how to calculate the number of lines in the source code and the generated code
by using the report information object. For more information on the report information object, see
“Access Code Generation Report Information Programmatically” on page 29-13.

Setup

Add example files to path.

path = fullfile(matlabroot, 'examples', 'coder', 'main');
addpath(path);

The MATLAB Code

In this example, you generate code for the MATLAB function dijkstra. This function calculates the
lengths of the shortest paths from a node to every other node in a graph by using Dijkstra's
algorithm.

type dijkstra

% DIJKSTRA Find length of shortest path between nodes in a graph
%
% D = dijkstra(A, p)
% Takes a graph represented by its adjacency matrix 'A' along with a node
% 'p' as input and returns a vector 'D' containing the length of the
% shortest path from 'p' to all other nodes in the graph.

% Copyright 2018 The MathWorks, Inc.
function D = dijkstra(A, p) %#codegen

 narginchk(2,2);

 [m, n] = size(A);

 % Assertions to make sure inputs are valid
 assert(m == n, "Input adjacency matrix for graph must be a square matrix");
 assert(rem(p, 1) == 0 && p <= m && p > 0, "Input src must be a node in the graph");

 % Initialization
 max = realmax;
 D = repmat(max, 1, m);
 D(p) = 0;
 visited = false(1, m);

 for i = 1:m
 % Select next node to visit
 min = max;
 u = -1;
 for v = 1:n
 if ~visited(v) && D(v) <= min
 min = D(v);
 u = v;
 end
 end

 Calculate Number of Lines of Code by Using Report Information Object

29-43

 % Mark selected node as visited
 visited(u) = true;

 %{
 Update distances of nodes adjacent to selected node that are yet
 to be visited
 %}
 for v = 1:n
 if(~visited(v) && A(u, v) ~= 0 && D(u) ~= max)
 distVal = D(u) + A(u, v);
 if distVal < D(v)
 D(v) = distVal;
 end
 end
 end
 end
end

Specify the adjacency matrix A for a graph and a node p where the traversal of the graph begins. Plot
the graph. Call dijkstra to compute the shortest distance from p to every node in the graph and
display these distances.

% Sample adjacency Matrix for graph with 5 nodes
A = [
 0 1 1 0 0;
 1 0 0 1 1;
 1 0 0 1 0;
 0 1 1 0 1;
 0 1 0 1 0
];

% Plot the graph to see how it looks like
G = graph(A, 'omitselfloops');
plot(G, 'EdgeLabel', G.Edges.Weight)

29 Verify Generated C/C++ Code

29-44

% Source node from where graph traversal begins
p = randi(size(A, 1));

% Calculate shortest distance from 'p' to every other node in graph G
D = dijkstra(A, p);

for i=1:numel(D)
 fprintf("Length of shortest path from %d to %d is %d. \n", p, i, D(i));
end

Length of shortest path from 5 to 1 is 2.
Length of shortest path from 5 to 2 is 1.
Length of shortest path from 5 to 3 is 2.
Length of shortest path from 5 to 4 is 1.
Length of shortest path from 5 to 5 is 0.

Export Information about Code Generation

The report information object provides programmatic access to information about code generation.
The properties of this object provide information about code generation settings, input files,
generated files, and code generation error, warning, and information messages.

To export the report information object to a variable in your base MATLAB workspace, include the -
reportinfo option with the name of the variable while running the codegen command. In this
example, you export the code generation report information to the variable info.

codegen -c dijkstra -args {A, p} -reportinfo info

 Calculate Number of Lines of Code by Using Report Information Object

29-45

Code generation successful.

Calculate Number of Lines of Code

The loc function takes a report information object as input and returns two outputs that contain the
number of lines in the source code and the generated code, respectively. This function excludes blank
lines and the lines containing comments while computing the number of lines of code.

type loc

% LOC Calculate total lines of source and generated code in a codegen run
%
% [i, o] = loc(r)
% Takes a report information object 'r' as input, and produces two
% outputs - 'i' and 'o' containing the total lines of code in the source
% MATLAB files and generated files respectively.

% Copyright 2018 The MathWorks, Inc.
function [i, o] = loc(r)
 narginchk(1,1);

 % Assert that input is a report information object.
 assert(isa(r, 'coder.ReportInfo'), 'Input must be of type coder.ReportInfo');

 % Fetch source and generated files from the report information object.
 sourceFiles = r.InputFiles;
 generatedFiles = r.GeneratedFiles;

 % Count lines of code in source and generated files. Blank lines, and
 % comments are not counted.
 i = countLines(sourceFiles, true);
 o = countLines(generatedFiles, false);
end

function count = countLines(files, isSource)
 count = 0;
 for i=1:numel(files)
 f = files(i);
 if isprop(f, 'Text')
 lines = splitlines(f.Text);
 for j=1:numel(lines)
 line = strtrim(lines{j});
 if ~isempty(line) && ~isComment(line, isSource)
 count = count + 1;
 end
 end
 clear isComment; % clear persistent variables
 end
 end
end

function result = isComment(line, isSource)
 persistent inBlockComment;
 if isempty(inBlockComment)
 inBlockComment = false;
 end
 if isSource
 result = (startsWith(line, "%") || inBlockComment);

29 Verify Generated C/C++ Code

29-46

 if line == "%{" || line == "%}"
 inBlockComment = (line ~= "%}");
 end
 else
 result = (startsWith(line, "/") || inBlockComment);
 if startsWith(line, "/*") || endsWith(line, "*/")
 inBlockComment = ~endsWith(line, "*/");
 end
 end
end

Call loc with the report information object info as input. Display the number of lines of code in the
source files and the generated files.

info = evalin('base', 'info');
[nLocIn, nLocOut] = loc(info);
fprintf('Lines of code in source MATLAB file(s): %d', nLocIn);

Lines of code in source MATLAB file(s): 29

fprintf('Lines of code in generated file(s): %d', nLocOut);

Lines of code in generated file(s): 574

Cleanup

Remove example files from path.

rmpath(path);

See Also
coder.ReportInfo Properties

More About
• “Access Code Generation Report Information Programmatically” on page 29-13

 Calculate Number of Lines of Code by Using Report Information Object

29-47

Code Replacement for MATLAB Code

• “What Is Code Replacement?” on page 30-2
• “Choose a Code Replacement Library” on page 30-6
• “Replace Code Generated from MATLAB Code” on page 30-8
• “Generate SIMD Code for MATLAB Functions” on page 30-10

30

What Is Code Replacement?
Code replacement is a technique to change the code that the code generator produces for functions
and operators to meet application code requirements. For example, you can replace generated code
to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to, specific target
hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement library (CRL)
during code generation. By default, the code generator does not apply a code replacement library.
You can choose from libraries that MathWorks provides and that you create and register by using the
Embedded Coder product. The list of available libraries depends on:

• Installed support packages.
• System target file, language, language standard, and device vendor configuration.
• Whether you have created and registered libraries, using the Embedded Coder product.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If you use one
of those libraries with another compiler, generated code might not compile.

Code Replacement Libraries
A code replacement library consists of one or more code replacement tables that specify application-
specific implementations of functions and operators. For example, a library for a specific embedded
processor specifies function and operator replacements that optimize generated code for that
processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a conceptual
representation of a function or operator to an implementation representation and priority.

30 Code Replacement for MATLAB Code

30-2

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code generator.
Consists of:

• Function name or a key. The function name identifies most functions. For
operators and some functions, a series of characters, called a key
identifies a function or operator. For example, function name 'cos' and
operator key 'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming ('y1', 'u1',
'u2', ...), with corresponding I/O types (output or input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation, and
rounding modes, which identify matching criteria for the function or
operator.

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types (output or

input) and data types.
• Parameters that provide additional implementation details, such as

header and source file names and paths of build resources.
Priority Defines the entry priority relative to other entries in the table. The value can

range from 0 to 100, with 0 being the highest priority. If multiple entries
have the same priority, the code generator uses the first match with that
priority.

When the code generator looks for a match in a code replacement library, it creates and populates a
call site object with the function or operator conceptual representation. If a match exists, the code
generator uses the matched code replacement entry populated with the implementation
representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the order that
the tables appear in the library. If the code generator finds multiple matches within a table, the
priority determines the match. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

 What Is Code Replacement?

30-3

Code Replacement Terminology
Term Definition
Cache hit A code replacement entry for a function or operator,

defined in the specified code replacement library, for
which the code generator finds a match.

Cache miss A conceptual representation of a function or operator for
which the code generator does not find a match.

Call site object Conceptual representation of a function or operator that
the code generator uses when it encounters a call site for
a function or operator. The code generator uses the object
to query the code replacement library for a conceptual
representation match. If a match exists, the code
generator returns a code replacement object, fully
populated with the conceptual representation,
implementation representation, and priority, and uses that
object to generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions and
operators. When configured to use a code replacement
library, the code generator uses criteria defined in the
library to search for matches. If a match is found, the code
generator replaces code that it generates by default with
application-specific code defined in the library.

Code replacement table One or more code replacement table entries. Provides a
way to group related or shared entries for use in different
libraries.

Code replacement entry Represents a potential replacement for a function or
operator. Maps a conceptual representation of a function
or operator to an implementation representation and
priority.

Conceptual argument Represents an input or output argument for a function or
operator being replaced. Conceptual arguments observe
naming conventions ('y1', 'u1', 'u2', ...) and data types
familiar to the code generator.

Conceptual representation Represents match criteria that the code generator uses to
qualify functions and operators for replacement. Consists
of:

• Function or operator name or key
• Conceptual arguments with type, dimension, and

complexity specification for inputs and output
• Attributes, such as an algorithm and fixed-point

saturation and rounding modes
Implementation argument Represents an input or output argument for a C or C++

replacement function. Implementation arguments observe
C/C++ name and data type specifications.

30 Code Replacement for MATLAB Code

30-4

Term Definition
Implementation representation Specifies C or C++ replacement function prototype.

Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type, type
qualifiers, and complexity for the function inputs and
output

• Parameters that provide build information, such as
header and source file names and paths of build
resources and compile and link flags

Key Identifies a function or operator that is being replaced. A
function name or key appears in the conceptual
representation of a code replacement entry. The key
RTW_OP_ADD identifies the addition operator.

Priority Defines the match priority for a code replacement entry
relative to other entries, which have the same name and
conceptual argument list, within a code replacement
library. The priority can range from 0 to 100, with 0 being
the highest priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows the one
with the lower priority.

Code Replacement Limitations
Code replacement verification — It is possible that code replacement behaves differently than you
expect. For example, data types that you observe in code generator input might not match what the
code generator uses as intermediate data types during an operation. Verify code replacements by
examining generated code.

Code replacement for matrices — Code replacement libraries do not support Dynamic and Symbolic
sized matrices.

See Also

Related Examples
• “Choose a Code Replacement Library” on page 30-6
• “Replace Code Generated from MATLAB Code” on page 30-8

 What Is Code Replacement?

30-5

Choose a Code Replacement Library
In this section...
“About Choosing a Code Replacement Library” on page 30-6
“Explore Available Code Replacement Libraries” on page 30-6
“Explore Code Replacement Library Contents” on page 30-6

About Choosing a Code Replacement Library
By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that MathWorks
provides in “What Is Code Replacement?” on page 30-2.

• See “Explore Available Code Replacement Libraries” on page 30-6.
2 Explore the contents of the library. See “Explore Code Replacement Library Contents” on page

30-6.

If you do not find a suitable library and you have an Embedded Coder license, you can create a
custom code replacement library. For more information, see “What Is Code Replacement
Customization?” (Embedded Coder).

Explore Available Code Replacement Libraries
You can select the code replacement library to use for code generation in a project, on the Custom
Code tab, by setting the Code replacement library parameter. Alternatively, in a code configuration
object, set the CodeReplacementLibrary parameter.

Explore Code Replacement Library Contents
Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.
>> crviewer

The viewer opens. To view the content of a specific library, specify the name of the library as an
argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about the library in
the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a table from
the list. In the middle pane, the viewer displays the function and operator entries that are in that
table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information from the table
entry in the right pane.

30 Code Replacement for MATLAB Code

30-6

If you select an operator entry that specifies net slope fixed-point parameters (instantiated from
entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an additional tab that
shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

See Also

Related Examples
• “What Is Code Replacement?” on page 30-2
• “Replace Code Generated from MATLAB Code” on page 30-8

 Choose a Code Replacement Library

30-7

Replace Code Generated from MATLAB Code
This example shows how to replace generated code using a code replacement library. Code
replacement is a technique for changing the code that the code generator produces for functions and
operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that you have installed required software. Required software is:

• MATLAB
• MATLAB Coder
• C compiler

Some code replacement libraries available in your development environment require Embedded
Coder.

For instructions on installing MathWorks products, see the MATLAB installation documentation.
If you have installed MATLAB and want to see which other MathWorks products are installed, in
the MATLAB Command Window, enter ver.

2 Identify an existing MATLAB function or create a new MATLAB function for which you want the
code generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code generation for the
MATLAB function. Do one of the following:

• In a project, on the Custom Code tab, set the Code replacement library parameter.
• In a code configuration object, set the CodeReplacementLibrary parameter.

2 Configure the code generator to produce only code. Before you build an executable, verify your
code replacements. Do one of the following:

• In a project, in the Generate dialog box, select the Generate code only check box.
• In a code configuration object, set the GenCodeOnly parameter.

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include a code
replacement section in the code generation report. The additional information helps you verify code
replacements. For more information, see “Verify Code Replacement Library” (Embedded Coder).

Generate Replacement Code

Generate C/C++ code from the MATLAB code. If you configured the code generator to produce a
report, generate a code generation report. For example, in the MATLAB Coder app, on the Generate
Code page, click Generate. Or, at the command prompt, enter:

codegen -report myFunction -args {5} -config cfg

30 Code Replacement for MATLAB Code

30-8

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. Code replacement can sometimes behave
differently than you expect. For example, data types that you observe in the code generator input
might not match what the code generator uses as intermediate data types during an operation.

See Also

Related Examples
• “What Is Code Replacement?” on page 30-2
• “Choose a Code Replacement Library” on page 30-6
• “Configure Build Settings” on page 27-13

 Replace Code Generated from MATLAB Code

30-9

Generate SIMD Code for MATLAB Functions
You can generate single instruction, multiple data (SIMD) code from certain MATLAB functions by
using Intel SSE and, if you have Embedded Coder, Intel AVX technology. SIMD is a computing
paradigm in which a single instruction processes multiple data. Many modern processors have SIMD
instructions that, for example, perform several additions or multiplications at once. For
computationally intensive operations among supported functions, SIMD intrinsics can significantly
improve the performance of the generated code on Intel platforms.

MATLAB Functions That Support SIMD Code
When certain conditions are met, you can generate SIMD code by using Intel SSE or Intel AVX
technology. The following table lists MATLAB functions that support SIMD code generation. The table
also details the conditions under which the support is available.

MATLAB Function Conditions
plus • For AVX, SSE, and FMA, the input signal has a

data type of single or double.
• For AVX2, SSE4.1, and SSE2, the input signal

has a data type of single, double, int8,
int16, int32 or int64.

• For AVX512F, the input signal has a data type
of single or double.

• For integer data types, the value of Saturate
on integer overflow is set to No.

minus • For AVX, SSE, and FMA, the input signal has a
data type of single or double.

• For AVX2, SSE4.1, and SSE2, the input signal
has a data type of single, double, int8,
int16, int32 or int64.

• For AVX512F, the input signal has a data type
of single or double.

• For integer data types, the value of Saturate
on integer overflow is set to No.

times • For AVX, SSE, and FMA, the input signal has a
data type of single or double.

• For AVX2, SSE4.1, and SSE2, the input signal
has a data type of single, double, int16, or
int32.

• For AVX512F, the input signal has a data type
of single or double.

• For integer data types, the value of Saturate
on integer overflow is set to No.

rdivide The input signal has a data type of single or
double.

30 Code Replacement for MATLAB Code

30-10

MATLAB Function Conditions
sqrt The input signal has a data type of single or

double.
ceil • For AVX2, AVX, SSE4.1, SSE2, and SSE, the

input signal has a data type of single or
double.

• AVX512F is not supported.
floor • For AVX2, AVX, SSE4.1, SSE2, and SSE, the

input signal has a data type of single or
double.

• AVX512F is not supported.
max • The input signal has a data type of single or

double.
• The value of the Support nonfinite numbers

parameter is set to off.
min • The input signal has a data type of single or

double.
• The value of the Support nonfinite numbers

parameter is set to off.
sum • For AVX, SSE, and FMA, the input signal has a

data type of single or double.
• For AVX2, SSE4.1, and SSE2, the input signal

has a data type of single, double, int8,
int16, int32 or int64.

• For AVX512F, the input signal has a data type
of single or double.

• The Optimize reductions configuration
parameter is set to on.

• For integer data types, the value of Saturate
on integer overflow is set to No.

prod • For AVX, SSE, and FMA, the input signal has a
data type of single or double.

• For AVX2, SSE4.1, and SSE2, the input signal
has a data type of single, double, int16, or
int32.

• For AVX512F, the input signal has a data type
of single or double.

• The Optimize reductions configuration
parameter is set to on.

• For integer data types, the value of Saturate
on integer overflow is set to No.

 Generate SIMD Code for MATLAB Functions

30-11

MATLAB Function Conditions
bitand • For SSE2, the input signal has a data type of

int8, int16, int32, or int64.
• For AVX2, and AVX512F, the input signal has a

data type of int8, int16, int32, or int64.
bitor • For SSE2, the input signal has a data type of

int8, int16, int32, or int64.
• For AVX2, and AVX512F, the input signal has a

data type of int8, int16, int32, or int64.
bitxor • For SSE2, the input signal has a data type of

int8, int16, int32, or int64.
• For AVX2, and AVX512F, the input signal has a

data type of int8, int16, int32, or int64.
bitshift • The input signal has a data type of int32.

If you have a DSP System Toolbox, you can generate SIMD code from certain MATLAB System
objects. For more information, see “System objects in DSP System Toolbox that Support SIMD Code
Generation” (DSP System Toolbox).

Generate SIMD Code Versus Plain C Code
Consider the MATLAB function dynamic. This function consists of addition and multiplication
operations between the variable-size arrays A and B. These arrays have a data type of single and an
upper bound of 100 x 100.

function C = dynamic(A, B)
 assert(all(size(A) <= [100 100]));
 assert(all(size(B) <= [100 100]));
 assert(isa(A, 'single'));
 assert(isa(B, 'single'));

 C = zeros(size(A), 'like', A);
 for i = 1:numel(A)
 C(i) = (A(i) .* B(i)) + (A(i) .* B(i));
 end
end

To generate plain C code at the command line:

1 For C library code generation, create a code generation configuration object.

cfg = coder.config('lib');
2 To generate a static library in the default location, codegen\lib\dynamic, use the codegen

function t.

codegen('-config', cfg, 'dynamic');
3 In the list of generated files, click dynamic.c. In the plain (non-SIMD) C code, each loop

iteration produces one result.
void dynamic(const float A_data[], const int A_size[2], const float B_data[],
 const int B_size[2], float C_data[], int C_size[2])
{

30 Code Replacement for MATLAB Code

30-12

 float C_data_tmp;
 int i;
 int loop_ub;
 (void)B_size;
 C_size[0] = (signed char)A_size[0];
 C_size[1] = (signed char)A_size[1];
 loop_ub = (signed char)A_size[0] * (signed char)A_size[1];
 if (0 <= loop_ub - 1) {
 memset(&C_data[0], 0, loop_ub * sizeof(float));
 }
 loop_ub = A_size[0] * A_size[1];
 for (i = 0; i < loop_ub; i++) {
 C_data_tmp = A_data[i] * B_data[i];
 C_data[i] = C_data_tmp + C_data_tmp;
 }
}

To generate SIMD C code at the command line:

1 For C library code generation, use the coder.config function to create a code generation
configuration object.

cfg = coder.config('lib');
2 Set the coder.HardwareImplementation object TargetHWDeviceType property to 'Intel-

>x86-64 (Linux 64)' or 'Intel->x86-64 (Windows64)'.
cfg.HardwareImplementation.TargetHWDeviceType = 'Intel->x86-64 (Windows64)';

3 Set the coder.HardwareImplementation object ProdHWDeviceType property to 'Intel-
>x86-64 (Linux 64)' or 'Intel->x86-64 (Windows64)'
cfg.HardwareImplementation.ProdHWDeviceType = 'Intel->x86-64 (Windows64)';

If you are using the MATLAB Coder app to generate code:

• Set the Hardware Board parameter to None-Select device below.
• Set the Device vendor parameter to Intel, AMD, or Generic.
• Set the Device type to x86-64 (Linux 64), x86-64 (Windows64), or MATLAB Host

Computer.
4 Set the InstructionSetExtensions property to an instruction set extension that your

processor supports. This example uses SSE2 for Windows.

cfg.InstructionSetExtensions = 'SSE2';

The library that you choose depends on which instruction set extension your processor supports.
If you use Embedded Coder, you can also select from the instruction sets SSE, SSE4.1, AVX,
AVX2, FMA, and AVX512F.

For more information, see https://www.intel.com/content/www/us/en/support/articles/000005779/
processors.html.

If you are using the MATLAB Coder app to generate code, on the Speed tab, set the Leverage
target hardware instruction set extensions parameter to an instruction set that your
processor supports.

5 Optionally, select the OptimizeReductions parameter to generate SIMD code for reduction
operations such as sum and product functions.

cfg.OptimizeReductions = 'on';

 Generate SIMD Code for MATLAB Functions

30-13

https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html

If you are using the MATLAB Coder app to generate code, on the Speed tab, select the Optimize
reductions parameter.

6 Use the codegen function to generate a static library in the default location, codegen\lib
\dynamic.

codegen('-config', cfg, 'dynamic');
7 In the list of generated files, click dynamic.c.

void dynamic(const float A_data[], const int A_size[2], const float B_data[],
 const int B_size[2], float C_data[], int C_size[2])
{
 __m128 r;
 float C_data_tmp;
 int i;
 int loop_ub;
 int scalarLB;
 int vectorUB;
 (void)B_size;
 C_size[0] = (signed char)A_size[0];
 C_size[1] = (signed char)A_size[1];
 loop_ub = (signed char)A_size[0] * (signed char)A_size[1];
 if (0 <= loop_ub - 1) {
 memset(&C_data[0], 0, loop_ub * sizeof(float));
 }
 loop_ub = A_size[0] * A_size[1];
 scalarLB = (loop_ub / 4) << 2;
 vectorUB = scalarLB - 4;
 for (i = 0; i <= vectorUB; i += 4) {
 r = _mm_mul_ps(_mm_loadu_ps(&A_data[i]), _mm_loadu_ps(&B_data[i]));
 _mm_storeu_ps(&C_data[i], _mm_add_ps(r, r));
 }
 for (i = scalarLB; i < loop_ub; i++) {
 C_data_tmp = A_data[i] * B_data[i];
 C_data[i] = C_data_tmp + C_data_tmp;
 }
}

The SIMD instructions are the intrinsic functions that start with the identifier _mm. These
functions process multiple data in a single iteration of the loop because the loop increments by
four for single data types. For double data types, the loop increments by two. For MATLAB
code that processes more data and is more computationally intensive, than the code in this
example, the presence of SIMD instructions can significantly speed up the code execution time.

The second for loop is in the generated code because the for loop that contains SIMD code
must be divisible by four for single data types. The second loop processes the remainder of the
data.

For a list of a Intel intrinsic functions for supported MATLAB functions, see https://www.intel.com/
content/www/us/en/docs/intrinsics-guide/index.html.

Limitations
The generated code does not contain SIMD code when the MATLAB code meets these conditions:

• Scalar operations outside a loop. For example, if a,b, and c are scalars, the generated code does
not contain SIMD code for an operation such as c=a+b.

• Indirectly indexed arrays or matrices. For example, if A,B,C, and D are vectors, the generated
code does not contain SIMD code for an operation such as D(A)=C(A)+B(A).

• Parallel for-Loops (parfor). The parfor loop does not contain SIMD code, but loops within the
body of the parfor loop might contain SIMD code.

30 Code Replacement for MATLAB Code

30-14

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

• Polyspace® does not support analysis of generated code that includes SIMD instructions. Disable
SIMD code generation by setting the Leverage target hardware instruction set extensions
parameter to None.

• Reduction operations that operate on floating-point values when support for nonfinite numbers is
enabled. To generate SIMD code for reduction operations that operate on floating-point values, in
the MATLAB Coder app, set Support nonfinite numbers to No. Or, in a code generation
configuration object, set the SupportNonFinite property to false.

See Also

More About
• “What Is Code Replacement?” on page 30-2
• “Generate C Code by Using the MATLAB Coder App”
• “Generate C Code at the Command Line”
• “Generate SIMD Code from Simulink Blocks” (Embedded Coder)

 Generate SIMD Code for MATLAB Functions

30-15

Custom Toolchain Registration

• “Custom Toolchain Registration” on page 31-2
• “About coder.make.ToolchainInfo” on page 31-5
• “Create and Edit Toolchain Definition File” on page 31-7
• “Toolchain Definition File with Commentary” on page 31-8
• “Create and Validate ToolchainInfo Object” on page 31-13
• “Register the Custom Toolchain” on page 31-14
• “Use the Custom Toolchain” on page 31-16
• “Troubleshooting Custom Toolchain Validation” on page 31-17
• “Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers” on page 31-20
• “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain” on page 31-21

31

Custom Toolchain Registration
In this section...
“What Is a Custom Toolchain?” on page 31-2
“What Is a Factory Toolchain?” on page 31-2
“What is a Toolchain Definition?” on page 31-2
“Key Terms” on page 31-3
“Typical Workflow” on page 31-3

What Is a Custom Toolchain?
You can add support for software build tools to MATLAB Coder software. For example, you can add
support for a third-party compiler/linker/archiver (toolchain) to your MATLAB Coder software. This
customization can be useful when the added toolchain has support and optimizations for a specific
type of processor or hardware. These added toolchains are called custom toolchains.

What Is a Factory Toolchain?
MATLAB Coder software includes factory-default support for a set of toolchains. These toolchains are
called factory toolchains to distinguish them from custom toolchains. If you install factory toolchains
on your host computer, MATLAB Coder can automatically detect and use them. Support for factory
toolchains depends on the host operating system. Toolchains are identified by the compiler in the
toolchain. A complete list of supported toolchains (compilers) is available at https://
www.mathworks.com/support/compilers/.

What is a Toolchain Definition?

31 Custom Toolchain Registration

31-2

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

A toolchain definition provides MATLAB Coder software with information about the software build
tools, such as the compiler, linker, archiver. MATLAB Coder software uses this information, along with
a configuration object or project, to build the generated code. This approach can be used when
generating static libraries, dynamic libraries, and executables. MEX-file generation uses a different
approach. To specify which compiler to use for MEX-function generation, see “Setting Up the C or C+
+ Compiler”.

MATLAB Coder software comes with a set of registered factory toolchain definitions. You can create
and register custom toolchain definitions. You can customize and manage toolchain definitions. You
can share custom toolchain definitions with others running MATLAB Coder software.

If you install toolchain software for one of the factory toolchains, MATLAB Coder can automatically
detect and use the toolchain software. For more information about factory toolchains in MATLAB
Coder software, see https://www.mathworks.com/support/compilers/.

Key Terms
It is helpful to understand the following concepts:

• Toolchain — Software that can create a binary executable and libraries from source code. A
toolchain can include:

• Prebuild tools that set up the environment
• Build tools, such as an Assembler, C compiler, C++ Compiler, Linker, Archiver, that build a

binary executable from source code
• Postbuild tools that clean up the environment

• Custom toolchain — A toolchain that you define and register for use by MATLAB Coder software
• Factory toolchains — Toolchains that are predefined and registered in MATLAB Coder software
• Registered toolchains — The sum of custom and factory toolchain definitions registered in

MATLAB Coder software
• ToolchainInfo object — An instance of the coder.make.ToolchainInfo class that contains a

toolchain definition. You save the ToolchainInfo object as a MAT file, register the file with
MATLAB Coder. Then you can configure MATLAB Coder to load the ToolchainInfo object
during code generation.

• Toolchain definition file — A MATLAB file that defines the properties of a toolchain. You use this
file to create a ToolchainInfo object.

Note This documentation also refers to the ToolchainInfo object as a
coder.make.ToolchainInfo object.

Typical Workflow
The typical workflow for creating and using a custom toolchain definition is:

1 “Create and Edit Toolchain Definition File” on page 31-7

a Create a toolchain definition file that returns a coder.make.ToolchainInfo object.
b Update the file with information about the custom toolchain.

 Custom Toolchain Registration

31-3

https://www.mathworks.com/support/requirements/supported-compilers.html

2 “Create and Validate ToolchainInfo Object” on page 31-13

a Use the toolchain definition file to create a ToolchainInfo object in the MATLAB
workspace.

b Validate the ToolchainInfo object.
c Fix validation issues by updating the toolchain definition file, and creating/validating the

updated ToolchainInfo object.
d Create a valid ToolchainInfo object and save it to a MAT-file.

3 “Register the Custom Toolchain” on page 31-14

a Create an rtwTargetInfo.m file and update it with information about the MAT-file.
b Register the custom toolchain in MATLAB Coder software using the rtwTargetInfo.m file.

4 “Use the Custom Toolchain” on page 31-16

a Configure MATLAB Coder software to use the custom toolchain.
b Build and run an executable using the custom toolchain.

This workflow requires an iterative approach, with multiple cycles to arrive at a finished version of
the custom ToolchainInfo object. You will need access to detailed information about the custom
toolchain.

For a tutorial example of this workflow, see “Add Custom Toolchains to MATLAB® Coder™ Build
Process” on page 27-168.

For more information about the ToolchainInfo object, see “About coder.make.ToolchainInfo” on
page 31-5.

31 Custom Toolchain Registration

31-4

About coder.make.ToolchainInfo
The following properties in coder.make.ToolchainInfo represent your custom toolchain:

• coder.make.ToolchainInfo.PrebuildTools – Tools used before compiling the source files
into object files.

• coder.make.ToolchainInfo.BuildTools – Tools used for compiling source files and linking/
archiving them to form a binary.

• coder.make.ToolchainInfo.PostbuildTools – Tools used after the linker/archiver is
invoked.

• coder.make.ToolchainInfo.BuilderApplication – Tools used to call the PrebuildTools,
BuildTools, and PostbuildTools. For example: gmake, nmake.

Each configuration in coder.make.ToolchainInfo.BuildConfigurations applies a set of
options to the build tools specified by coder.make.ToolchainInfo.BuildTools. By default, these
configurations alter the way the assembler, compiler, linker, and archiver operate to produce faster
builds, faster runs, and debug.

If you instantiate coder.make.ToolchainInfo to support building sources that involve assembler,
C, or C++ files, the coder.make.ToolchainInfo object contains the default set of build tools
shown here.

 About coder.make.ToolchainInfo

31-5

31 Custom Toolchain Registration

31-6

Create and Edit Toolchain Definition File
This example shows how to create a toolchain definition file by copying and pasting an example file.
You then update the relevant elements, and add or remove other elements as needed for your custom
toolchain. This is the first step in the typical workflow for creating and using a custom toolchain
definition. For more information about the workflow, see “Typical Workflow” on page 31-3.

1 Review the list of registered toolchains. In the MATLAB Command Window, enter:

coder.make.getToolchains

The resulting output includes the list of factory toolchains for your development computer
environment, and previously-registered custom toolchains.

2 Create the folder of example files by opening the “Add Custom Toolchains to MATLAB® Coder™
Build Process” on page 27-168 example.

3 Copy the example toolchain definition file to another location and rename it. For example:

copyfile('intel_tc.m','../newtoolchn_tc.m')
4 Open the new toolchain definition file in the MATLAB Editor. For example:

cd ../
edit newtoolchn_tc.m

5 Edit the contents of the new toolchain definition file, providing information for the custom
toolchain.

For expanded commentary on an example toolchain definition file, see “Toolchain Definition File
with Commentary” on page 31-8.

For reference information about the class attributes and methods you can use in the toolchain
definition file, see coder.make.ToolchainInfo.

6 Save your changes to the toolchain definition file.

Next, create and validate a coder.make.ToolchainInfo object from the toolchain definition file, as
described in “Create and Validate ToolchainInfo Object” on page 31-13

 Create and Edit Toolchain Definition File

31-7

Toolchain Definition File with Commentary

In this section...
“Steps Involved in Writing a Toolchain Definition File” on page 31-8
“Write a Function That Creates a ToolchainInfo Object” on page 31-8
“Setup” on page 31-9
“Macros” on page 31-9
“C Compiler” on page 31-9
“C++ Compiler” on page 31-10
“Linker” on page 31-10
“Archiver” on page 31-11
“Builder” on page 31-11
“Build Configurations” on page 31-11

Steps Involved in Writing a Toolchain Definition File
This example shows how to create a toolchain definition file and explains each of the steps involved.
The example is based on the definition file used in “Add Custom Toolchains to MATLAB® Coder™
Build Process” on page 27-168. For more information about the workflow, see “Typical Workflow” on
page 31-3.

Write a Function That Creates a ToolchainInfo Object
function tc = intel_tc
% INTEL_TC Creates an Intel v12.1 ToolchainInfo object.
% This can be used as a template to add other toolchains on Windows.

tc = coder.make.ToolchainInfo('BuildArtifact','nmake makefile');
tc.Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';
tc.Platform = 'win64';
tc.SupportedVersion = '12.1';

tc.addAttribute('TransformPathsWithSpaces');
tc.addAttribute('RequiresCommandFile');
tc.addAttribute('RequiresBatchFile');

The preceding code:

• Defines a function, intel_tc, that creates a coder.make.ToolchainInfo object and assigns it
to a handle, tc.

• Overrides the BuildArtifact property to create a makefile for nmake instead of for gmake.
• Assigns values to the Name, Platform, and SupportedVersion properties for informational and

display purposes.
• Adds three custom attributes to Attributes property that are required by this toolchain.
• 'TransformPathsWithSpaces' converts paths that contain spaces to short Windows paths.
• 'RequiresCommandFile' generates a linker command file that calls the linker. This avoids

problems with calls that exceed the command line limit of 256 characters.
• 'RequiresBatchFile' creates a .bat file that calls the builder application.

31 Custom Toolchain Registration

31-8

Setup
% ------------------------------
% Setup
% ------------------------------
% Below we are using %ICPP_COMPILER12% as root folder where Intel Compiler is
% installed. You can either set an environment variable or give full path to the
% compilervars.bat file
tc.ShellSetup{1} = 'call %ICPP_COMPILER12%\bin\compilervars.bat intel64';

The preceding code:

• Assigns a system call to the ShellSetup property.
• The coder.make.ToolchainInfo.setup method runs these system calls before it runs tools
specified by PrebuildTools property.

• Calls compilervars.bat, which is shipped with the Intel® compilers, to get the set of
environment variables for Intel compiler and linkers.

Macros
% ------------------------------
% Macros
% ------------------------------
tc.addMacro('MW_EXTERNLIB_DIR',['$(MATLAB_ROOT)\extern\lib\' tc.Platform '\microsoft']);
tc.addMacro('MW_LIB_DIR',['$(MATLAB_ROOT)\lib\' tc.Platform]);
tc.addMacro('CFLAGS_ADDITIONAL','-D_CRT_SECURE_NO_WARNINGS');
tc.addMacro('CPPFLAGS_ADDITIONAL','-EHs -D_CRT_SECURE_NO_WARNINGS');
tc.addMacro('LIBS_TOOLCHAIN','$(conlibs)');
tc.addMacro('CVARSFLAG','');

tc.addIntrinsicMacros({'ldebug','conflags','cflags'});

The preceding code:

• Uses coder.make.ToolchainInfo.addMacro method to define macros and assign values to
them.

• Uses coder.make.ToolchainInfo.addIntrinsicMacros to define macros whose values are
specified by the toolchain, outside the scope of your MathWorks software.

C Compiler
% ------------------------------
% C Compiler
% ------------------------------

tool = tc.getBuildTool('C Compiler');

tool.setName('Intel C Compiler');
tool.setCommand('icl');
tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');
tool.setDirective('PreprocessorDefine','-D');
tool.setDirective('OutputFlag','-Fo');
tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.c');
tool.setFileExtension('Header','.h');
tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C compiler

 Toolchain Definition File with Commentary

31-9

• Assigns values to the build tool object properties
• Creates directives and file extensions using name-value pairs
• Sets a command pattern.
• You can use setCommandPattern method to control the use of space characters in commands.

For example, the two bars in OUTPUT_FLAG<||>OUTPUT do not permit a space character between
the output flag and the output.

C++ Compiler
% ------------------------------
% C++ Compiler
% ------------------------------

tool = tc.getBuildTool('C++ Compiler');

tool.setName('Intel C++ Compiler');
tool.setCommand('icl');
tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');
tool.setDirective('PreprocessorDefine','-D');
tool.setDirective('OutputFlag','-Fo');
tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.cpp');
tool.setFileExtension('Header','.hpp');
tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C++ compiler
• Is very similar to the build tool object for the C compiler

Linker
% ------------------------------
% Linker
% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('Intel C/C++ Linker');
tool.setCommand('xilink');
tool.setPath('');

tool.setDirective('Library','-L');
tool.setDirective('LibrarySearchPath','-I');
tool.setDirective('OutputFlag','-out:');
tool.setDirective('Debug','');

tool.setFileExtension('Executable','.exe');
tool.setFileExtension('Shared Library','.dll');

tool.DerivedFileExtensions = horzcat(tool.DerivedFileExtensions,{ ...
 ['_' tc.Platform '.lib'],...
 ['_' tc.Platform '.exp']});

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the linker
• Assigns values to the coder.make.BuildTool.DerivedFileExtensions

31 Custom Toolchain Registration

31-10

Archiver
% ------------------------------
% Archiver
% ------------------------------

tool = tc.getBuildTool('Archiver');

tool.setName('Intel C/C++ Archiver');
tool.setCommand('xilib');
tool.setPath('');

tool.setDirective('OutputFlag','-out:');

tool.setFileExtension('Static Library','.lib');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the archiver.

Builder
% ------------------------------
% Builder
% ------------------------------

tc.setBuilderApplication(tc.Platform);

The preceding code:

• Gives the value of coder.make.ToolchainInfo.Platform as the argument for setting the
value of BuilderApplication. This sets the default values of the builder application based on
the platform. For example, when Platform is win64, this line sets the delete command to 'del';
the display command to 'echo', the file separator to '\', and the include directive to '!
include'.

Build Configurations
% --
% BUILD CONFIGURATIONS
% --

optimsOffOpts = {'/c /Od'};
optimsOnOpts = {'/c /O2'};
cCompilerOpts = '$(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL)';
cppCompilerOpts = '$(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL)';
linkerOpts = {'$(ldebug) $(conflags) $(LIBS_TOOLCHAIN)'};
sharedLinkerOpts = horzcat(linkerOpts,'-dll -def:$(DEF_FILE)');
archiverOpts = {'/nologo'};

% Get the debug flag per build tool
debugFlag.CCompiler = '$(CDEBUG)';
debugFlag.CppCompiler = '$(CPPDEBUG)';
debugFlag.Linker = '$(LDDEBUG)';
debugFlag.Archiver = '$(ARDEBUG)';

cfg = tc.getBuildConfiguration('Faster Builds');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts));
cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts));
cfg.setOption('Linker',linkerOpts);
cfg.setOption('Shared Library Linker',sharedLinkerOpts);
cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Faster Runs');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOnOpts));
cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOnOpts));
cfg.setOption('Linker',linkerOpts);
cfg.setOption('Shared Library Linker',sharedLinkerOpts);
cfg.setOption('Archiver',archiverOpts);

 Toolchain Definition File with Commentary

31-11

cfg = tc.getBuildConfiguration('Debug');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts,debugFlag.CCompiler));
cfg.setOption ...
('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts,debugFlag.CppCompiler));
cfg.setOption('Linker',horzcat(linkerOpts,debugFlag.Linker));
cfg.setOption('Shared Library Linker',horzcat(sharedLinkerOpts,debugFlag.Linker));
cfg.setOption('Archiver',horzcat(archiverOpts,debugFlag.Archiver));

tc.setBuildConfigurationOption('all','Make Tool','-f $(MAKEFILE)');

The preceding code:

• Creates each build configuration object.
• Sets the value of each option for a given build configuration object.

31 Custom Toolchain Registration

31-12

Create and Validate ToolchainInfo Object
This example shows how to create and validate a coder.make.ToolchainInfo object from the
toolchain definition file.

Before you create and validate a ToolchainInfo object, create and edit a toolchain definition file, as
described in “Create and Edit Toolchain Definition File” on page 31-7.

1 Use the function defined by the toolchain definition file to create a
coder.make.ToolchainInfo object and assign the object to a handle. For example, the
MATLAB Command Window, enter:

tc = newtoolchn_tc
2 Use the coder.make.ToolchainInfo.validate method with the

coder.make.ToolchainInfo object. For example, enter:

tc.validate

If the coder.make.ToolchainInfo object contains errors, the validation method displays error
messages in the MATLAB Command Window.

3 Search the toolchain definition file for items named in the error message (without quotes) and
update the values.

4 Repeat the process of creating and validating the ToolchainInfo object until there are no more
errors.

Next, register the custom toolchain, as described in “Register the Custom Toolchain” on page 31-14.

For more information, see “Troubleshooting Custom Toolchain Validation” on page 31-17.

 Create and Validate ToolchainInfo Object

31-13

Register the Custom Toolchain
Before you register the custom toolchain, create and validate the ToolchainInfo object, as
described in “Create and Validate ToolchainInfo Object” on page 31-13.

1 Use the save function to create a MATLAB-formatted binary file (MAT-file) from the
coder.make.ToolchainInfo object in the MATLAB workspace variables. For example, enter:

save newtoolchn_tc tc

The new .mat file appears in the Current Folder.
2 Create a new MATLAB function called rtwTargetInfo.m.
3 Copy and paste the following text into rtwTargetInfo.m:

function rtwTargetInfo(tr)
% RTWTARGETINFO Target info callback

tr.registerTargetInfo(@loc_createToolchain);

end

% ---
% Create the ToolchainInfoRegistry entries
% ---
function config = loc_createToolchain

 config(1) = coder.make.ToolchainInfoRegistry;
 config(1).Name = '<mytoolchain v#.#> | <buildartifact (platform)>';
 config(1).FileName = fullfile('<yourdir>','<mytoolchain_tc.mat>');
 config(1).TargetHWDeviceType = {'<devicetype>'};
 config(1).Platform = {'<win64>'};

% To register more custom toolchains:
% 1) Copy and paste the five preceding 'config' lines.
% 2) Increment the index of config().
% 3) Replace the values between angle brackets.
% 4) Remove the angle brackets.

end

4 Replace the items between angle brackets with real values, and remove the angle brackets:

• Name — Provide a unique name for the toolchain definition file using the recommended
format: name, version number, build artifact, and platform.

• FileName — The full path and name of the MAT-file.
• TargetHWDeviceType — The platform or platforms supported by the custom toolchain.
• Platform — The host operating system supported by the custom toolchain. For all platforms,

use the following wildcard: '*'

For more information, refer to the corresponding ToolchainInfo properties in “Properties”.
5 Save the new rtwTargetInfo.m file to a folder that is on the MATLAB path.
6 List all of the rtwTargetInfo.m files on the MATLAB path. Using the MATLAB Command

Window, enter:

which -all rtwTargetInfo
7 Verify that the rtwTargetInfo.m file you just created appears in the list of files.
8 Reset TargetRegistry so it picks up the custom toolchain from the rtwTargetInfo.m file:

RTW.TargetRegistry.getInstance('reset');

Next, use the custom toolchain, as described in “Use the Custom Toolchain” on page 31-16.

31 Custom Toolchain Registration

31-14

See Also

More About
• “Add Custom Toolchains to MATLAB® Coder™ Build Process” on page 27-168

 Register the Custom Toolchain

31-15

Use the Custom Toolchain
You can use a custom toolchain when generating a static or dynamic library or an executable. You
cannot use one to generate MEX functions. To specify which compiler to use for MEX-function
generation, see “Setting Up the C or C++ Compiler”).

Before using the custom toolchain, register the custom toolchain, as described in “Register the
Custom Toolchain” on page 31-14.

1 Use coder.config to create a configuration object. For example:

cfg = coder.config('exe');
2 Get the value of config(end).Name from the rtwTargetInfo.m file. Then assign that value to

the cfg.Toolchain property:

cfg.Toolchain = 'mytoolchain v#.#' | 'buildartifact (platform)'
3 Perform other steps required to generate code, as described in “Deployment”. For example,

specify the path and file name of the source code:

cfg.CustomSource = 'filename_main.c';
cfg.CustomInclude = pwd;

4 When you generate code using the codegen function, specify the configuration object that uses
the custom toolchain. For example:

codegen -config cfg filename

You have completed the full workflow of creating and using a custom toolchain described in “Custom
Toolchain Registration” on page 31-2.

31 Custom Toolchain Registration

31-16

Troubleshooting Custom Toolchain Validation
In this section...
“Build Tool Command Path Incorrect” on page 31-17
“Build Tool Not in System Path” on page 31-17
“Tool Path Does Not Exist” on page 31-18
“Path Incompatible with Builder or Build Tool” on page 31-18
“Unsupported Platform” on page 31-18
“Toolchain is Not installed” on page 31-18
“Project or Configuration Is Using the Template Makefile” on page 31-19

Build Tool Command Path Incorrect
If the path or command file name are not correct, validation displays:

Cannot find file 'path+command'. The file does not exist.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('abc');
tool.setPath('/toolchain/');

To correct this issue:

• Check that the build tool is installed.
• Review the arguments given for the tool.setCommand and tool.setPath lines in toolchain
definition file.

Build Tool Not in System Path
When the build tool’s path is not provided and the command file is not in the system path, validation
displays:

Cannot find 'command'. It is not in the system path.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('icl');
tool.setPath('');

Because the argument for setPath() is '' instead of an absolute path, the build tool must be on the
system path.

To correct this issue:

• Use coder.make.ToolchainInfo.ShellSetup property to add the path to the toolchain
installation.

• Use your system setup to add the toolchain installation directory to system environment path.

Otherwise, replace '' with the absolute path of the command file.

 Troubleshooting Custom Toolchain Validation

31-17

Tool Path Does Not Exist
If the path of the build tool path is provided, but does not exist, validation displays:

Path 'toolpath' does not exist.

To correct this issue:

• Check the actual path of the build tool. Then, update the value of
coder.make.BuildTool.setPath in the toolchain definition file.

• Use your system setup to add the toolchain installation directory to system environment path.
Then, set the value of coder.make.BuildTool.setPath to ''.

Path Incompatible with Builder or Build Tool
If the file separator character in the build tool path (for example '/' or '\') is not compatible with
the builder application, validation can display:

Path 'toolpath' does not exist.

To correct this issue, check that the file separators in the toolchain definition match the
'FileSeparator' accepted by the tc.BuilderApplication when the specified path is used by
the make file. Then, update the value of coder.make.BuildTool.setPath in the toolchain
definition file.

Most toolchains and build tools (LCC being a notable exception) recognize '/' as a file separator. To
get your custom toolchain definitions to behave as expected, try using '/' as the file separator.

Unsupported Platform
If the toolchain is not supported on the host computer platform, validation displays:
Toolchain 'tlchn' is supported on a 'pltfrma' platform.
However, you are running on a 'pltfrmb' platform.

To correct this issue:

• Check the coder.make.ToolchainInfo.Platform property in your toolchain definition file for
errors.

• Update or replace the toolchain definition file with one that supports your host computer platform.
• Change host computer platforms.

Toolchain is Not installed
If the toolchain is not installed, validation displays:

Toolchain is not installed

To correct this issue, install the expected toolchain, or verify that you selected the correct toolchain,
as described in “Use the Custom Toolchain” on page 31-16.

31 Custom Toolchain Registration

31-18

Project or Configuration Is Using the Template Makefile
By default, MATLAB Coder tries to use the selected build toolchain to build the generated code.
However, if the makefile configuration options detailed in the following sections are not set to their
default value, MATLAB Coder cannot use the toolchain and reverts to using the template makefile
approach for building the generated code.

Note Support for template makefiles (TMF) will be removed in a future release.

MATLAB Coder Project Settings

Project Settings Dialog Box All Settings
Parameter Name

Default Setting

Generate makefile Yes
Make command make_rtw
Template makefile default_tmf
Compiler optimization level Off

Command-line Configuration Parameters for the codegen function

coder.CodeConfig or
coder.EmbeddedCodeConfig Parameter
Name

Default Value

GenerateMakefile 'true'
MakeCommand 'make_rtw'
TemplateMakefile 'default_tmf'
CCompilerOptimization 'Off'

To use the toolchain approach, reset your configuration options to these default values manually or:

• To reset settings for project project_name, at the MATLAB command line, enter:

coder.make.upgradeMATLABCoderProject(project_name)
• To reset command-line settings for configuration object config, create an updated configuration

object new_config and then use new_config with the codegen function in subsequent builds.
At the MATLAB command line, enter:

new_config = coder.make.upgradeCoderConfigObject(config);

 Troubleshooting Custom Toolchain Validation

31-19

Prevent Circular Data Dependencies with One-Pass or Single-
Pass Linkers

Symptom: During a software build, a build error occurs; variables don't resolve correctly.

If your toolchain uses a one-pass or single-pass linker, prevent circular data dependencies by adding
the StartLibraryGroup and EndLibraryGroup linker directives to the toolchain definition file.
The build process applies the grouping directives to model reference libraries $(MODELREF_LIBS)
and user libraries $(LIBS).

For example, if the linker is like GNU gcc, then the directives are '-Wl,--start-group' and '-
Wl,--end-group', as shown here:
% ------------------------------
% Linker
% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('GNU Linker');
tool.setCommand('gcc');
tool.setPath('');

tool.setDirective('Library', '-l');
tool.setDirective('LibrarySearchPath', '-L');
tool.setDirective('OutputFlag', '-o');
tool.setDirective('Debug', '-g');
tool.addDirective('StartLibraryGroup', '-Wl,--start-group');
tool.addDirective('EndLibraryGroup', '-Wl,--end-group');

tool.setFileExtension('Executable', '');
tool.setFileExtension('Shared Library', '.so');

31 Custom Toolchain Registration

31-20

Build 32-bit DLL on 64-bit Windows® Platform Using MSVC
Toolchain

Register and use a Microsoft® Visual C/C++ (MSVC) toolchain running on a 64-bit Windows®
platform to compile a 32-bit dynamic link library (DLL). This example uses a Microsoft® compiler.
However, the concepts and programming interface apply for other toolchains. Once you register the
toolchain, you can select it from a list of toolchains, and the code generator generates a makefile to
build the code by using that toolchain. A toolchain consists of several tools, such as a compiler, linker,
and archiver with multiple different configuration options. The toolchain compiles, links, and runs
code on a specified platform. To access the files that this example uses, click Open Script.

Check Platform and Determine MSVC Version

This code checks that the platform is supported and that you have a supported version of Microsoft®
Visual C/C++. The my_msvc_32bit_tc.m toolchain definition can use the Microsoft® Visual Studio
versions 9.0, 10.0, 11.0, 12.0, 14.0, or 15.0.

If you are not using a Windows® platform, or if you do not have a supported version of Microsoft®
Visual C/C++, the example generates only code and a makefile, without running the generated
makefile.

VersionNumbers = {'14.0'}; % Placeholder value
if ~ispc
 supportedCompilerInstalled = false;
else
 installed_compilers = mex.getCompilerConfigurations('C', 'Installed');
 MSVC_InstalledVersions = regexp({installed_compilers.Name}, 'Microsoft Visual C\+\+ 20\d\d');
 MSVC_InstalledVersions = cellfun(@(a)~isempty(a), MSVC_InstalledVersions);
 if ~any(MSVC_InstalledVersions)
 supportedCompilerInstalled = false;
 else
 VersionNumbers = {installed_compilers(MSVC_InstalledVersions).Version}';
 supportedCompilerInstalled = true;
 end
end

Function for the Dynamic Link Library

The example function for the dynamic link library, myMatlabFunction.m, multiplies a number by
two.

function y = myMatlabFunction(u)
% myMatlabFunction: Returns twice its input.
% Copyright 2017 The MathWorks, Inc.

%#codegen
assert(isa(u, 'double'), 'The input must be a "double".');
assert(all([1, 1] == size(u)), 'The input must be a scalar.');

y = double(u + u);

 Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

31-21

Create and Configure an MSVC Toolchain

The my_msvc_32bit_tc.m toolchain definition function takes in an argument containing the Visual
Studio version number. In this example, the commands that create and configure this toolchain are:

tc = my_msvc_32bit_tc(VersionNumbers{end});
save my_msvc_32bit_tc tc;

Executing "H:\Examples\coder-ex19875030\my_msvc_32bit_tc"...
Executed "H:\Examples\coder-ex19875030\my_msvc_32bit_tc".

Register the Toolchain

Before the code generator can use a toolchain for the build process, the RTW.TargetRegistry must
contain the toolchain registration. This registration can come from any rtwTargetInfo.m file on the
MATLAB path. MATLAB will load a new registration if the RTW.TargetRegistry is reset.

Create the rtwTargetInfo.m file from the corresponding text file myRtwTargetInfo.txt.

function myRtwTargetInfo(tr)
%RTWTARGETINFO Registration file for custom toolchains.

% Copyright 2012-2017 The MathWorks, Inc.

tr.registerTargetInfo(@createToolchainRegistryFor32BitMSVCToolchain);

end

% ---
% Create the ToolchainInfoRegistry entries
% ---
function config = createToolchainRegistryFor32BitMSVCToolchain

config(1) = coder.make.ToolchainInfoRegistry;
config(1).Name = 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';
config(1).FileName = fullfile(fileparts(mfilename('fullpath')), 'my_msvc_32bit_tc.mat');
config(1).TargetHWDeviceType = {'Intel->x86-32 (Windows32)','AMD->x86-32 (Windows32)','Generic->Unspecified (assume 32-bit Generic)'};
config(1).Platform = {'win64'};

end

copyfile myRtwTargetInfo.txt rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

Create Code Generation Configuration Object

To generate the 32-bit dynamic link library (DLL), create a 'dll' code generation configuration
object. Specifying 'dll' directs the linker (a build tool in the toolchain) to use "Shared Library"
linker commands.

cfg = coder.config('dll');

Configure Code Generation for 32-bit Hardware

To successfully generate code that is compatible with 32-bit hardware, the generated code must use
the correct underlying C types (for example, int, signed char, and others). These types are the

31 Custom Toolchain Registration

31-22

basis for typedef statements for sized types (for example, uint8, int16, and others). Set the
configuration with the command:

cfg.HardwareImplementation.ProdHWDeviceType = ...
 'Generic->Unspecified (assume 32-bit Generic)';

Configure Code Generation to Use the 32-bit Toolchain

Set the name of the Toolchain property to match the Name that you specify in the
rtwTargetInfo.m file.

cfg.Toolchain = ...
 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';

Select Verbose Status Reporting

To provide confirmation of compiler flags that the toolchain uses to build the DLL, select verbose
status reporting.

cfg.Verbose = true;

Determine Whether to Generate Code Only

When the Microsoft® compilers are not installed, the code generator generates only code and the
makefile. When the supported compilers are installed, the code generator builds the 32-bit binary file.

if supportedCompilerInstalled
 cfg.GenCodeOnly = false;
else
 cfg.GenCodeOnly = true;
end

Generate Code and Build a DLL

To use the toolchain for code generation and build the DLL (if build is enabled), at the command
prompt, enter:

codegen -config cfg myMatlabFunction -args { double(1.0) };

Using toolchain: Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)
Creating 'H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_rtw.mk' ...
Building 'myMatlabFunction': nmake -f myMatlabFunction_rtw.mk all

H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction>set "VSCMD_START_DIR=H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction"

H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction>call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\\VC\Auxiliary\Build\vcvarsall.bat" amd64_x86
**
** Visual Studio 2017 Developer Command Prompt v15.0.26730.12
** Copyright (c) 2017 Microsoft Corporation
**
[vcvarsall.bat] Environment initialized for: 'x64_x86'

Microsoft (R) Program Maintenance Utility Version 14.11.25507.1
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction_initialize.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_initialize.c"
myMatlabFunction_initialize.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction_terminate.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_terminate.c"

 Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

31-23

myMatlabFunction_terminate.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction.c"
myMatlabFunction.c
Creating dynamic library ".\myMatlabFunction.dll" ...
 link /MACHINE:X86 /DEBUG /DEBUGTYPE:cv /INCREMENTAL:NO /NOLOGO kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -dll -def:myMatlabFunction.def -out:.\myMatlabFunction.dll @myMatlabFunction_rtw.rsp
 Creating library .\myMatlabFunction.lib and object .\myMatlabFunction.exp
Created: .\myMatlabFunction.dll
Successfully generated all binary outputs.

Build and Run an Executable

If you have a supported version of the compiler installed, you can build the 32-bit executable by using
a C main function. You can use the executable to test that the generated code works as expected.

cfge = coder.config('exe');
cfge.CustomInclude = pwd;
cfge.CustomSource = 'myMatlabFunction_main.c';
cfge.GenCodeOnly = cfg.GenCodeOnly;
cfge.Verbose = true;
cfge.Toolchain = ...
 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';
codegen -config cfge myMatlabFunction -args { double(1.0) };
if supportedCompilerInstalled
 pause(5); %wait for EXE to get generated
 system('myMatlabFunction 3.1416'); % Expected output: myMatlabFunction(3.1416) = 6.2832
end

Using toolchain: Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)
Creating 'H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_rtw.mk' ...
Building 'myMatlabFunction': nmake -f myMatlabFunction_rtw.mk all

H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction>set "VSCMD_START_DIR=H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction"

H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction>call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\\VC\Auxiliary\Build\vcvarsall.bat" amd64_x86
**
** Visual Studio 2017 Developer Command Prompt v15.0.26730.12
** Copyright (c) 2017 Microsoft Corporation
**
[vcvarsall.bat] Environment initialized for: 'x64_x86'

Microsoft (R) Program Maintenance Utility Version 14.11.25507.1
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction_initialize.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_initialize.c"
myMatlabFunction_initialize.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction_terminate.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_terminate.c"
myMatlabFunction_terminate.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction.c"
myMatlabFunction.c
 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL @myMatlabFunction_rtw_comp.rsp -Fo"myMatlabFunction_main.obj" "H:\Examples\coder-ex19875030\myMatlabFunction_main.c"
myMatlabFunction_main.c
Creating standalone executable "H:\Examples\coder-ex19875030\myMatlabFunction.exe" ...
 link /MACHINE:X86 /DEBUG /DEBUGTYPE:cv /INCREMENTAL:NO /NOLOGO kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -out:H:\Examples\coder-ex19875030\myMatlabFunction.exe @myMatlabFunction_rtw.rsp
Created: H:\Examples\coder-ex19875030\myMatlabFunction.exe
Successfully generated all binary outputs.
myMatlabFunction(3.1416) = 6.2832

31 Custom Toolchain Registration

31-24

Optional Step: Unregister the toolchain

To unregister the toolchain, enter:

delete ./rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

See Also

More About
• “Add Custom Toolchains to MATLAB® Coder™ Build Process” on page 27-168

 Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

31-25

Deploying Generated Code

• “C Compiler Considerations for Signed Integer Overflows” on page 32-2
• “Use C Arrays in the Generated Function Interfaces” on page 32-3
• “Use Dynamically Allocated C++ Arrays in Generated Function Interfaces” on page 32-15
• “Use a Dynamic Library in a Microsoft Visual Studio Project” on page 32-20
• “Incorporate Generated Code Using an Example Main Function” on page 32-23
• “Use an Example C Main in an Application” on page 32-25
• “Package Code for Other Development Environments” on page 32-42
• “Structure of Generated Example C/C++ Main Function” on page 32-46
• “Troubleshoot Failures in Deployed Code” on page 32-50
• “Using Dynamic Memory Allocation for an Atoms Simulation” on page 32-51
• “Register New Hardware Devices” on page 32-56
• “Deploy Generated C Code to External Hardware: Raspberry Pi Examples” on page 32-62
• “Deploy Generated Code” on page 32-69
• “Approaches for Building Code Generated from MATLAB Code” on page 32-73

32

C Compiler Considerations for Signed Integer Overflows
The code generator reduces memory usage and enhances performance of code that it produces by
assuming that signed integer C operations wrap on overflow. A signed integer overflow occurs when
the result of an arithmetic operation is outside the range of values that the output data type can
represent. The C programming language does not define the results of such operations. Some C
compilers aggressively optimize signed operations for in-range values at the expense of overflow
conditions. Other compilers preserve the full wrap-on-overflow behavior. For example, the gcc and
MinGW compilers provide an option to reliably wrap overflow on signed integer overflows.

When you generate code, if you use a supported compiler with the default options configured by the
code generator, the compiler preserves the full wrap-on-overflow behavior. If you change the compiler
options or compile the code in another development environment, it is possible that the compiler does
not preserve the full wrap-on-overflow behavior. In this case, the executable program can produce
unpredictable results.

If this issue is a concern for your application, consider one or more of the following actions:

• Verify that the compiled code produces the expected results.
• If your compiler has an option to force wrapping behavior, turn it on. For example, for the gcc

compiler or a compiler based on gcc, such as MinGW, configure the build process to use the
compiler option -fwrapv.

• Choose a compiler that wraps on integer overflow.
• If you have Embedded Coder installed, develop and apply a custom code replacement library to

replace code generated for signed integers. For more information, see “Code Replacement
Customization” (Embedded Coder).

See Also

More About
• “Setting Up the C or C++ Compiler”
• Supported and Compatible Compilers

32 Deploying Generated Code

32-2

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Use C Arrays in the Generated Function Interfaces
In most cases, when you generate code for a MATLAB function that accepts or returns an array, the
generated C/C++ function interface contains an array. To use the generated function interfaces, learn
how the generated C/C++ arrays are defined and constructed. In particular, learn to use the
emxArray data structure that is generated to represent dynamically allocated arrays.

When you generate C/C++ code, an example main file is created that shows how to use arrays with
the generated function code. You can use the example main as a template or starting point for your
own application.

Implementation of Arrays in the Generated C/C++ Code
The code generator produces C/C++ array definitions that depend on the array element type and
whether the array uses static or dynamic memory allocation. The two kinds of memory allocation for
an array require two different implementations:

• For an array whose size is bounded within a predefined threshold, the generated C/C++ definition
consists of a pointer to memory and an integer that stores the total number of array elements, the
array size. The memory for this array comes from the program stack and is statically allocated.

• For an array whose size is unknown and unbounded at compile time, or whose bound exceeds a
predefined threshold, the generated C/C++ definition consists of a data structure called an
emxArray. When an emxArray is created, intermediate storage bounds are set based on the
current array size. During program execution, as intermediate storage bounds are exceeded, the
generated code appropriates additional memory space from the heap and adds it to the emxArray
storage. The memory for this array is dynamically allocated.

By default, arrays that are bounded within a threshold size do not use dynamic allocation in the
generated code. Alternatively, you can disable dynamic memory allocation and change the dynamic
memory allocation threshold. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

This table lists a few typical cases for array representation in the generated code.

Algorithm Description and
Array Size

MATLAB Function Generated C Function
Interface

Place ones onto a fixed-size 1-
by-500 row vector.

Fixed-size, bounded within
threshold.

function B = create_vec0 %#codegen
B = zeros(1,500);
j = 1;
for i = 1:500
 if round(rand)
 B(1,j) = 1;
 j = j + 1;
 end
end

void create_vec0(double B[500])

Push ones onto a variable-size
row vector bounded at 300
elements.

Variable-size, bounded within
threshold.

function B = create_vec %#codegen
B = zeros(1,0);
coder.varsize('B',[1 300],[0 1]);
for i = 1:500
 if round(rand)
 B = [1 B];
 end
end

void create_vec(double B_data[], int B_size[2])

 Use C Arrays in the Generated Function Interfaces

32-3

Algorithm Description and
Array Size

MATLAB Function Generated C Function
Interface

Push ones onto a variable-size
row vector bounded at 30,000
elements.

Variable-size, not bounded
within threshold.

function B = create_vec2 %#codegen
B = zeros(1,0);
coder.varsize('B',[1 30000],[0 1]);
for i = 1:500
 if round(rand)
 B = [1 B];
 end
end

void create_vec2(emxArray_real_T *B)

Create an array with size
determined by an unbounded
integer input.

Unknown and unbounded at
compile time.

function y = create_vec3(n) %#codegen
y = int8(ones(1,n));

void create_vec3(int n, emxArray_int8_T *y)

The emxArray Dynamic Data Structure Definition
In the generated C/C++ code, the emxArray data structure definition depends on the data type of
the elements that it stores. The general definition takes the form:

struct emxArray_<name>
{
 <type> *data;
 int *size;
 int allocatedSize;
 int numDimensions;
 boolean_T canFreeData;
};

In the definition, <type> indicates a data type and <name> indicates a name used to identify the
emxArray structure. The code generator chooses <name> based on the types defined for MEX code
generation, as listed in “Mapping MATLAB Types to Types in Generated Code” on page 34-15.

As an example, consider the emxArray definition generated for the function create_vec2. The
<name> is emxArray_real_T and the <type> is double.

struct emxArray_real_T
{
 double *data;
 int *size;
 int allocatedSize;
 int numDimensions;
 boolean_T canFreeData;
};

Do not seek to predict the entries for <type> and <name> prior to code generation. Instead, after
code generation is complete, inspect the file <myFunction>_types.h from the code generation
report. <myFunction> is the name of your entry-point function.

The generated code can also define the emxArray structure by using typedef statements, as in
these examples.

typedef struct {
 emxArray_real_T *f1;

32 Deploying Generated Code

32-4

} cell_wrap_0;

typedef struct {
 cell_wrap_0 *data;
 int *size;
 int allocatedSize;
 int numDimensions;
 boolean_T canFreeData;
} emxArray_cell_wrap_0;

This table describes the emxArray structure fields.

Field Description
<type> *data Pointer to an array of elements of type <type>.
int *size Pointer to a size vector. The i-th element of the

size vector stores the length of the i-th dimension
of the array.

int allocatedSize Number of memory elements allocated for the
array. If the array size changes, the generated
code reallocates memory based on the new size.

int numDimensions Length of the size vector. The number of
dimensions you can access without crossing into
unallocated or unused memory.

boolean_T canFreeData Boolean flag indicating how to deallocate
memory. Used only by the internal emxArray
processing routines.

• true – The generated code deallocates
memory on its own.

• false – The program that instantiates the
emxArray must manually deallocate the
memory pointed to by data.

Utility Functions for Interacting with emxArray Data
To create and interact with the emxArray data in your C/C++ code, the code generator exports a set
of C/C++ helper functions with a user-friendly API. Use these functions to ensure that you properly
initialize and destroy emxArray data types. To use these functions, insert an include statement for
the generated header file <myFunction>_emxAPI.h in your C code. <myFunction> is the name of
your entry-point function. Other functions produced by the code generator that operate on emxArray
data, defined in <myFunction>_emxutil.h, are not intended for manual use.

The example main file generated by default for lib, dll, and exe code includes calls to the
emxArray API functions. The example main code initializes the emxArray data to generic zero
values. To use actual data inputs and values, modify the example main or create your own main file.
For more information on using a main function, see “Incorporate Generated Code Using an Example
Main Function” on page 32-23.

This table shows the list of exported emxArray API functions. Some of the API functions accept the
initial number of rows, columns, or dimensions for the emxArray data. Each dimension can grow to
accommodate new data as needed. emxArray arrays instantiated by using pointers keep a copy of

 Use C Arrays in the Generated Function Interfaces

32-5

the input values. Changing the values of the input variables during run-time does not change the size
of the emxArray.

emxArray Helper Function Description
emxArray_<name> *emxCreate_<name>(int rows, int
cols)

Creates a pointer to a two-
dimensional emxArray, with data
elements initialized to zero.
Allocates new memory for the data.

emxArray_<name> *emxCreateND_<name>(int
numDimensions, int *size)

Creates a pointer to an N-
dimensional emxArray, with data
elements initialized to zero.
Allocates new memory for the data.

emxArray_<name> *emxCreateWrapper_<name>(<type>
*data, int rows, int cols)

Creates a pointer to a two-
dimensional emxArray. Uses data
and memory you provide and wraps
it into the emxArray data
structure. Sets canFreeData to
false to prevent inadvertent
freeing of user memory.

emxArray_<name> *emxCreateWrapperND_<name>(<type>
*data, int numDimensions, int *size)

Creates a pointer to an N-
dimensional emxArray. Uses data
and memory you provide and wraps
it into the emxArray data
structure. Sets canFreeData to
false to prevent inadvertent
freeing of user memory.

void emxInitArray_<name>(emxArray_<name>
**pEmxArray, int numDimensions)

Allocates memory for a double
pointer to an emxArray.

void emxDestroyArray_<name>(emxArray_<name>
*emxArray)

Frees dynamic memory allocated
by the emxCreate or
emxInitArray functions.

The code generator exports the emxArray API functions only for arrays that are entry-point function
arguments or that are used by functions called by coder.ceval.

Examples
Use the Function Interface for a Statically Allocated Array

Consider the MATLAB function myuniquetol from “Generate Code for Variable-Size Data” on page
27-98.

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 100], [0 1]);
B = zeros(1,0);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;

32 Deploying Generated Code

32-6

 end
end

Generate code for myuniquetol. Use coder.typeof to specify the input types as a bounded,
variable-size array and a scalar double.

codegen -config:lib -report myuniquetol -args {coder.typeof(0,[1 100],[0 1]),coder.typeof(0)}

The statement coder.varsize('B', [1 100], [0 1]) specifies that B is a variable-size array
whose first dimension is fixed at 1 and whose second dimension can vary up to 100 elements.
Because the maximum size of array B is bounded within the default threshold size, the code generator
uses static memory allocation for the array.

The generated function interface is:

void myuniquetol(const double A_data[], const int A_size[2], double tol,
 double B_data[], int B_size[2])

The function interface declares the input argument A and the output argument B. A_size contains
the size of A. After the call to myuniquetol, B_size contains the size of B.

Use B_size to determine the number of elements of B that you can access after the call to
myuniquetol. B_size[0] contains the size of the first dimension. B_size[1] contains the size of
the second dimension. Therefore, the number of elements of B is B_size[0]*B_Size[1]. Even
though B has 100 elements in the C code, only B_size[0]*B_Size[1] elements contain valid data.

This C main function shows how to call myuniquetol.

void main()
{
 double A[100], B[100];
 int A_size[2] = { 1, 100 };
 int B_size[2];
 int i;
 for (i = 0; i < 100; i++) {
 A[i] = (double)1/i;
 }
 myuniquetol(A, A_size, 0.1, B, B_size);
}

Create an emxArray by Using the emxCreate or emxInitArray Functions

The emxCreate and emxCreateND API functions create an emxArray, allocating new memory from
the heap as needed. You can then use the emxArray as an input to or output from the generated
code. This C code example shows how to use emxCreate. Assume that you have already generated
source code for a function myFunction that uses the data type emxArray_uint32_T.

#include <stdio.h>
#include <stdlib.h>
#include "myFunction_emxAPI.h"
#include "myFunction.h"

int main(int argc, char *argv[])
{
 /* Create a 10-by-10 uint32_T emxArray */
 emxArray_uint32_T *pEmx = emxCreate_uint32_T(10,10);

 Use C Arrays in the Generated Function Interfaces

32-7

 /* Initialize the emxArray memory, if needed */
 int k = 0;
 for (k = 0; k < 100; ++k) {
 pEmx->data[k] = (uint32_T) k;
 }

 /* Use pEmx array here; */
 /* Insert call to myFunction */

 /* Deallocate any memory allocated in pEmx */
 /* This DOES free pEmx->data */
 emxDestroyArray_uint32_T(pEmx);

 /* Unused */
 (void)argc;
 (void)argv;

 return 0;
}

In this example, you know the initial size of the emxArray. If you do not know the size of the array, as
when you use the array to store output, you can enter the value 0 for the rows and cols fields. For
example, if you do not know the number of columns, you can write:

emxArray_uint32_T *pEmx = emxCreate_uint32_T(10,0);

The data structure grows to accommodate data as needed. After your function runs, determine the
output size by accessing the size and numDimensions fields.

Use the emxInitArray API function to create an array that is returned as output, for which you do
not know the array size in advance. For example, to create an emxArray of two dimensions, with
unknown sizes in either dimension, you can write:

emxArray_uint32_T *s;
emxInitArray_uint32_T(&s, 2);

Load Existing Data into an emxArray

The emxCreateWrapper and emxCreateWrapperND API functions enable you to load or wrap
existing memory and data into an emxArray to pass the data to a generated function. This C code
example shows how to use emxCreateWrapper. Assume that you have already generated source
code for a function myFunction that uses the data type emxArray_uint32_T.

#include <stdio.h>
#include <stdlib.h>
#include "myFunction_emxAPI.h"
#include "myFunction.h"

int main(int argc, char *argv[])
{
 /* Create a 10-by-10 C array of uint32_T values */
 uint32_T x[100];
 int k = 0;
 emxArray_uint32_T *pEmx = NULL;
 for (k = 0; k < 100; k++) {
 x[k] = (uint32_T) k;
 }

32 Deploying Generated Code

32-8

 /* Load existing data into an emxArray */
 pEmx = emxCreateWrapper_uint32_T(x,10,10);

 /* Use pEmx here; */
 /* Insert call to myFunction */

 /* Deallocate any memory allocated in pEmx */
 /* This DOES NOT free pEmx->data because the wrapper function was used */
 emxDestroyArray_uint32_T(pEmx);

 /* Unused */
 (void)argc;
 (void)argv;

 return 0;
}

Create and Use Nested emxArray Data

This example shows how to work with generated code that contains emxArray data nested inside of
other emxArray data. To use the generated code, in your main function or calling function, initialize
the emxArray data from the bottom nodes up.

MATLAB Algorithm

This MATLAB algorithm iterates through an array of structures called myarray. Each structure
contains a lower-level array of values. The algorithm sorts and sum the elements of the lower-level
array for each struct.

% y is an array of structures of the form
% struct('values', [...], 'sorted', [...], 'sum', ...)
function y = processNestedArrays(y) %#codegen
coder.cstructname(y, 'myarray');
for i = 1:numel(y)
 y(i).sorted = sort(y(i).values);
 y(i).sum = sum(y(i).values);
end

Generate MEX Function for Testing

As a first step, to be able to test the algorithm, generate a MEX function. Use the coder.typeof
function to manually specify the input as an unbounded, variable-size row vector of structs, which
themselves contain unbounded, variable-size row vectors.

myarray = coder.typeof(...
 struct('values', coder.typeof(0, [1 inf]), ...
 'sorted', coder.typeof(0, [1 inf]), ...
 'sum', coder.typeof(0)) , [1 inf]);
codegen -args {myarray} processNestedArrays

Code generation successful.

 Use C Arrays in the Generated Function Interfaces

32-9

Inspect the Generated Function Interfaces

The MEX function source code contains specialized code that enables it to interface with the MATLAB
runtime environment, which makes it more complex to read. To produce more simplified source code,
generate library code.

codegen -config:lib -args {myarray} processNestedArrays -report

Code generation successful: To view the report, open('codegen\lib\processNestedArrays\html\report.mldatx')

Inspect the generated function code processNestedArrays.c from the code generation report.
The generated example main file main.c shows how to call the generated function code by creating
and initializing inputs with the emxCreate API function.

Write and Use Your Own Customized Main File to Initialize emxArray Data

Although the generated example main shows how to invoke the generated function code, it does not
contain information on desired input values. Using the example main as a guide, write your own main
file. Use the coding style and preferences of your choice. Specify the values of your inputs and insert
pre and post-processing code as needed.

The file processNestedArrays_main.c shows an example. This main file uses the emxArray API
functions to create and initialize the structure data. For both the generated example main file and
this hand written main file, the code initializes the emxArray data at the bottom (leaf) nodes, and
assigns that data to the nodes above.

type processNestedArrays_main.c

#include <stdio.h>
#include <stdlib.h>
#include "processNestedArrays_emxAPI.h"
#include "processNestedArrays.h"

static void print_vector(emxArray_real_T *v)
{
 int i;
 printf("[");
 for (i = 0; i < v->size[1]; i++) {
 if (i > 0) printf(" ");
 printf("%.0f", v->data[i]);
 }
 printf("] \n");
}

int main(int argc, char *argv[])
{
 int i;
 static double values_1[] = { 5, 3, 4, 1, 2, 6 };
 static double values_2[] = { 50, 30, 40, 10, 20, 60 };
 static double values_3[] = { 42, 4711, 1234 };
 static double * values[] = { values_1, values_2, values_3 };
 static int values_len[] = { 6, 6, 3 };

 /* Setup myarray emxArrays */
 emxArray_myarray *myarr = emxCreate_myarray(1, 3); /* Create outer array */

32 Deploying Generated Code

32-10

 for (i = 0; i < 3; i++) {
 /* Setup field 'values'. Don't allocate memory; reuse the data pointer. */
 myarr->data[i].values = emxCreateWrapper_real_T(values[i], 1, values_len[i]);
 /* Initialize the 'sorted' field to the empty vector. */
 myarr->data[i].sorted = emxCreate_real_T(1, 0);
 /* Initiailize the 'sum' field. */
 myarr->data[i].sum = 0;
 }

 /* Call process function */
 processNestedArrays(myarr);

 /* Print result */
 for (i = 0; i < myarr->size[1]; i++) {
 printf(" values: "); print_vector(myarr->data[i].values);
 printf(" sorted: "); print_vector(myarr->data[i].sorted);
 printf(" sum: %.0f \n\n", myarr->data[i].sum);
 }

 /* Cleanup memory */
 emxDestroyArray_myarray(myarr);

 /* Unused */
 (void)argc;
 (void)argv;

 return 0;
}

Generate an Executable and Compare Results with MEX Function

Using the provided main file, you can generate a standalone executable for the algorithm.

codegen -config:exe -args {myarray} processNestedArrays ...
 processNestedArrays_main.c -report

Code generation successful: To view the report, open('codegen\exe\processNestedArrays\html\report.mldatx')

Declare input data for the MEX function that matches the input for the standalone executable,
defined in processNestedArrays_main.c.

myarray = [struct('values', [5 3 4 1 2 6], 'sorted', zeros(1,0), 'sum', 0), ...
 struct('values', [50 30 40 10 20 60], 'sorted', zeros(1,0), 'sum', 0), ...
 struct('values', [42 4711 1234], 'sorted', zeros(1,0), 'sum', 0)];

Compare the MEX function results with the standalone executable results.

fprintf('.mex output \n----------- \n');
r = processNestedArrays_mex(myarray);
disp(r(1));
disp(r(2));
disp(r(3));

fprintf('.exe output \n----------- \n');
if isunix
 system('./processNestedArrays')
elseif ispc

 Use C Arrays in the Generated Function Interfaces

32-11

 system('processNestedArrays.exe')
else
 disp('Platform is not supported')
end

.mex output

 values: [5 3 4 1 2 6]
 sorted: [1 2 3 4 5 6]
 sum: 21

 values: [50 30 40 10 20 60]
 sorted: [10 20 30 40 50 60]
 sum: 210

 values: [42 4711 1234]
 sorted: [42 1234 4711]
 sum: 5987

.exe output

 values: [5 3 4 1 2 6]
 sorted: [1 2 3 4 5 6]
 sum: 21

 values: [50 30 40 10 20 60]
 sorted: [10 20 30 40 50 60]
 sum: 210

 values: [42 4711 1234]
 sorted: [42 1234 4711]
 sum: 5987

ans =

 0

The output results are identical.

Use emxArray_char_T Data with String Inputs

In this example, a MATLAB function changes the size of a character vector at run time. Because the
final length of the vector can vary, the generated C code instantiates the vector as a dynamically sized
emxArray. This example shows how to write a main function that uses emxArray_char_T with the
generated function interface. Use this example as a guide for working with the emxArray_char_T
data type.

MATLAB Algorithm

The function replaceCats takes a character vector as input and replaces all instances of the word
'cat' or 'Cat' with 'velociraptor' and 'Velociraptor'. Because the code generator cannot determine the
output length at compile time, the generated code uses the emxArray data type.

function cstrNew = replaceCats(cstr)
%#codegen

32 Deploying Generated Code

32-12

cstrNew = replace(cstr,'cat','velociraptor');
cstrNew = replace(cstrNew,'Cat','Velociraptor');

Generate Source Code

To generate code for replaceCats, specify the input type to the function as a variable-size character
array.

t = coder.typeof('a',[1 inf]);
codegen replaceCats -args {t} -report -config:lib

Code generation successful: To view the report, open('codegen\lib\replaceCats\html\report.mldatx')

In the generated code, the example main file /codegen/lib/replaceCats/examples/main.c
provides a template for writing your own main function.

Create a Main Function from the Template

Modify the main function to take character input from the command line. Use the emxCreate and
emxCreateWrapper API functions to initialize your emxArray data. After you have finished writing
your main source file and header file, place the modified files in the root folder.

type main_replaceCats.c

#include "main_replaceCats.h"
#include "replaceCats.h"
#include "replaceCats_terminate.h"
#include "replaceCats_emxAPI.h"
#include "replaceCats_initialize.h"
#include <string.h>
#include <stdio.h>

#define MAX_STRING_SZ 512

static void main_replaceCats(char *inStr)
{
 /* Create emxArray's & other variables */
 emxArray_char_T *cstr = NULL;
 emxArray_char_T *cstrFinal = NULL;
 char outStr[MAX_STRING_SZ];
 int initCols = (int) strlen(inStr);
 int finCols;

 /* Initialize input & output emxArrays */
 cstr = emxCreateWrapper_char_T(inStr, 1, initCols);
 cstrFinal = emxCreate_char_T(1, 0);

 /* Call generated code on emxArrays */
 replaceCats(cstr, cstrFinal);

 /* Write output string data with null termination */
 finCols = cstrFinal->size[0]*cstrFinal->size[1];
 if (finCols >= MAX_STRING_SZ) {
 printf("Error: Output string exceeds max size.");
 exit(-1);

 Use C Arrays in the Generated Function Interfaces

32-13

 }
 memcpy(outStr, cstrFinal->data, finCols);
 outStr[finCols]=0;

 /* Print output */
 printf("\nOld C string: %s \n", inStr);
 printf("New C string: %s \n", outStr);

 /* Free the emxArray memory */
 emxDestroyArray_char_T(cstrFinal);
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 printf("Error: Must provide exactly one input string, e.g.\n");
 printf(">replaceCats \"hello cat\"\n");
 exit(-1);
 }

 replaceCats_initialize();
 main_replaceCats(argv[1]);
 replaceCats_terminate();

 return 0;
}

Generate Executable File

Generate executable code:

t = coder.typeof('a',[1 inf]);
codegen replaceCats -args {t} -config:exe main_replaceCats.c

Code generation successful.

Test the executable on your platform and modify your main file as needed. For example, on Windows,
you get the output:

C:\>replaceCats.exe "The pet owner called themselves a 'Catdad'"

Old C string: The pet owner called themselves a 'Catdad'

New C string: The pet owner called themselves a 'Velociraptordad'

See Also
coder.typeof | coder.varsize

More About
• “Using Dynamic Memory Allocation for an Atoms Simulation” on page 32-51
• “Generate Code for Variable-Size Data” on page 27-98
• “Multidimensional Arrays”

32 Deploying Generated Code

32-14

Use Dynamically Allocated C++ Arrays in Generated Function
Interfaces

In most cases, when you generate code for a MATLAB function that accepts or returns an array, there
is an array at the interface of the generated C/C++ function. For an array size that is unknown at
compile time, or whose bound exceeds a predefined threshold, the memory for the generated array is
dynamically allocated on the heap. Otherwise, the memory of the generated array is statically
allocated on the stack. See “Control Memory Allocation for Variable-Size Arrays” on page 6-4.

If you choose C++ as your target language for code generation, by default, the dynamically allocated
array is implemented as a class template called coder::array in the generated code. To use
dynamically allocated arrays in your custom C++ code that you integrate with the generated C++
functions, learn to use the coder::array template.

Using the coder::array Class Template
When you generate C++ code for your MATLAB functions, the code generator produces a header file
coder_array.h in the build folder. This header file contains the definition of the class template
array in the namespace coder. The coder::array template implements the dynamically allocated
arrays in the generated code. The declaration for this template is:

template <typename T, int32_T N> class array

The array contains elements of type T and has N dimensions. For example, to declare a two-
dimensional dynamic array myArray that contains elements of type int32_T in your custom C++
code, use:

coder::array<int32_T, 2> myArray

To use dynamically allocated arrays in your custom C++ code that you want to integrate with the
generated code (for example, a custom main function), include the coder_array.h header file in
your custom .cpp files. This table shows the API you use to create and interact with dynamic arrays
in your custom C++ code.

Action Instructions
Declare a dynamic array myArray that contains
elements of type int32_T. Set the number of
dimensions of myArray to 2.

Use the coder::array template. Specify
element type and number of dimensions.

coder::array<int32_T, 2> myArray

Allocate memory for myArray. Set the size of the
first dimension to 1 and the second dimension to
100.

Use the set_size method.

myArray.set_size(1, 100)

If the dimension of myArray changes later on
during execution, the generated code reallocates
memory based on the new size.

Access the size vector of myArray. Access the size array, which is a data member of
myArray. For example, to access the size of the
second dimension of myArray, use:

myArray.size(1)

 Use Dynamically Allocated C++ Arrays in Generated Function Interfaces

32-15

Action Instructions
Index into the dynamic array myArray. Use the standard C++ syntax for array indexing.

For example, to set the i-th element of myArray
equal to i, use:

myArray[i] = i

You can also index into multidimensional arrays
by using the standard C++ syntax or use the at
method.

myArray[i][j] = i*j;
// You can also use the 'at' function
myArray.at(i,j) = i * j;

Create coder::array variables from
std::string and std::vector arrays.

Use the copy constructor to create
coder::array arrays from std::string and
std::vector arrays. For example, to create a
coder::array copy of the std::vector array
vec, use:

std::vector<int32_T> vec;
// Create coder::array copy
coder::array<int32, 2> copyArray(vec);

Use copyArray to interface the generated code
with your project.

Examples
The following examples show how to generate C++ code that accepts and returns variable-size
numeric and character arrays. To use dynamically allocated arrays in your custom C++ code include
the coder_array.h header file in your custom .cpp files. The coder::array class template has
methods that allow you to allocate and free array memory.

You can also interface the generated code with arrays of std::vector or std::string as dynamic
size arrays. These arrays can also be used as inputs to the generated functions. See “Generate C++
Code That Accepts and Returns a Variable-Size Vector of Characters” on page 32-18.

Generate C++ Code That Accepts and Returns a Variable-Size Numeric Array

This examples shows how to customize the generated example main function to use the
coder::array class template in your project. See the table above for information about its
associated methods.

Your goal is to generate a C++ executable for xTest1 that can accept and return an array of
int32_T elements. You want the first dimension of the array to be singleton and the second
dimension to be unbounded.

1 Define a MATLAB function xTest1 that accepts an array X, adds the scalar A to each of its
elements, and returns the resulting array Y.

function Y = xTest1(X, A)
Y = X;
for i = 1:numel(X)

32 Deploying Generated Code

32-16

 Y(i) = X(i) + A;
end

2 Generate initial source code for xStringTest and move xTest1.h from the code generation
folder to your current folder. Use the following commands:

cfg = coder.config('lib'); cfg.TargetLang = 'C++';
codegen -config cfg -args { coder.typeof(int32(0), [1 inf]), int32(0)} xTest1.m -report

The function prototype for xTest1 in the generated code is shown here:

void xTest1(const coder::array<int, 2U> &X, int A, coder::array<int, 2U> &Y)

Interface the generated code by providing input and output arrays that are compatible with the
function prototype shown above.

3 Define a C++ main function in the file xTest1_main.cpp in your current working folder.

This main function includes the header file coder_array.h that contains the coder::array
class template definition. The main function uses the API described in the table in the previous
section to perform these actions:

• Declare myArray and myResult as two-dimensional dynamic arrays of int32_T elements.
• Dynamically set the sizes of the two dimensions of myArray to 1 and 100 by using the

set_size method.
• Access the size vector of myResult by using myResult.size.
#include<iostream>
#include<coder_array.h>
#include<xTest1.h>

int main(int argc, char *argv[])
{
 static_cast<void>(argc);
 static_cast<void>(argv);

 // Instantiate the input variable by using coder::array template
 coder::array<int32_T, 2> myArray;

 // Allocate initial memory for the array
 myArray.set_size(1, 100);

 // Access array with standard C++ indexing
 for (int i = 0; i < myArray.size(1); i++) {
 myArray[i] = i;
 }

 // Instantiate the result variable by using coder::array template
 coder::array<int32_T, 2> myResult;

 // Pass the input and result arrays to the generated function
 xTest1(myArray, 1000, myResult);

 for (int i = 0; i < myResult.size(1); i++) {
 if (i > 0) std::cout << " ";
 std::cout << myResult[i];
 if (((i+1) % 10) == 0) std::cout << std::endl;
 }
 std::cout << std::endl;

 return 0;
}

4 Generate code by running this script:
cfg = coder.config('exe'); cfg.TargetLang = 'C++';
cfg.CustomSource = 'xTest1_main.cpp';
cfg.CustomInclude = '.'; %current working directory
codegen -config cfg -args { coder.typeof(int32(0), [1 inf]), int32(0)} xTest1_main.cpp xTest1.m -report

The code generator produces an executable file xTest1.exe in your current working folder.

 Use Dynamically Allocated C++ Arrays in Generated Function Interfaces

32-17

Generate C++ Code That Accepts and Returns a Variable-Size Vector of Characters

This example shows how to customize the generated example main file to interface string arrays with
the generated code by using the coder::array class methods.

The main function in this example uses std::vector to declare the vector vec of char_T elements
that you pass to the generated C++ function xStringTest.

1 Define a MATLAB function xStringTest that accepts a character vector str, inserts str
between the character vectors 'hello ' and ' world!', and returns the result. Your goal is to
generate a C++ executable from xStringTest.

function y = xStringTest(str)
assert(isa(str, 'char'));
assert(size(str,1) == 1);
assert(size(str,2) >= 0);
y = ['hello ' str ' world!'];

2 Generate source code for xStringTest and move xStringTest.h from the code generation
folder to your current working folder. Use the following commands:

cfg = coder.config('lib'); cfg.TargetLang = 'C++';
codegen -config cfg -args {coder.typeof(char('X'), [1 inf])} xStringTest.m -report

In the report, check the function prototype for xStringTest in the generated code.

void xStringTest(const coder::array<char, 2U> &str, coder::array<char, 2U> &y)

Interface the generated code by providing input and output arrays that are compatible with the
function prototype shown above.

3 Define a C++ main function in the file xStringTest_main.cpp in your current working folder.

This main function uses defines the input array as an std::vector array of char_T. The for-
loop initializes vec with character values from 'A' to 'J'. This array is the input to the
generated function for xStringTest. The output of the function is returned in the
coder::array variable result.

#include<iostream>
#include<coder_array.h>
#include<xStringTest.h>

int main(int, char *[])
{
 // Instantiate the result variable by using coder::array template
 coder::array<char_T, 2> result;

 // Instantiate the input variable by using std::vector
 std::string vec;

 // Resize the input to include required values
 vec.resize(10);
 vec = "ABCDEFGHIJ";

 // Pass the input and result arrays to the generated function interface
 xStringTest(vec, result);

 //Cast coder::array 'result' variable to std::string to display it

32 Deploying Generated Code

32-18

 std::cout << "Result is ";
 std::cout << static_cast<std::string>(result) << std::endl;

 return 0;
}

4 Generate code by running this script.

cfg = coder.config('exe'); cfg.TargetLang = 'C++';
cfg.CustomSource = 'xStringTest_main.cpp';
cfg.CustomInclude = '.'; %current working directory
codegen -config cfg -args {coder.typeof(char('X'), [1 inf])} xStringTest_main.cpp xStringTest.m -report

The code generator produces an executable file xStringTest.exe in your current working folder.

Change Interface Generation
By default, the generated C++ code uses the coder::array template to implement dynamically
allocated arrays. Instead, you can choose to generate C++ code that uses the C style emxArray data
structure to implement dynamically allocated arrays. To generate C style emxArray data structures,
do one of the following:

• In a code configuration object (coder.MexCodeConfig, coder.CodeConfig, or
coder.EmbeddedCodeConfig), set the DynamicMemoryAllocationInterface parameter to
'C'.

• In the MATLAB Coder app, on the Memory tab, set Dynamic memory allocation interface to
Use C style EmxArray.

To learn more about statically allocated arrays or dynamically allocated arrays implemented by using
the C style emxArray data structure, see “Use C Arrays in the Generated Function Interfaces” on
page 32-3.

See Also
coder.typeof | coder.varsize

More About
• “Representation of Arrays in Generated Code” on page 6-34
• “Use C Arrays in the Generated Function Interfaces” on page 32-3
• “Control Memory Allocation for Variable-Size Arrays” on page 6-4

 Use Dynamically Allocated C++ Arrays in Generated Function Interfaces

32-19

Use a Dynamic Library in a Microsoft Visual Studio Project
This example shows how to create and configure a simple Microsoft Visual Studio project that calls a
dynamic library (DLL) generated by MATLAB Coder. The example uses Microsoft Visual Studio 2017.
In other versions of Microsoft Visual Studio, you might encounter a different procedure.

Generate a C Dynamic Library

1 Create a MATLAB function foo.

function c = foo(a)
%#codegen
 c = sqrt(a);
end

2 Save it as foo.m in a local writable folder, for example, C:\dll_test.
3 Use the same version of the same compiler to generate your DLL that you use to build your

Microsoft Visual Studio project. Otherwise, you can encounter linking errors.

For this example, use the Microsoft Visual Studio 2017 compiler. To select the compiler that the
code generator uses, enter mex -setup at the command line. For more information, see
Supported and Compatible Compilers.

4 Generate a DLL for the MATLAB function foo. The -args option specifies that the input a is a
real double.

codegen -config:dll foo -args {0} -report

On Microsoft Windows systems, codegen generates a C dynamic library, foo.dll, and
supporting files in the default folder, C:\dll_test\codegen\dll\foo.

Create a Microsoft Visual Studio Project

In Microsoft Visual Studio, create an Empty Project:

1 Select File > New > Project.
2 Select Installed > Visual C++ > General and select Empty project. Enter a project name.
3 Click OK.

Create a main.c File That Uses the Library

Write a main.c file that uses foo.dll. The main.c function must:

• Include the generated header files, which contain the function prototypes for the library functions.
• Call the terminate function after calling the library function for the last time.

By default, the code generator includes a call to the initialize function at the beginning of the
generated C/C++ entry-point functions. So, you do not need to call the initialize function from
main.c. See “Use Generated Initialize and Terminate Functions” on page 27-25.

To create the file:

1 From the Solution Explorer, right-click the Source Files folder and select Add > New Item
2 Select C++ File (.cpp). In the Name field, enter main.c.

32 Deploying Generated Code

32-20

https://www.mathworks.com/support/requirements/supported-compilers.html

3 Click Add.
4 Enter the code:

#include "foo.h"
#include "foo_terminate.h"
#include <stdio.h>

int main()
{
 printf("%f\n", foo(26));
 foo_terminate();
 getchar();
 return 0;
}

Configure the Platform

MATLAB Coder automatically uses a toolchain configured to build a 64-bit DLL. By default, Microsoft
Visual Studio is configured to build for the Win32 platform. You must change the build platform to
x64 to match the generated 64-bit DLL. In Microsoft Visual Studio:

1 Select Build > Configuration Manager.
2 Set Active solution platform to x64.

If you want to build a 32-bit DLL on a 64-bit platform, you must use a 32-bit toolchain definition. See
“Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain” on page 31-21.

Specify External Dependencies

To build your project, the compiler requires the associated header files. The linker requires the
generated .lib files.

1 Highlight your project in the Solution Explorer, and then select Project > Properties.
2 The code generator produces types in the file rtwtypes.h, which includes the file tmwtypes.h.

This file is stored in matlabroot\extern\include, where matlabroot is the root directory of
the MATLAB installation. To return the root directory, enter matlabroot in the Command
Window.

Under Configuration Properties > C/C++ > General, add the folders C:\dll_test\codegen
\dll\foo and matlabroot\extern\include to Additional Include Directories. Separate
the entries with a semicolon.

3 Under Configuration Properties > Linker > Input, add foo.lib to Additional
Dependencies.

4 Under Configuration Properties > Linker > General, add the folder C:\dll_test\codegen
\dll\foo to Additional Library Directories.

Build and Run the Executable

1 Build the executable. Select Build > Build Solution.
2 Make the DLL accessible to the executable. Either copy foo.dll to the folder containing the

executable or add the folder containing foo.dll to your path.

 Use a Dynamic Library in a Microsoft Visual Studio Project

32-21

3 Run the executable. Verify that the output appears as you expect.

See Also

More About
• “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain” on page 31-21

32 Deploying Generated Code

32-22

Incorporate Generated Code Using an Example Main Function
In this section...
“Workflow for Using an Example Main Function” on page 32-23
“Control Example Main Generation Using the MATLAB Coder App” on page 32-23
“Control Example Main Generation Using the Command-Line Interface” on page 32-24

When you build an application that uses generated C/C++ code, you must provide a C/C++ main
function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries, and
executables, MATLAB Coder generates an example C/C++ main function. This function is a template
that can help you incorporate generated C/C++ code into your application. The example main
function declares and initializes data, including dynamically allocated data. It calls entry-point
functions but does not use values that the entry point functions return.

MATLAB Coder generates source and header files for the example main function in the examples
subfolder of the build folder. For C code generation, it generates the files main.c and main.h. For C
++ code generation, it generates the files main.cpp and main.h.

Do not modify the files main.c and main.h in the examples subfolder. If you do, when you
regenerate code, MATLAB Coder does not regenerate the example main files. It warns you that it
detects changes to the generated files. Before using the example main function, copy the example
main source and header files to a location outside of the build folder. Modify the files in the new
location to meet the requirements of your application.

The packNGo function and the Package option of the MATLAB Coder app do not package the
example main source and header files when you generate the files using the default configuration
settings. To package the example main files, configure code generation to generate and compile the
example main function, generate your code, and then package the build files.

Workflow for Using an Example Main Function
1 Prepare your MATLAB code for code generation.
2 Check for run-time issues.
3 Make sure that example main generation is enabled.
4 Generate C/C++ code for the entry-point functions.
5 Copy the example main files from the examples subfolder to a different folder.
6 Modify the example main files in the new folder to meet the requirements of your application.
7 Deploy the example main and generated code for the platform that you want.
8 Build the application.

For an example that shows how to generate an example main and use it to build an executable, see
“Use an Example C Main in an Application” on page 32-25.

Control Example Main Generation Using the MATLAB Coder App
1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set the Build Type to one of the following:

 Incorporate Generated Code Using an Example Main Function

32-23

• Source Code
• Static Library
• Dynamic Library
• Executable

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Generate example main to one of the following:

Set To For
Do not generate an example main
function

Not generating an example C/C++ main
function

Generate, but do not compile, an
example main function (default)

Generating an example C/C++ main function
but not compiling it

Generate and compile an example
main function

Generating an example C/C++ main function
and compiling it

Control Example Main Generation Using the Command-Line Interface
1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe
2 Set the GenerateExampleMain property.

Set To For
'DoNotGenerate' Not generating an example C/C++ main

function
'GenerateCodeOnly' (default) Generating an example C/C++ main function

but not compiling it
'GenerateCodeAndCompile' Generating an example C/C++ main function

and compiling it

For example:

cfg.GenerateExampleMain = 'GenerateCodeOnly';

See Also

More About
• “Structure of Generated Example C/C++ Main Function” on page 32-46
• “Specifying main Functions for C/C++ Executables” on page 27-11

32 Deploying Generated Code

32-24

Use an Example C Main in an Application
This example shows how to build a C executable from MATLAB code that implements a simple Sobel
filter to perform edge detection on images. The executable reads an image from the disk, applies the
Sobel filtering algorithm, and then saves the modified image.

The example shows how to generate and modify an example main function that you can use when you
build the executable.

In this section...
“Prerequisites” on page 32-25
“Create a Folder and Copy Relevant Files” on page 32-25
“Run the Sobel Filter on the Image” on page 32-27
“Generate and Test a MEX Function” on page 32-29
“Generate an Example Main Function for sobel.m” on page 32-29
“Copy the Example Main Files” on page 32-32
“Modify the Generated Example Main Function” on page 32-32
“Generate the Sobel Filter Application” on page 32-40
“Run the Sobel Filter Application” on page 32-41
“Display the Resulting Image” on page 32-41

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). For a list of

supported compilers, see https://www.mathworks.com/support/compilers/
current_release/.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

Create a Folder and Copy Relevant Files
The files you use in this example are:

 Use an Example C Main in an Application

32-25

File Name File Type Description
sobel.m Function code MATLAB implementation of a

Sobel filtering algorithm.
sobel.m takes an image
(represented as a double matrix)
and a threshold value as inputs.
The algorithm detects edges in
the image (based on the
threshold value). sobel.m
returns a modified image
displaying the edges.

hello.jpg Image file Image that the Sobel filter
modifies.

Contents of File sobel.m

function edgeImage = sobel(originalImage, threshold) %#codegen

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.

assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

32 Deploying Generated Code

32-26

Contents of hello.jpg

To copy the example files to a local working folder:

1 Create a local working folder. For example, c:\coder\edge_detection.
2 Navigate to the working folder.
3 Copy the files sobel.m and hello.jpg from the examples folder sobel to your working folder.

copyfile(fullfile(docroot, 'toolbox', 'coder', 'examples', 'sobel'))

Run the Sobel Filter on the Image
1 Read the original image into a MATLAB matrix and display it.

im = imread('hello.jpg');
2 Display the image as a basis for comparison to the result of the Sobel filter.

image(im);

 Use an Example C Main in an Application

32-27

3 The Sobel filtering algorithm operates on grayscale images. Convert the color image to an
equivalent grayscale image with normalized values (0.0 for black, 1.0 for white).
gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

4 To run the MATLAB function for the Sobel filter, pass the grayscale image matrix gray and a
threshold value to the function sobel. This example uses 0.7 for a threshold value.

edgeIm = sobel(gray, 0.7);
5 To display the modified image, reformat the matrix edgeIm with the function repmat so that you

can pass it to the image command.

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

32 Deploying Generated Code

32-28

Generate and Test a MEX Function
1 To test that generated code is functionally equivalent to the original MATLAB code and that run-

time errors do not occur, generate a MEX function.

codegen -report sobel

codegen generates a MEX function named sobel_mex in the current working folder.
2 To run the MEX function for the Sobel filter, pass the grayscale image matrix gray and a

threshold value to the function sobel_mex. This example uses 0.7 for a threshold value.

edgeImMex = sobel_mex(gray, 0.7);
3 To display the modified image, reformat the matrix edgeImMex with the function repmat so that

you can pass it to the image command.

im3Mex = repmat(edgeImMex, [1 1 3]);
image(im3Mex);

This image is the same as the image created using the MATLAB function.

Generate an Example Main Function for sobel.m
Although you can write a custom main function for your application, an example main function
provides a template to help you incorporate the generated code.

 Use an Example C Main in an Application

32-29

To generate an example main function for the Sobel filter:

1 Create a configuration object for a C static library.

cfg = coder.config('lib');

For configuration objects for C/C++ source code, static libraries, dynamic libraries, and
executables, the setting GenerateExampleMain controls generation of the example main
function. The setting is set to 'GenerateCodeOnly' by default, which generates the example
main function but does not compile it. For this example, do not change the value of the
GenerateExampleMain setting.

2 Generate a C static library using the configuration object.

codegen -report -config cfg sobel

The generated files for the static library are in the folder codegen/lib/sobel. The example main
files are in the subfolder codegen/lib/sobel/examples.

Contents of Example Main File main.c

/*
 * File: main.c
 *
 */

/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/

/* Include Files */
#include "main.h"
#include "sobel.h"
#include "sobel_emxAPI.h"
#include "sobel_terminate.h"
#include "sobel_types.h"

32 Deploying Generated Code

32-30

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(void);

static double argInit_real_T(void);

static void main_sobel(void);

/* Function Definitions */
/*
 * Arguments : void
 * Return Type : emxArray_real_T *
 */
static emxArray_real_T *argInit_d1024xd1024_real_T(void)
{
 emxArray_real_T *result;
 double *result_data;
 int idx0;
 int idx1;
 /* Set the size of the array.
Change this size to the value that the application requires. */
 result = emxCreate_real_T(2, 2);
 result_data = result->data;
 /* Loop over the array to initialize each element. */
 for (idx0 = 0; idx0 < result->size[0U]; idx0++) {
 for (idx1 = 0; idx1 < result->size[1U]; idx1++) {
 /* Set the value of the array element.
Change this value to the value that the application requires. */
 result_data[idx0 + result->size[0] * idx1] = argInit_real_T();
 }
 }
 return result;
}

/*
 * Arguments : void
 * Return Type : double
 */
static double argInit_real_T(void)
{
 return 0.0;
}

/*
 * Arguments : void
 * Return Type : void
 */
static void main_sobel(void)
{
 emxArray_real_T *originalImage;
 emxArray_uint8_T *edgeImage;
 emxInitArray_uint8_T(&edgeImage, 2);
 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T();
 /* Call the entry-point 'sobel'. */
 sobel(originalImage, argInit_real_T(), edgeImage);
 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);

 Use an Example C Main in an Application

32-31

}

/*
 * Arguments : int argc
 * char **argv
 * Return Type : int
 */
int main(int argc, char **argv)
{
 (void)argc;
 (void)argv;
 /* The initialize function is being called automatically from your entry-point
 * function. So, a call to initialize is not included here. */
 /* Invoke the entry-point functions.
You can call entry-point functions multiple times. */
 main_sobel();
 /* Terminate the application.
You do not need to do this more than one time. */
 sobel_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

Copy the Example Main Files
Do not modify the files main.c and main.h in the examples subfolder. If you do, when you
regenerate code, MATLAB Coder does not regenerate the example main files. It warns you that it
detects changes to the generated files.

Copy the files main.c and main.h from the folder codegen/lib/sobel/examples to another
location. For this example, copy the files to the current working folder. Modify the files in the new
location.

Modify the Generated Example Main Function
• “Modify the Function main” on page 32-33
• “Modify the Initialization Function argInit_d1024xd1024_real_T” on page 32-34
• “Write the Function saveImage” on page 32-35
• “Modify the Function main_sobel” on page 32-37
• “Modify the Function Declarations” on page 32-38
• “Modify the Include Files” on page 32-38
• “Contents of Modified File main.c” on page 32-38

The example main function declares and initializes data, including dynamically allocated data, to zero
values. It calls entry-point functions with arguments set to zero values, but it does not use values
returned from the entry-point functions.

32 Deploying Generated Code

32-32

The C main function must meet the requirements of your application. This example modifies the
example main function to meet the requirements of the Sobel filter application.

This example modifies the file main.c so that the Sobel filter application:

• Reads in the grayscale image from a binary file.
• Applies the Sobel filtering algorithm.
• Saves the modified image to a binary file.

Modify the Function main

Modify the function main to:

• Accept the file containing the grayscale image data and a threshold value as input arguments.
• Call the function main_sobel with the address of the grayscale image data stream and the

threshold value as input arguments.

In the function main:

1 Remove the declarations (void)argc and (void)argv.
2 Declare the variable filename to hold the name of the binary file containing the grayscale

image data.

const char *filename;
3 Declare the variable threshold to hold the threshold value.

double threshold;
4 Declare the variable fd to hold the address of the grayscale image data that the application

reads in from filename.

FILE *fd;
5 Add an if statement that checks for three arguments.

if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
}

6 Assign the input argument argv[1] for the file containing the grayscale image data to
filename.

filename = argv[1];
7 Assign the input argument argv[2] for the threshold value to threshold, converting the input

from a string to a numeric double.

threshold = atof(argv[2]);
8 Open the file containing the grayscale image data whose name is specified in filename. Assign

the address of the data stream to fd.

fd = fopen(filename, "rb");
9 To verify that the executable can open filename, write an if-statement that exits the program if

the value of fd is NULL.

 Use an Example C Main in an Application

32-33

if (fd == NULL) {
 exit(-1);
}

10 Replace the function call for main_sobel by calling main_sobel with input arguments fd and
threshold.

main_sobel(fd, threshold);
11 Close the grayscale image file after calling sobel_terminate.

fclose(fd);

Modified Function main

int main(int argc, char **argv)
{
 const char *filename;
 double threshold;
 FILE *fd;
 if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
 }
 filename = argv[1];
 threshold = atof(argv[2]);

 fd = fopen(filename, "rb");
 if (fd == NULL) {
 exit(-1);
 }

 main_sobel(fd, threshold);
 fclose(fd);
 sobel_terminate();

 return 0;
}

Modify the Initialization Function argInit_d1024xd1024_real_T

In the example main file, the function argInit_d1024xd1024_real_T creates a dynamically
allocated variable-size array (emxArray) for the image that you pass to the Sobel filter. This function
initializes the emxArray to a default size and the elements of the emxArray to 0. It returns the
initialized emxArray.

For the Sobel filter application, modify the function to read the grayscale image data from a binary
file into the emxArray.

In the function argInit_d1024xd1024_real_T:

1 Replace the input argument void with the argument FILE *fd. This variable points to the
grayscale image data that the function reads in.

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
2 Change the values of the variables idx0 and idx1 to match the dimensions of the grayscale

image matrix gray. These variables hold the size values for the dimensions of the emxArray that
argInit_d1024xd1024_real_T creates.

32 Deploying Generated Code

32-34

int idx0 = 484;
int idx1 = 648;

MATLAB stores matrix data in column-major format, while C stores matrix data in row-major
format. Declare the dimensions accordingly.

3 Change the values of the emxCreate_real_T function to the image size.

result = emxCreate_real_T(484, 648);
4 Define a variable element to hold the values read in from the grayscale image data.

double element;
5 Change the for-loop construct to read data points from the normalized image into element by

adding an fread command to the inner for-loop.

fread(&element, 1, sizeof(element), fd);
6 Inside the for-loop, assign element as the value set for the emxArray data.

result->data[idx0 + result->size[0] * idx1] = element;

Modified Initialization Function argInit_d1024xd1024_real_T
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
{
 emxArray_real_T *result;
 double *result_data;
 int idx0 = 484;
 int idx1 = 648;
 /* Set the size of the array.
Change this size to the value that the application requires. */
 double element;
 result = emxCreate_real_T(484, 648);
 result_data = result->data;
 /* Loop over the array to initialize each element. */
 for (idx0 = 0; idx0 < result->size[0U]; idx0++) {
 for (idx1 = 0; idx1 < result->size[1U]; idx1++) {
 /* Set the value of the array element.
Change this value to the value that the application requires. */
 fread(&element, 1, sizeof(element), fd);
 result_data[idx0 + result->size[0] * idx1] = element;
 }
 }
 return result;
}

Write the Function saveImage

The MATLAB function sobel.m interfaces with MATLAB arrays, but the Sobel filter application
interfaces with binary files.

To save the image modified by the Sobel filtering algorithm to a binary file, create a function
saveImage. The function saveImage writes data from an emxArray into a binary file. It uses a
construction that is similar to the one used by the function argInit_d1024xd1024_real_T.

In the file main.c:

1 Define the function saveImage that takes the address of emxArray edgeImage as an input and
has output type void.

 Use an Example C Main in an Application

32-35

static void saveImage(emxArray_uint8_T *edgeImage)
{
}

2 Define the variables idx0 and idx1 like they are defined in the function
argInit_d1024xd1024_real_T.

int idx;
int idx1;

3 Define the variable element to store data read from the emxArray.

uint8_T element;
4 Open a binary file edge.bin for writing the modified image. Assign the address of edge.bin to

FILE *fd.

FILE *fd = fopen("edge.bin", "wb");
5 To verify that the executable can open edge.bin, write an if-statement that exits the program if

the value of fd is NULL.

if (fd == NULL) {
 exit(-1);
}

6 Write a nested for-loop construct like the one in the function argInit_d1024xd1024_real_T.

for (idx0 = 0; idx0 < edgeImage->size[0U]; idx0++)
{
 for (idx1 = 0; idx1 < edgeImage->size[1U]; idx1++)
 {
 }
}

7 Inside the inner for-loop, assign the values from the modified image data to element.

element = edgeImage->data[idx0 + edgeImage->size[0] * idx1];
8 After the assignment for element, write the value from element to the file edge.bin.

fwrite(&element, 1, sizeof(element), fd);
9 After the for-loop construct, close fd.

fclose(fd);

Function saveImage

static void saveImage(emxArray_uint8_T *edgeImage)
{
 int idx0;
 int idx1;
 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Loop over the array to save each element. */
 for (idx0 = 0; idx0 < edgeImage->size[0U]; idx0++) {
 for (idx1 = 0; idx1 < edgeImage->size[1U]; idx1++) {
 element = edgeImage->data[idx0 + edgeImage->size[0] * idx1];

32 Deploying Generated Code

32-36

 fwrite(&element, 1, sizeof(element), fd);
 }
 }
 fclose(fd);
}

Modify the Function main_sobel

In the example main function, the function main_sobel creates emxArrays for the data for the
grayscale and modified images. It calls the function argInit_d1024xd1024_real_T to initialize the
emxArray for the grayscale image. main_sobel passes both emxArrays and the threshold value of 0
that the initialization function argInit_real_T returns to the function sobel. When the function
main_sobel ends, it discards the result of the function sobel.

For the Sobel filter application, modify the function main_sobel to:

• Take the address of the grayscale image data and the threshold value as inputs.
• Read the data from the address using argInit_d1024xd1024_real_T.
• Pass the data to the Sobel filtering algorithm with the threshold value threshold.
• Save the result using saveImage.

In the function main_sobel:

1 Replace the input arguments to the function with the arguments FILE *fd and double
threshold.

static void main_sobel(FILE *fd, double threshold)
2 Pass the input argument fd to the function call for argInit_d1024xd1024_real_T.

originalImage = argInit_d1024xd1024_real_T(fd);
3 Replace the threshold value input in the function call to sobel with threshold.

sobel(originalImage, threshold, edgeImage);
4 After calling the function sobel, call the function saveImage with the input edgeImage.

saveImage(edgeImage);

Modified Function main_sobel

static void main_sobel(FILE *fd, double threshold)
{
 emxArray_real_T *originalImage;
 emxArray_uint8_T *edgeImage;
 emxInitArray_uint8_T(&edgeImage, 2);
 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T(fd);
 /* Call the entry-point 'sobel'. */
 sobel(originalImage, threshold, edgeImage);
 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);
}

 Use an Example C Main in an Application

32-37

Modify the Function Declarations

To match the changes that you made to the function definitions, make the following changes to the
function declarations:

1 Change the input of the function *argInit_d1024xd1024_real_T to FILE *fd.

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
2 Change the inputs of the function main_sobel to FILE *fd and double threshold.

static void main_sobel(FILE *fd, double threshold);
3 Add the function saveImage.

static void saveImage(emxArray_uint8_T *edgeImage);

Modified Function Declarations

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
static void saveImage(emxArray_uint8_T *edgeImage);
static double argInit_real_T(void);
static void main_sobel(FILE *fd, double threshold);

Modify the Include Files

For input/output functions that you use in main.c, add the header file stdio.h to the included files
list.

#include <stdio.h>

Modified Include Files

/* Include Files */
#include <stdio.h>

#include "sobel.h"
#include "main.h"
#include "sobel_terminate.h"
#include "sobel_emxAPI.h"
#include "sobel_initialize.h"

Contents of Modified File main.c

main.c
/*
 * File: main.c
 *
 */

/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */

32 Deploying Generated Code

32-38

/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/

/* Include Files */
#include <stdio.h>
#include "main.h"
#include "sobel.h"
#include "sobel_emxAPI.h"
#include "sobel_terminate.h"
#include "sobel_types.h"

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
static void saveImage(emxArray_uint8_T *edgeImage);
static double argInit_real_T(void);
static void main_sobel(FILE *fd, double threshold);

/* Function Definitions */
/*
 * Arguments : void
 * Return Type : emxArray_real_T *
 */
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
{
 emxArray_real_T *result;
 double *result_data;
 int idx0 = 484;
 int idx1 = 648;
 /* Set the size of the array.
 Change this size to the value that the application requires. */
 double element;
 result = emxCreate_real_T(484, 648);
 result_data = result->data;
 /* Loop over the array to initialize each element. */
 for (idx0 = 0; idx0 < result->size[0U]; idx0++) {
 for (idx1 = 0; idx1 < result->size[1U]; idx1++) {
 /* Set the value of the array element.
 Change this value to the value that the application requires. */
 fread(&element, 1, sizeof(element), fd);
 result_data[idx0 + result->size[0] * idx1] = element;
 }
 }
 return result;
}

static void saveImage(emxArray_uint8_T *edgeImage)
{
 int idx0;
 int idx1;
 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Loop over the array to save each element. */
 for (idx0 = 0; idx0 < edgeImage->size[0U]; idx0++) {
 for (idx1 = 0; idx1 < edgeImage->size[1U]; idx1++) {
 element = edgeImage->data[idx0 + edgeImage->size[0] * idx1];
 fwrite(&element, 1, sizeof(element), fd);
 }
 }
 fclose(fd);
}

/*
 * Arguments : void
 * Return Type : double
 */
static double argInit_real_T(void)
{
 return 0.0;

 Use an Example C Main in an Application

32-39

}

/*
 * Arguments : void
 * Return Type : void
 */
static void main_sobel(FILE *fd, double threshold)
{
 emxArray_real_T *originalImage;
 emxArray_uint8_T *edgeImage;
 emxInitArray_uint8_T(&edgeImage, 2);
 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T(fd);
 /* Call the entry-point 'sobel'. */
 sobel(originalImage, threshold, edgeImage);
 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);
}

/*
 * Arguments : int argc
 * char **argv
 * Return Type : int
 */
int main(int argc, char **argv)
{
 const char *filename;
 double threshold;
 FILE *fd;
 if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
 }
 filename = argv[1];
 threshold = atof(argv[2]);

 fd = fopen(filename, "rb");
 if (fd == NULL) {
 exit(-1);
 }

 /* The initialize function is being called automatically from your entry-point
 * function. So, a call to initialize is not included here. */
 /* Invoke the entry-point functions.
You can call entry-point functions multiple times. */
 main_sobel(fd, threshold);
 fclose(fd);
 /* Terminate the application.
You do not need to do this more than one time. */
 sobel_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

Generate the Sobel Filter Application
1 Navigate to the working folder if you are not currently in it.
2 Create a configuration object for a C standalone executable.

cfg = coder.config('exe');
3 Generate a C standalone executable for the Sobel filter using the configuration object and the

modified main function.

codegen -report -config cfg sobel main.c main.h

32 Deploying Generated Code

32-40

By default, if you are running MATLAB on a Windows platform, the executable sobel.exe is
generated in the current working folder. If you are running MATLAB on a platform other than
Windows, the file extension is the corresponding extension for that platform. By default, the code
generated for the executable is in the folder codegen/exe/sobel.

Run the Sobel Filter Application
1 Create the MATLAB matrix gray if it is not currently in your MATLAB workspace:

im = imread('hello.jpg');

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

2 Write the matrix gray into a binary file using the fopen and fwrite commands. The application
reads in this binary file.

fid = fopen('gray.bin', 'w');
fwrite(fid, gray, 'double');
fclose(fid);

3 Run the executable, passing to it the file gray.bin and the threshold value 0.7.

To run the example in MATLAB on a Windows platform:

system('sobel.exe gray.bin 0.7');

The executable generates the file edge.bin.

Display the Resulting Image
1 Read the file edge.bin into a MATLAB matrix edgeImExe using the fopen and fread

commands.

fd = fopen('edge.bin', 'r');
edgeImExe = fread(fd, size(gray), 'uint8');
fclose(fd);

2 Pass the matrix edgeImExe to the function repmat and display the image.

im3Exe = repmat(edgeImExe, [1 1 3]);
image(im3Exe);

The image matches the images from the MATLAB and MEX functions.

See Also

Related Examples
• “Structure of Generated Example C/C++ Main Function” on page 32-46
• “Incorporate Generated Code Using an Example Main Function” on page 32-23

 Use an Example C Main in an Application

32-41

Package Code for Other Development Environments
In this section...
“When to Package Code” on page 32-42
“Package Generated Code Using the MATLAB Coder App” on page 32-42
“Package Generated Code at the Command Line” on page 32-43
“Specify packNGo Options” on page 32-44

When to Package Code
To relocate the generated code files to another development environment, such as a system or an
integrated development environment (IDE) that does not include MATLAB, use the packNGo function
at the command line or the Package option in the MATLAB Coder app. The files are packaged in a
compressed file that you can relocate and unpack using a standard zip utility.

See “Package Generated Code Using the MATLAB Coder App” on page 32-42 and “Package
Generated Code at the Command Line” on page 32-43.

Package Generated Code Using the MATLAB Coder App
This example shows how to package generated code into a zip file for relocation using the Package
option in the MATLAB Coder app. By default, MATLAB Coder creates the zip file in the current
working folder.

1 In a local writable folder, for example c:\work, write a function foo that takes two double
inputs.

function y = foo(A,B)
 y = A + B;
end

2 Open the MATLAB Coder app. On the MATLAB Toolstrip Apps tab, under Code Generation,
click the MATLAB Coder app icon.

3 On the Select Source Files page, enter the name of the entry-point function foo. Click Next to
go to the Define Input Types page.

4 Specify that inputs A and B are scalar doubles. Click Next to go to the Check for Run-Time
Issues page.

5 Check for run-time issues. In the Check for Run-Time Issues dialog box, enter code that calls
foo with scalar double inputs. For example:

foo(1,2)

Click Check for Issues.

To check for run-time issues, the app generates and runs a MEX function. The app does not find
issues for foo. Click Next to go to the Generate Code page.

6 In the Generate dialog box, set the Build Type to Source Code, Static Library, Dynamic
Library, or Executable. You cannot package the code generated for MEX targets.

7 Click Generate. Click Next to go to the Finish Workflow page.

32 Deploying Generated Code

32-42

8 On the Finish Workflow page, click Package.
9 In the Package dialog box, specify the package file name and packaging type. By default, the app

derives the name of the package file from the project name. The app saves the file in the current
working folder. By default, the app packages the generated files as a single, flat folder. For this
example, use the default values, and then click Save.

This zip file contains the C code and header files required for relocation. It does not contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the

example main function. See “Incorporate Generated Code Using an Example Main Function”
on page 32-23.

10 Inspect the contents of foo_pkg.zip in your working folder to verify that it is ready for
relocation to the destination system. Depending on the zip tool that you use, you can potentially
open and inspect the file without unpacking it.

You can now relocate the resulting zip file to the desired development environment and unpack
the file.

Package Generated Code at the Command Line
This example shows how to package generated code into a zip file for relocation using the packNGo
function at the command line.

1 In a local writable folder, for example c:\work, write a function foo that takes two double
inputs.

function y = foo(A,B)
 y = A + B;
end

2 Generate a static library for function foo. (packNGo does not package MEX function code.)

codegen -report -config:lib foo -args {0,0}

codegen generates code in the c:\work\codegen\lib\foo folder.
3 Load the buildInfo object.

load('c:\work\codegen\lib\foo\buildInfo.mat')
4 Create the zip file.

packNGo(buildInfo, 'fileName', 'foo.zip');

Alternatively, use the notation:

buildInfo.packNGo('fileName', 'foo.zip');

The packNGo function creates a zip file, foo.zip, in the current working folder. This zip file
contains the C code and header files required for relocation. It does not contain:

• Compile flags

 Package Code for Other Development Environments

32-43

• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile the

example main function. See “Incorporate Generated Code Using an Example Main Function”
on page 32-23.

In this example, you specify only the file name. Optionally, you can specify additional packaging
options. See “Specify packNGo Options” on page 32-44.

5 Inspect the contents of foo.zip to verify that it is ready for relocation to the destination system.
Depending on the zip tool that you use, you can potentially open and inspect the file without
unpacking it. If you need to unpack the file and you packaged the generated code files as a
hierarchical structure, you will need to unpack the primary and secondary zip files. When you
unpack the secondary zip files, relative paths of the files are preserved.

You can now relocate the resulting zip file to the desired development environment and unpack
the file.

Specify packNGo Options
You can specify options for the packNGo function.

To Specify
Change the structure of the file
packaging to hierarchical

packNGo(buildInfo, 'packType'
'hierarchical');

Change the structure of the file
packaging to hierarchical and rename
the primary zip file

packNGo(buildInfo, 'packType'
'hierarchical'...
'fileName' 'zippedsrcs');

Include all header files found on the
include path in the zip file (rather than
the minimal header files required to
build the code)

packNGo(buildInfo, 'minimalHeaders' false);

Generate warnings for parse errors and
missing files

packNGo(buildInfo, 'ignoreParseError' true...
'ignoreFileMissing' true);

For more information, see packNGo.

Choose a Structure for the Zip File

Before you generate and package the files, decide whether you want to package the files in a flat or
hierarchical folder structure. By default, the packNGo function packages the files in a single, flat
folder structure. This approach is the simplest and might be the optimal choice.

If Use
You are relocating files to an IDE that does not
use the generated makefile, or the code is not
dependent on the relative location of required
static files

A single, flat folder structure

32 Deploying Generated Code

32-44

If Use
The target development environment must
maintain the folder structure of the source
environment because it uses the generated
makefile, or the code is dependent on the relative
location of files

A hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files. There is a
primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree
• sDirFiles.zip — files in and under your build folder where you initiated code generation
• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file, maintaining the
source development folder structure.

 Package Code for Other Development Environments

32-45

Structure of Generated Example C/C++ Main Function
In this section...
“Contents of the File main.c or main.cpp” on page 32-46
“Contents of the File main.h” on page 32-48

When you build an application that uses generated C/C++ code, you must provide a C/C++ main
function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries, and
executables, MATLAB Coder generates an example C/C++ main function. This function is a template
that can help you incorporate generated C/C++ code into your application. The example main
function declares and initializes data, including dynamically allocated data. It calls entry-point
functions but does not use values that the entry point functions return. To use the example main
function, copy the example main source and header files to a location outside of the build folder, and
then modify the files in the new location to meet the requirements of your application.

MATLAB Coder generates source and header files for the example main function in the examples
subfolder of the build folder. For C code generation, it generates the files main.c and main.h. For C
++ code generation, it generates the files main.cpp and main.h.

Contents of the File main.c or main.cpp
For the example main source file main.c or main.cpp, MATLAB Coder generates the following
sections:

• “Include Files” on page 32-46
• “Function Declarations” on page 32-46
• “Argument Initialization Functions” on page 32-46
• “Entry-Point Functions” on page 32-47
• “Main Function” on page 32-47

By default, MATLAB Coder also generates comments in the example main source file that can help
you modify the example main function to use in your application.

Include Files

This section includes the header files required to call code that is not in the example main source file.
If you call external functions when you modify the example main source file, include any other
required header files.

Function Declarations

This section declares the function prototypes for the argument initialization and entry-point functions
that are defined in the example main source file. Modify the function prototypes to match
modifications that you make in the function definitions. Declare new function prototypes for functions
that you define in the example main source file.

Argument Initialization Functions

This section defines an initialization function for each data type that the entry-point functions use as
an argument. The argument initialization function initializes the size of the argument to a default

32 Deploying Generated Code

32-46

value and the values of the data to zero. The function then returns the initialized data. Change these
size and data values to meet the requirements of your application.

For an argument with dimensions of size <dimSizes> and MATLAB C/C++ data type <baseType>,
the example main source file defines an initialization function with the name
argInit_<dimSizes>_<baseType>. For example, for a 5-by-5 array with data of MATLAB type
double, the example main source file defines the argument initialization function
argInit_5x5_real_T.

MATLAB Coder alters the name of the argument initialization functions as follows:

• If any of the dimensions are variable-size, MATLAB Coder designates the size of these dimensions
as d<maxSize>, where <maxSize> is the maximum size of that dimension. For example, for an
array with data of MATLAB type double with a first dimension of static size 2 and a second
dimension that can vary in size up to 10, the example main source file defines the argument
initialization function argInit_2xd10_real_T.

• If any of the dimensions are unbounded, MATLAB Coder designates the size of these dimensions
as Unbounded.

• If the return type of the initialization function is an emxArray, MATLAB Coder defines the
function as returning a pointer to the emxArray.

• If the length of the initialization function name exceeds the maximum number of characters set for
function names in the configuration settings, MATLAB Coder prepends an identifier to the front of
the function name. MATLAB Coder then truncates the function name to the maximum allowed
number of characters for identifier length.

Note By default, the maximum number of characters allowed for generated identifiers is 31. To
specify the value set for the maximum identifier length using the MATLAB Coder app, select the
Maximum identifier length value on the Code Appearance tab of the code generation settings.
To specify the value set for the maximum identifier using the command-line interface, change the
value of the MaxIdLength configuration object setting.

Entry-Point Functions

This section defines a function for each MATLAB entry-point function. For a MATLAB function foo.m,
the example main source file defines an entry-point function main_foo. This function creates the
variables and calls the data initialization functions that the C/C++ source function foo.c or
foo.cpp requires. It calls this C/C++ source function but does not return the result. Modify
main_foo so that it takes inputs and returns outputs as required by your application.

Main Function

This section defines a main function that does the following:

• If your output language is C, it declares and names the variables argc and argv but casts them to
void. If your output language is C++, the generated example main declares, but does not name,
the variables argc and argv.

• Calls each of the entry-point functions once.
• Calls the terminate function foo_terminate, which is named for the first MATLAB entry-point

function foo declared for code generation. Call the terminate function only once, even if you have
multiple entry-point functions called in the function main.

 Structure of Generated Example C/C++ Main Function

32-47

• Returns zero.

By default, the example main function does not call the initialize function foo_initialize. The
code generator includes a call to the initialize function at the beginning of the generated C/C++
entry-point functions. The generated code also includes checks to make sure that the initialize
function is called automatically only once, even when there are multiple entry-point functions.

You can choose to not include a call to the initialize function in the generated entry-point functions.
To make this choice, do one of the following:

• In a coder.CodeConfig or coder.EmbeddedCodeConfig object, set RunInitializeFcn to
false.

• In the MATLAB Coder app, on the All Settings tab, set Automatically run the initialize
function to No.

If you make this choice, the example main function includes a call to the initialize function
foo_initialize.

See “Use Generated Initialize and Terminate Functions” on page 27-25.

Modify the function main, including the inputs and outputs of main and of the entry-point functions,
to meet the requirements of your application.

Contents of the File main.h
For the example main header file main.h, MATLAB Coder generates the following:

• “Include Guard” on page 32-48
• “Include Files” on page 32-48
• “Function Declarations” on page 32-48

By default, MATLAB Coder also generates comments in main.h that can help you modify the example
main function to use in your application.

Include Guard

main.h uses an include guard to prevent the contents of the file from being included multiple times.
The include guard contains the include files and function declarations within an #ifndef construct.

Include Files

main.h includes the header files required to call code that is not defined within it.

Function Declarations

main.h declares the function prototype for the main function that is defined in the example main
source file main.c or main.cpp.

32 Deploying Generated Code

32-48

See Also

Related Examples
• “Incorporate Generated Code Using an Example Main Function” on page 32-23
• “Use an Example C Main in an Application” on page 32-25

More About
• “Mapping MATLAB Types to Types in Generated Code” on page 34-15
• “Use Generated Initialize and Terminate Functions” on page 27-25

 Structure of Generated Example C/C++ Main Function

32-49

Troubleshoot Failures in Deployed Code
If your deployed code fails, consider regenerating the code with run-time error detection enabled.
When you enable run-time error detection, the generated code includes code that detects and reports
errors, such as out-of-bounds array indexing. If the code detects one of these errors, it reports a
message and terminates the program. Running the code that includes the error checks helps you to
see if one of these errors caused the failure.

Run-time error detection can affect the performance of the generated code. If performance is a
consideration for your application, when you finish troubleshooting, regenerate the code with run-
time error detection disabled.

See “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20
and “Example: Generate Standalone C Code That Detects and Reports Run-Time Errors” on page 29-
24.

32 Deploying Generated Code

32-50

Using Dynamic Memory Allocation for an Atoms Simulation
This example shows how to generate code for a MATLAB® algorithm that runs a simulation of
bouncing "atoms" and returns the result after a number of iterations. There are no upper bounds on
the number of atoms that the algorithm accepts, so this example takes advantage of dynamic memory
allocation.

Prerequisites

There are no prerequisites for this example.

About the run_atoms Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying gravity and energy
loss).

help run_atoms

 atoms = run_atoms(atoms,n)
 atoms = run_atoms(atoms,n,iter)
 Where 'atoms' the initial and final state of atoms (can be empty)
 'n' is the number of atoms to simulate.
 'iter' is the number of iterations for the simulation
 (if omitted it is defaulted to 3000 iterations.)

Set Up Code Generation Options

Create a code generation configuration object

cfg = coder.config;
% Enable dynamic memory allocation for variable size matrices.
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure 'Atom' to provide the compiler with the necessary information about
input parameter types. An atom is a structure with four fields (x,y,vx,vy) specifying position and
velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

Generate a MEX Function for Testing

Use the command codegen with the following arguments:

-args {coder.typeof(atom, [1 Inf]),0,0} indicates that the first argument is a row vector
of atoms where the number of columns is potentially infinite. The second and third arguments are
scalar double values.

-config cfg enables dynamic memory allocation, defined by workspace variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o run_atoms_mex

Code generation successful.

 Using Dynamic Memory Allocation for an Atoms Simulation

32-51

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration steps given an empty list of
atoms. The return value is the state of all the atoms after simulation is complete.

atoms = repmat(atom,1,0);
atoms = run_atoms_mex(atoms,10000,1000)

Iteration: 50
Iteration: 100
Iteration: 150
Iteration: 200
Iteration: 250
Iteration: 300
Iteration: 350
Iteration: 400
Iteration: 450
Iteration: 500
Iteration: 550
Iteration: 600
Iteration: 650
Iteration: 700
Iteration: 750
Iteration: 800
Iteration: 850
Iteration: 900
Iteration: 950
Iteration: 1000
Completed iterations: 1000

atoms=1×10000 struct array with fields:
 x
 y
 vx
 vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

Iteration: 50
Iteration: 100
Iteration: 150
Iteration: 200
Iteration: 250
Iteration: 300
Iteration: 350
Iteration: 400
Iteration: 450
Iteration: 500
Completed iterations: 500

atoms=1×10000 struct array with fields:
 x
 y
 vx

32 Deploying Generated Code

32-52

 vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

In MATLAB the default data type is double. However, integers are usually used in C code, so pass
int32 integer example values to represent the number of atoms and iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

Code generation successful.

Inspect Generated Code

When creating a library the code is generated in the folder codegen/lib/run_atoms/. The code in
this folder is self contained. To interface with the compiled C code you need only the generated
header files and the library file.

dir codegen/lib/run_atoms

. rt_nonfinite.c run_atoms_emxutil.h

.. rt_nonfinite.h run_atoms_emxutil.obj

.gitignore rt_nonfinite.obj run_atoms_initialize.c
_clang-format rtw_proj.tmw run_atoms_initialize.h
buildInfo.mat rtwtypes.h run_atoms_initialize.obj
codeInfo.mat run_atoms.c run_atoms_rtw.bat
codedescriptor.dmr run_atoms.h run_atoms_rtw.mk
compileInfo.mat run_atoms.lib run_atoms_rtw.rsp
examples run_atoms.obj run_atoms_rtw_comp.rsp
interface run_atoms_data.c run_atoms_rtw_ref.rsp
rtGetInf.c run_atoms_data.h run_atoms_terminate.c
rtGetInf.h run_atoms_data.obj run_atoms_terminate.h
rtGetInf.obj run_atoms_emxAPI.c run_atoms_terminate.obj
rtGetNaN.c run_atoms_emxAPI.h run_atoms_types.h
rtGetNaN.h run_atoms_emxAPI.obj setup_msvc.bat
rtGetNaN.obj run_atoms_emxutil.c

Write a C Main Function

Typically, the main function is platform-dependent code that performs rendering or some other
processing. In this example, a pure ANSI-C function produces a file run_atoms_state.m which
(when run) contains the final state of the atom simulation.

type run_atoms_main.c

/* Include standard C libraries */
#include <stdio.h>

/* The interface to the main function we compiled. */
#include "codegen/exe/run_atoms/run_atoms.h"

 Using Dynamic Memory Allocation for an Atoms Simulation

32-53

/* The interface to EMX data structures. */
#include "codegen/exe/run_atoms/run_atoms_emxAPI.h"

int main(int argc, char **argv)
{
 FILE *fid;
 int i;
 emxArray_Atom *atoms;

 /* Main arguments unused */
 (void) argc;
 (void) argv;

 /* Initially create an empty row vector of atoms (1 row, 0 columns) */
 atoms = emxCreate_Atom(1, 0);

 /* Call the function to simulate 10000 atoms in 1000 iteration steps */
 run_atoms(atoms, 10000, 1000);

 /* Call the function again to do another 500 iteration steps */
 run_atoms(atoms, 10000, 500);

 /* Print the result to a file */
 fid = fopen("atoms_state.txt", "w");
 for (i = 0; i < atoms->size[1]; i++) {
 fprintf(fid, "%f %f %f %f\n",
 atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->data[i].vy);
 }

 /* Close the file */
 fclose(fid);

 /* Free memory */
 emxDestroyArray_Atom(atoms);
 return(0);
}

Create a Configuration Object for Executables
cfg = coder.config('exe');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code (run_atoms_main.c) The
codegen command automatically generates C code from the MATLAB code, then calls the C compiler
to bundle this generated code with the custom C code (run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

Code generation successful.

Run the Executable

After simulation is complete, this produces the file atoms_state.txt. The TXT file is a 10000x4
matrix, where each row is the position and velocity of an atom (x, y, vx, vy) representing the current
state of the whole system.

system(['.' filesep 'run_atoms']);

32 Deploying Generated Code

32-54

Fetch the State

Running the executable produced atoms_state.txt. Now, recreate the structure array from the
saved matrix:

load atoms_state.txt -ascii
clear atoms
for i = 1:size(atoms_state,1)
 atoms(1,i).x = atoms_state(i,1);
 atoms(1,i).y = atoms_state(i,2);
 atoms(1,i).vx = atoms_state(i,3);
 atoms(1,i).vy = atoms_state(i,4);
end

Render the State

Call run_atoms_mex with zero iterations to render only.

run_atoms_mex(atoms, 10000, 0);

 Using Dynamic Memory Allocation for an Atoms Simulation

32-55

Register New Hardware Devices
On the Hardware tab of the MATLAB Coder app, you can specify parameters that describe target
hardware and compiler properties for MATLAB software, which enables you to:

• Generate optimized code for production or test hardware.
• Directly test or deploy generated code on target hardware.

To perform this action at the MATLAB command line, use the coder.hardware function.

The Hardware tab and the coder.hardware function support a range of target hardware. To extend
the range, register new hardware devices by using the target.Processor and
target.LanguageImplementation classes.

Specify Hardware Implementation for New Device
To register a new hardware device:

1 Create a target.Processor object for the new hardware device.
myProc = target.create('Processor', ...
 'Name', 'MyProcessor', ...
 'Manufacturer', 'MyManufacturer');

2 Create a target.LanguageImplementation object for language implementation details.
myLanguageImplementation = target.create('LanguageImplementation', ...
 'Name', 'MyProcessorImplementation');

3 Specify language implementation details.
myLanguageImplementation.Endianess = target.Endianess.Little;

myLanguageImplementation.AtomicIntegerSize = 64;
myLanguageImplementation.AtomicFloatSize = 64;
myLanguageImplementation.WordSize = 64;

myLanguageImplementation.DataTypes.Char.Size = 8;
myLanguageImplementation.DataTypes.Short.Size = 16;
myLanguageImplementation.DataTypes.Int.Size = 32;
myLanguageImplementation.DataTypes.Long.Size = 64;
myLanguageImplementation.DataTypes.LongLong.IsSupported = true;
myLanguageImplementation.DataTypes.LongLong.Size = 64;
myLanguageImplementation.DataTypes.Float.Size = 32;
myLanguageImplementation.DataTypes.Double.Size = 64;

myLanguageImplementation.DataTypes.Pointer.Size = 32;

myLanguageImplementation.DataTypes.SizeT.Size = 64;
myLanguageImplementation.DataTypes.PtrDiffT.Size = 64;

4 Associate the language implementation with the hardware device.
myProc.LanguageImplementations = myLanguageImplementation;

5 Add the target.Processor object to an internal database.
objectsAdded = target.add(myProc);

On the Hardware tab, you see the new device. Alternatively, you can now create a coder.Hardware
object for this device by using the coder.hardware function.

32 Deploying Generated Code

32-56

Specify Hardware Implementation That Persists Over MATLAB
Sessions
By default, when you add the target object to the internal database, the target data is available only
for the current MATLAB session. You can specify target data persistence over MATLAB sessions.

1 Create a target.Processor object for a new hardware device.

myProc = target.create('Processor', ...
 'Name', 'MyProcessor', ...
 'Manufacturer', 'MyManufacturer');

existingImplementation = target.get('LanguageImplementation', ...
 'ARM Compatible-ARM Cortex');
myProc.LanguageImplementations = existingImplementation;

2 Add the target.Processor object to an internal database and specify persistence of target
data over MATLAB sessions.

objectsAdded = target.add(myProc, 'UserInstall', true);
3 You can remove the object from the internal database.

target.remove(objectsAdded);

Create Hardware Implementation by Modifying Existing
Implementation
If an existing hardware implementation contains most of the values that you want in a new hardware
implementation, you can quickly create the new implementation by creating and modifying a copy of
the existing implementation.

1 Create a target.Processor object for the new hardware device.
myProc = target.create('Processor', ...
 'Name', 'MyProcessor', ...
 'Manufacturer', 'MyManufacturer');

2 Create a target.LanguageImplementation object that copies an existing language
implementation.
myCopiedImplementation = target.create('LanguageImplementation', ...
 'Name', 'MyCopiedImplementation', ...
 'Copy', 'Atmel-AVR');

3 Specify the required language implementation details. For example, byte ordering.
myCopiedImplementation.Endianess = target.Endianess.Big;

4 Associate the language implementation with the hardware device.
myProc.LanguageImplementations = myCopiedImplementation;

5 Add the target.Processor object to an internal database.
objectsAdded = target.add(myProc);

Create Hardware Implementation by Reusing Existing Implementation
If your hardware device requires the same hardware implementation as an existing implementation,
you can reuse the existing implementation.

1 Create a target.Processor object for the new hardware device.

 Register New Hardware Devices

32-57

myProc = target.create('Processor', ...
 'Name', 'MyProcessor', ...
 'Manufacturer', 'MyManufacturer');

2 Retrieve the existing implementation by using the identifier for the device vendor and type, for
example, 'ARM Compatible-ARM Cortex'.

existingImplementation = target.get('LanguageImplementation', ...
 'ARM Compatible-ARM Cortex');

3 Associate the language implementation with the hardware device.

myProc.LanguageImplementations = existingImplementation;
4 Add the target.Processor object to an internal database.

objectsAdded = target.add(myProc);

Validate Hardware Device Data
To validate the data integrity of target objects, use the IsValid property or the validate method of
the target.Object base class.

Consider an example where you create a target.Processor object and associate an existing
language implementation with the object.
myProcessor = target.create('Processor');
myProcessor.LanguageImplementations = target.get('LanguageImplementation', ...
 'ARM Compatible-ARM Cortex');

To validate the created object, run myProcessor.IsValid or myProcessor.validate().
myProcessor.IsValid

ans =
 logical
 0

myProcessor.validate()

Error using target.Processor/validate
Target data validation failed.
* Undefined property "Name" in "Processor" object.
* Undefined identifier in "Processor" object.

The validation fails because these target.Processor properties are not specified:

• Name — Processor name
• Id — Object identifier

You can specify a processor name, which also specifies the object identifier.
myProcessor.Name = 'MyProcessor';

Check the validity of myProcessor.
myProcessor.IsValid

ans =
 logical
 1

The validity of the object is established.

32 Deploying Generated Code

32-58

Note When you use the target.add function to register a target object, the software also checks
the validity of the object.

Export Hardware Device Data
You can share previously created hardware device data across computers and users.

For this example, specify a hardware device and add it to an internal database.
myProc = target.create('Processor', ...
 'Name', 'MyProcessor', ...
 'Manufacturer', 'MyManufacturer');
existingImplementation = target.get('LanguageImplementation', ...
 'ARM Compatible-ARM Cortex');
myProc.LanguageImplementations = existingImplementation;

objectsAdded = target.add(myProc);

To create a function for sharing the hardware device data, run:
target.export(myProc, 'FileName', 'exportMyProcFunction')

The target.export function creates exportMyProcFunction.m in the current working folder.
function registeredObjects = exportMyProcFunction(varargin)
% This function was generated using target data export.

 % Create target.Processor "MyManufacturer-MyProcessor"
 processor = target.create("Processor");
 processor.LanguageImplementations(1) = ...
 target.get("LanguageImplementation", "ARM Compatible-ARM Cortex");
 processor.Manufacturer = "MyManufacturer";
 processor.Name = "MyProcessor";

 % Add the target objects to MATLAB memory
 registeredObjects = target.add(processor, varargin{:});

Now, you can use the generated function to share the hardware device data in your database across
computers and users. For example, on another computer, run this command.
objectsAdded = exportMyProcFunction;

The generated function recreates the target.Processor object, MyManufacturer-MyProcessor,
and adds it to an internal database.

Create Alternative Identifier for Target Object
To create alternative identifiers for target objects, use the target.Alias class.

For example, if a target.Processor object has a long class identifier, you can create a
target.Alias object that provides a short identifier for the target.Processor object.

1 Retrieve the target.Processor object.

proccesorObj = target.get('Processor', ...
 'Analog Devices-ADSP-CM40x (ARM Cortex-M)');

2 Use the target.create function to create a target.Alias object.

aliasProcessorObj = target.create('Alias');
3 Use target.Alias object properties to specify the alternative identifier and original target

object.

 Register New Hardware Devices

32-59

aliasProcessorObj.Name = 'myShortName';
aliasProcessorObj.For = proccesorObj;

4 Add the target.Alias object to an internal database.

target.add(aliasProcessorObj);
5 To retrieve the original target.Processor object, run:

target.get('Processor', 'myShortName');

Upgrade Data Definitions for Hardware Devices
To upgrade existing hardware device definitions that are specified through rtwTargetInfo.m files,
use the target.upgrade function.

rtwTargetInfo.m File

Suppose you have the hardware device definition in an rtwTargetInfo.m file:
function rtwTargetInfo(tr)

 % Add registration function handle to the Target Registry
 tr.registerTargetInfo(@loc_register_hardware);
end

function hw = loc_register_hardware
 hw = RTW.HWDeviceRegistry;
 hw.Vendor = 'MyManufacturer';
 hw.Type = 'MyDevice';
 hw.Alias = {};
 hw.Platform = {'Prod', 'Target'};
 hw.setWordSizes([8 16 32 64 64 64 64 64 64 64 64]);
 hw.Endianess = 'Little';
 hw.IntDivRoundTo = 'Zero';
 hw.ShiftRightIntArith = true;
 hw.LargestAtomicInteger = 'Long';
 hw.LargestAtomicFloat = 'Double';
end

To upgrade the data definitions contained in the file, run:
target.upgrade('rtwTargetInfo', 'myPathTo/rtwTargetInfo.m');

In the current folder, the function creates this registerUpgradedTargets.m file:
function processor = registerUpgradedTargets(varargin)
% This function was generated using target data export.

 % Create target.LanguageImplementation 'MyManufacturer-MyDevice'
 languageimplementation = target.create('LanguageImplementation');
 languageimplementation.AtomicFloatSize = 64;
 languageimplementation.AtomicIntegerSize = 64;
 languageimplementation.DataTypes.Char.Size = 8;
 languageimplementation.DataTypes.Double.Size = 64;
 languageimplementation.DataTypes.Float.Size = 64;
 languageimplementation.DataTypes.Half.IsSupported = false;
 languageimplementation.DataTypes.Half.Size = 16;
 languageimplementation.DataTypes.Int.Size = 32;
 languageimplementation.DataTypes.Long.Size = 64;
 languageimplementation.DataTypes.LongLong.IsSupported = false;
 languageimplementation.DataTypes.LongLong.Size = 64;
 languageimplementation.DataTypes.Pointer.Size = 64;
 languageimplementation.DataTypes.PtrDiffT.Size = 64;
 languageimplementation.DataTypes.Short.Size = 16;
 languageimplementation.DataTypes.SizeT.Size = 64;
 languageimplementation.Name = 'MyManufacturer-MyDevice';
 languageimplementation.WordSize = 64;

32 Deploying Generated Code

32-60

 % Create target.Processor 'MyManufacturer-MyDevice'
 processor = target.create('Processor');
 processor.LanguageImplementations(1) = languageimplementation;
 processor.Manufacturer = 'MyManufacturer';
 processor.Name = 'MyDevice';

 % Add the target objects to MATLAB memory
 target.add(processor, varargin{:});
end

To register the hardware device with MATLAB, run:
registerUpgradedTargets()

If you want the registration to persist across MATLAB sessions, run:
registerUpgradedTargets('UserInstall', true)

See Also
target.LanguageImplementation | target.Processor

 Register New Hardware Devices

32-61

Deploy Generated C Code to External Hardware: Raspberry Pi
Examples

Use MATLAB Coder to generate C code for basic or advanced MATLAB algorithms, and then deploy
the algorithms to external hardware platforms. These examples show deployment scenarios for the
Raspberry Pi™ platform. You can use platforms such as the Raspberry Pi to prototype a more complex
or larger scale deployment workflow. The Raspberry Pi runs a 32-bit Linux operating system
environment on an ARM processor.

This figure shows the generated code for a spring mass damper algorithm running on a Raspberry Pi.
The C main function for the algorithm incorporates USB mouse input by using the Linux device file
interface.

Prerequisites
• Raspberry Pi Model 3 B+. Older models of Raspberry Pi hardware might exhibit reduced

performance.

32 Deploying Generated Code

32-62

• Network access or another file transfer mechanism, such as a microSD card reader.
• Remote desktop connection or an external monitor.
• Wired USB mouse for low-latency input.

Hardware Implementation Parameters
When generating code for external hardware, the code generator requires knowledge of the
hardware-platform settings, as specified by a coder.HardwareImplementation object. This object
contains implementation parameters that affect assumptions made by the code generator and that
are important for achieving expected behavior.

For example, consider a Raspberry Pi running 32-bit Linux and an 8-bit Arduino® platform. The C
compiler on the Arduino assigns an int 16 bits, whereas for the Raspberry Pi, the C compiler assigns
32 bits. If you generate C code that uses int variable declarations, then running the same code on
both platforms can cause different integer overflow behavior.

Because of these platform differences, set the hardware implementation parameters specifically for
whichever platform you expect to run the generated code on. By default, the parameters are set for
the MATLAB host platform. You can use the MATLAB Coder app or command line to set hardware
parameters, or you can use a Hardware Support Package.

Set Parameters by Using App and Command Line

To set the hardware implementation parameters via coder.HardwareImplementation, open your
configuration object in the MATLAB Coder app. For example:

cfg = coder.config('lib');
open cfg;

Configure the implementation parameters for a Raspberry Pi. Click the Hardware pane and select
the Device vendor as ARM Compatible and Device type as ARM Cortex. This selection is
equivalent to entering:

cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM Cortex';

Setting the ProdHWDeviceType parameter triggers the appropriate settings for all the other
coder.HardwareImplementation parameters.

Set Parameters by Using Hardware Support Package

If you have access to the MATLAB Support Package for Raspberry Pi Hardware, you can set up a
connection to your Raspberry Pi from inside the MATLAB environment. You can set the
coder.HardwareImplementation settings by choosing Raspberry Pi from the Hardware Board
menu in the MATLAB Coder app, or from the command line, by entering:

cfg = coder.config('lib');
hwObj = coder.hardware('Raspberry Pi');
cfg.Hardware = hwObj;

The coder.hardware function creates a coder.Hardware object. When you assign the
coder.Hardware object to the configuration object, the hardware implementation parameters are
set accordingly.

 Deploy Generated C Code to External Hardware: Raspberry Pi Examples

32-63

Hello World Example
Generate C Source Code for External Hardware

Consider an elementary MATLAB Hello World function.

function helloworld %#codegen
fprintf('Hello world!\n');

Create a configuration object and specify source code generation. Set the hardware implementation
parameters for the Raspberry Pi.

cfg = coder.config('lib','ecoder',false);
cfg.GenCodeOnly = true;
cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM Cortex';

Generate code:

codegen -config cfg helloworld -report

Transfer Files to Device

You can package the generated code for file transfer by using the packNGo function. This function
creates a zip file containing the required generated code files. The packNGo function does not include
the generated example main files that you can use to compile the code into an executable. Move the
generated example main files or your own handwritten main files separately.

From the directory from which you entered the codegen command, gather the files for deployment:

myBuildInfoFile = 'codegen/lib/helloworld/buildInfo.mat';
load(myBuildInfoFile);
packNGo(buildInfo);

movefile ./codegen/lib/helloworld/examples/main.c
movefile ./codegen/lib/helloworld/examples/main.h

Transfer the files from your host machine running MATLAB to your external hardware target. You can
use a file transfer program for your platform or direct commands, such as scp with the destination IP
address of the Raspberry Pi.

Build Code on Device

Once you have transferred the files to a directory, from the terminal, run unzip on the zip file. Then
use the Linux gcc build tool to create an executable. Name it helloworld with the -o option:

gcc helloworld.c helloworld_initialize.c helloworld_terminate.c main.c -o helloworld

To run the executable and verify that the build was successful, enter:

./helloworld

The terminal displays the output:

Hello world!

32 Deploying Generated Code

32-64

Spring Mass Damper System Example
Generate Source Code for a Spring Mass Damper System

This example shows how to generate C source code for a spring mass damper system that you can
then build and run on a Raspberry Pi.

The Spring Mass Damper Model

The spring mass system with damping is a fundamental system in mechanics and dynamics. By using
the equations of motion you can solve for the displacement of the mass in response to different initial
conditions and external forces.

The function springMassEqns encodes the equations of motion in the form of two first order linear
differential equations. The variables dxdt(1) and dxdt(2) are the velocity and the acceleration of
the mass, respectively. The variable x(1) represents the position of the mass.

function dxdt = springMassEqns(t,x,x0,k,m,c,F)
dxdt = zeros(2,1);
dxdt(1) = x(2);
dxdt(2) = F/m - k/m*(x(1)-x0) - c/m*x(2);

MATLAB Algorithm

To simulate the displacement as a function of time, the function springMassStep applies the ODE
solver ode45 to the equations of motion.

function [x] = springMassStep(xi,vi,ti,dt,g) %#codegen
% Set spring equilibrium position
x0 = 1;
% Set spring, mass, damper constants
k = 1000;
m = 10;
c = 25;
% Scale acceleration g like a gravity force
F = m*g;
% Solve ODE for displacement at ti + dt
initCond = [xi vi];
tspan = [ti ti+dt];
[~,x] = ode45(@(t,x) springMassEqns(t,x,x0,k,m,c,F),tspan,initCond);

The springMassTakeStep function calls the springMassStep function and returns the final
displacement at the end of a fixed time interval.

function [xf, vf] = springMassTakeStep(xi,vi,ti,dt,g) %#codegen
% Function springMassTakeStep acts as a wrapper for the ODE solving function, step.
% It takes the same input parameters as springMassStep, but only outputs the final
% position and velocity.
x = springMassStep(xi,vi,ti,dt,g);
xf = x(end,1);
vf = x(end,2);

 Deploy Generated C Code to External Hardware: Raspberry Pi Examples

32-65

Algorithm Results

To understand typical behavior of the model and the algorithm, the script springMassSim simulates
the system over a typical parameter range. The output results show the displacement of the mass as a
function of time. You can adjust the initial conditions, model parameters, and forcing function to see
how the model responds.

springMassSim

Generate C Source Code

After verifying that the MATLAB model works as expected, generate C source code for deployment.

xi = 0.5;
vi = 0;
ti = 0;
dt = .01;
g = 0;

cfg = coder.config('lib','ecoder',false);
cfg.GenCodeOnly = true;
cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM Cortex';
codegen springMassTakeStep -args {xi,vi,ti,dt,g} -config cfg -report

32 Deploying Generated Code

32-66

Code generation successful: To view the report, open('codegen\lib\springMassTakeStep\html\report.mldatx')

Transfer Files to Device

After generating the C source code for the algorithm, you can modify the example main.c and
main.h files for your application. For this example, the attached file springMass_main.c shows
how to use the generated code. The corresponding header file springMass_main.h is also attached
to the previous example with the supporting files.

From the directory from which you generated code, gather the files for deployment:

myBuildInfoFile = 'codegen/lib/springMassTakeStep/buildInfo.mat';
load(myBuildInfoFile);
packNGo(buildInfo);

Transfer the zip file and your main .c and .h file from your host machine that is running MATLAB to
the target. You can use a file transfer program for your platform or direct commands, such as scp
with the destination IP address of the Raspberry Pi.

Build Code on Device
Main File

The main function springMass_main.c executes the generated code to simulate the displacement
of the spring mass damper system over time. The function uses the USB mouse input from the
Raspberry Pi to impart a force on the mass. The strength of the force is proportional to the speed of
the horizontal mouse movement. If you do not move the mouse, the example simulates the unforced
dynamics. To provide a visualization of the dynamics, the main file includes a routine to print the
position of the mass over time.

Device File

To use the mouse input, you must identify which device file on your system corresponds to the mouse.
On the Linux platform, external USB device input is recorded in a device file stored in the /dev/
input/ folder. The /dev/input/ folder typically contains files for multiple input devices. To identify
which file corresponds to your USB mouse, use the od command on each file, and check to see which
file updates in response to mouse movement.

od filename

Build

To build the code from the Linux terminal, navigate to the location where you transferred your files.
Unzip the zip file. Use the gcc command and specify all the .c files from the spring mass example:

gcc *.c -o springMassSim -lm

The -lm flag instructs the compiler to link to the required C math libraries. To run the executable,
specify the previously identified USB mouse device file, here assumed to be event0:

./springMassSim /dev/input/event0

Move the mouse to apply a force to the mass and view the resulting dynamics. If the mass does not
respond to mouse movement, try specifying a different device file. Terminate the program by entering
ctrl + c during execution.

 Deploy Generated C Code to External Hardware: Raspberry Pi Examples

32-67

See Also
packNGo | coder.HardwareImplementation | coder.hardware

More About
• “Use an Example C Main in an Application” on page 32-25

32 Deploying Generated Code

32-68

Deploy Generated Code
Deployment is the process of using the generated code in an application that runs outside of the
MATLAB environment. Many topics and considerations are relevant to the deployment process.

Main Function
To create an application, create or use a C/C++ main function to call the C/C++ entry-point functions
generated from your MATLAB functions. The main function specifies input, output, and other
functionality that your MATLAB algorithms do not specify. The code generator produces an example
main function by default. Use the generated example main as a starting point for creating a new main
function. The example main provides a clear example for how to pass input to and output from the
generated code. For more information and examples, see:

• “Incorporate Generated Code Using an Example Main Function” on page 32-23
• “Structure of Generated Example C/C++ Main Function” on page 32-46

Your C/C++ code must call an initialize function and a terminate function that are generated in
addition to your C/C++ entry-point functions. By default, the generated C/C++ entry-point function
calls the initialize function. The generated example main function calls the terminate function. As you
create and edit your own main function, ensure that both initialize and terminate functions are called.
For more information, see:

• “Use Generated Initialize and Terminate Functions” on page 27-25

Generated Function Interfaces
To write a main function, you must be familiar with the generated function interfaces.

Data Types

The generated C/C++ function prototypes use data types that correspond to the types that you use in
your MATLAB code. See “Mapping MATLAB Types to Types in Generated Code” on page 34-15. With
Embedded Coder, you can customize the appearance and style of generated data types. See “Code
Appearance” (Embedded Coder).

Argument Passing Behavior

C/C++ entry-point functions generated from MATLAB Coder follow these conventions:

• Pass input arrays by reference.
• Return output arrays by reference.
• Pass input scalars by value.
• Return scalars by value for single-output functions.
• Return scalars by reference:

• For functions with multiple outputs.
• When you use the same variable as input and output.

 Deploy Generated Code

32-69

If you use the same variable as input and output in your MATLAB code, the generated code passes
the scalar by reference. See “Avoid Data Copies of Function Inputs in Generated Code” on page 35-
6.

Array Definition

Fixed-size and variable-size arrays are represented by different data types in the generated C/C++
code. For more information, see “Use C Arrays in the Generated Function Interfaces” on page 32-3.

Executable Applications
After you generate code and write a main file that uses the generated code, then you must build your
code into an executable by using either MATLAB Coder or other build tools. You might want to run
the executable application on your MATLAB platform, the host platform, or on a different platform,
the target platform. To package the required elements of the generated code into an exportable zip
file that you can manually transfer to a target platform, use the packNGo function.

The code generation folder does not necessarily contain all files used by the generated code. The
folder can also contain supporting files that are not used by the generated code. Use packNGo to
package and move generated code files rather than moving and including the entire code generation
folder contents.

Binary Deployment

You can generate binaries directly by using the codegen command or the MATLAB Coder app by
selecting a build type of static library, dynamic library, or executable (lib, dll, or exe). By default, the
generated binaries are functional for the host platform hardware and operating system. To build an
executable, you must specify or provide a main file. For an example, see “Generating Standalone C/C
++ Executables from MATLAB Code” on page 27-4. If you set the GenerateExampleMain property
of a configuration object to 'GenerateCodeAndCompile', the code generator builds an executable
by using the generated example main file.

If you want to deploy your code to another platform, then you can use hardware support packages
that provide support for generating and building the binary code for that platform. This support
includes specific toolchains and code generation configuration settings that the target hardware
requires. For a list of support packages provided for MATLAB Coder, see “MATLAB Coder Supported
Hardware”. Many additional hardware support packages are available for Embedded Coder. See
“Embedded Coder Supported Hardware” (Embedded Coder). If you want to specify a custom
toolchain for build that is not available from a hardware support package, you can register your own
toolchain. See “Custom Toolchain Registration”.

In the MATLAB Coder app, select a hardware support package during the Generate Code step from
the Hardware Board drop-down list. From the command line, specify a hardware support package
by using the coder.hardware function.

Source Code Deployment

In certain cases, you might choose to generate source code, and then manually build the source code
for your project. Manually build the source code when:

• Your generated source code is easy to build. For example, your generated code does not require
linking against additional libraries.

• You want to create an executable for custom hardware for which you do not have a hardware
support package.

32 Deploying Generated Code

32-70

• You are knowledgeable in building C/C++ source code or the build system for the target platform
is already configured.

The code generator produces a buildInfo object that enables you to view and modify build
information that MATLAB Coder uses to create binary outputs. You can use this information for
understanding how to manually build your generated code. See “Build Process Customization” on
page 27-116 and RTW.BuildInfo.

The code generator produces a makefile that shows build information such as compile and link flags.
Find this makefile in the code generation folder. The generated makefile is specific to the target
platform that you specify by selecting a hardware support package or the host platform, if no
hardware support package is specified. If you manually build your source code, you can use this
makefile to identify and troubleshoot build requirements, such as compiling and linking flags.

To see how to manually configure code generation and build for a target platform, see “Deploy
Generated C Code to External Hardware: Raspberry Pi Examples” on page 32-62.

Static and Dynamic Libraries
When you want to use generated code functionality in an existing C/C++ project, you can generate a
static library or dynamic library. Libraries can provide a more modular interface than generated
source code. When MATLAB Coder generates a static library or dynamic library:

• The library is suitable for the platform that you are working on, unless you specify an alternative
platform through a hardware support package.

• The generated header files for C code explicitly declare the exported functions as extern "C" to
simplify integration of the library into C++ applications.

• The generated library file extensions correspond to the MATLAB host platform operating system.

Operating System Static Library Dynamic Library
Windows .lib .dll and .lib for

corresponding import library
macOS .a .dylib
Linux .a .so

You must compile and link against libraries when you build an executable. When an executable that
uses a dynamic library runs, the library must be on the system path or in the executable folder. For
examples of using a generated library, see:

• “Use a Dynamic Library in a Microsoft Visual Studio Project” on page 32-20
• “Integrate Multiple Generated C++ Code Projects” on page 40-14

Loading generated dynamic libraries into MATLAB by using the loadlibrary function is not
recommended and can result in incorrect behaviors or crashes.

Generated File Structure
By default, MATLAB Coder produces one C code file for each MATLAB code file. You can choose to
partition the generated code into one single file and generate code with customized output folders
and binary names. See “How MATLAB Coder Partitions Generated Code” on page 27-106.

 Deploy Generated Code

32-71

With Embedded Coder, you can customize generated file names. See “Customize C/C++ File Names
Generated from MATLAB Code” (Embedded Coder).

Code Verification
Before you deploy generated code for execution outside the MATLAB environment, you can verify it
inside the MATLAB environment. The primary workflow for verification with MATLAB Coder is the
generation and execution of C/C++ MEX functions. MEX functions run inside the MATLAB
environment and provide run-time error checking and diagnostics. See “Code Verification”.

Embedded Coder offers deep additional functionality for code verification and testing. You can use
software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution to test the behavior of the
generated code on software and hardware outside of the MATLAB environment. See “Verification”
(Embedded Coder).

Custom Hardware Considerations
If your target supports only single data types and not double data types, you can generate single-
precision code by using the codegen -singleC option. This option requires Fixed-Point Designer. If
your target supports only integer data types, use the -float2fixed option. See codegen.

Other Deployment Strategies
MATLAB Coder generates readable and portable C/C++ code for a subset of the MATLAB language.
If you want to generate a standalone executable application for the host platform that uses the
MATLAB Runtime libraries, but runs without a MATLAB license, then use MATLAB Compiler SDK. For
a product comparison, see https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-
matlab-compiler-sdk-or-matlab-coder-to-deploy-my-matlab-programs

See Also
packNGo | coder.hardware

More About
• “Mapping MATLAB Types to Types in Generated Code” on page 34-15
• “Embedded Coder Capabilities for Code Generation from MATLAB Code” (Embedded Coder)

External Websites
• https://www.mathworks.com/matlabcentral/fileexchange/62243-run-on-hardware

32 Deploying Generated Code

32-72

https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-deploy-my-matlab-programs
https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-deploy-my-matlab-programs
https://www.mathworks.com/matlabcentral/fileexchange/62243-run-on-hardware

Approaches for Building Code Generated from MATLAB Code
You can use a CMake or toolchain approach for building (compiling and linking) code that you
generate from MATLAB code:

• CMake—A third-party, open-source tool for build process management, which uses configuration
(CMakeLists.txt) files to generate standard build files for native build environments, for example,
makefiles, Ninja files, or Microsoft Visual Studio projects. MATLAB ships the CMake executable
file. MATLAB Coder supports CMake versions from 3.12.0 onwards.

• Toolchain—The build process generates makefiles and supports custom toolchains. You can control
the build process with toolchain information objects that you define by using MATLAB scripts.

This table provides a support summary for each approach.

Feature CMake Toolchain
codebuild function Yes Yes
Code generation configuration parameters No Yes
SIL or PIL execution with Embedded Coder No Yes

See Also
codebuild

Related Examples
• “Add Custom Toolchains to MATLAB® Coder™ Build Process” on page 27-168
• “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain” on page 31-21
• “Approaches for Building Code Generated from Simulink Models” (Embedded Coder)

External Websites
• https://cmake.org/

 Approaches for Building Code Generated from MATLAB Code

32-73

https://cmake.org/

Accelerating MATLAB Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 33-2
• “Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms” on page 33-3
• “Accelerate MATLAB Algorithms” on page 33-6
• “Modifying MATLAB Code for Acceleration” on page 33-7
• “Profile MEX Functions by Using MATLAB Profiler” on page 33-8
• “Control Run-Time Checks” on page 33-12
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 33-14
• “Control Compilation of parfor-Loops” on page 33-18
• “Reduction Assignments in parfor-Loops” on page 33-19
• “Classification of Variables in parfor-Loops” on page 33-20
• “Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)” on page 33-29
• “Specify Maximum Number of Threads in parfor-Loops” on page 33-30
• “Troubleshooting parfor-Loops” on page 33-31
• “Generate MEX Code to Accelerate Simulation of Bouncing Balls” on page 33-32
• “Generate MEX Code to Calculate Geodesics in Curved Space-Time” on page 33-36
• “Generate Accelerated MEX Code for Reverberation Using MATLAB Classes” on page 33-40
• “Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm” on page 33-42
• “Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler”

on page 33-51

33

Workflow for Accelerating MATLAB Algorithms

See Also
• “Set Up a MATLAB Coder Project” on page 24-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 25-2
• “Workflow for Testing MEX Functions in MATLAB” on page 26-3
• “Modifying MATLAB Code for Acceleration” on page 33-7

33 Accelerating MATLAB Algorithms

33-2

Best Practices for Using MEX Functions to Accelerate MATLAB
Algorithms

In this section...
“Accelerate Code That Dominates Execution Time” on page 33-3
“Include Loops Inside MEX Function” on page 33-3
“Avoid Generating MEX Functions from Unsupported Functions” on page 33-4
“Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate Run Time” on page 33-
4
“Minimize MEX Function Calls” on page 33-4

When you choose a section of MATLAB code to accelerate, the following practices are recommended.

Accelerate Code That Dominates Execution Time
Find the section of MATLAB code that dominates run time. Accelerate this section of the code using a
MEX function as follows:

1 Place this section of the code inside a separate MATLAB function.
2 From this MATLAB function, generate a MEX function.
3 From your original MATLAB code, call the MEX function.

To find the execution time of each MATLAB instruction, use MATLAB Profiler.

• To open the Profiler from the command line, type profile viewer.
• To open Profiler from the MATLAB Editor window, under the Editor tab, click Run and Time.

For more information about using the Profiler to measure run time of MATLAB code, see “Profile Your
Code to Improve Performance”.

Include Loops Inside MEX Function
Instead of calling a MEX function inside a loop in the MATLAB code, include the loop inside the MEX
function. Including the loop eliminates the overheads in calling the MEX function for every run of the
loop.

For example, the following code finds the greatest element in every row of a 1000–by–1000 matrix,
mat. You can accelerate sections 1,2, and 3 using a MEX function.:

% Section 1 begins
for i = 1:10000

 % Section 2 begins
 max = mat(i,0); % Initialize max
 for j = 1:10000

 % Section 3 begins
 if (mat(i,j) > max)
 max = mat(i,j) % Store the current maximum
 end

 Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms

33-3

 % Section 3 ends

 end
 % Section 2 ends

end
% Section 1 ends

Accelerate section 1 using a MEX function. Accelerate section 1 first so that the MEX function is
called only once.. If you cannot accelerate section 1 first, then accelerate sections 2 or 3, in that
order. If section 2 (or 3) is accelerated using a MEX function, the function is called 10000 (or 10000 ×
10000) times.

Avoid Generating MEX Functions from Unsupported Functions
Check that the section of MATLAB code that you accelerate does not contain many functions and
language features that are unsupported by MATLAB Coder. For a list of supported functions, see
“Functions and Objects Supported for C/C++ Code Generation” on page 3-2.

Note In certain situations, you might have to accelerate sections of code even though they contain a
few unsupported functions. Declare an unsupported function as extrinsic to invoke the original
MATLAB function instead of the code generated for the function. You can declare a function as
extrinsic by using coder.extrinsic or wrapping it in an feval statement. See “Use MATLAB
Engine to Execute a Function Call in Generated Code” on page 20-8.

Avoid Generating MEX Functions if Built-In MATLAB Functions
Dominate Run Time
Use MEX functions to accelerate MATLAB code only if user-generated code dominates the run time.

Avoid generating MEX functions if computationally intensive, built-in MATLAB functions dominate the
run time. These functions are pre-compiled and optimized, so the MATLAB code is not accelerated
significantly using a MEX function. Examples of such functions include svd, eig ,fft, qr, lu.

Tip You can invoke computationally intensive, built-in MATLAB functions from your MEX function.
Declare the MATLAB function as extrinsic using coder.extrinsic or wrap it in an feval
statement. For more information, see “Use MATLAB Engine to Execute a Function Call in Generated
Code” on page 20-8.

Minimize MEX Function Calls
Accelerate as much of the MATLAB code as possible using one MEX function instead of several MEX
functions called at lower levels. This minimizes the overheads in calling the MEX functions.

For example, consider the function,testfunc,which calls two functions,testfunc_1 and
testfunc_2:

function [y1,y2] = testfunc(x1,x2)
 y1 = testfunc_1(x1,x2);
 y2 = testfunc_2(x1,x2);
end

33 Accelerating MATLAB Algorithms

33-4

Instead of generating MEX functions individually for testfunc_1 and testfunc_2, and then calling
the MEX functions in testfunc, generate a MEX function for testfunc itself.

 Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms

33-5

Accelerate MATLAB Algorithms
For many applications, you can generate MEX functions to accelerate MATLAB algorithms. If you
have a Fixed-Point Designer license, you can generate MEX functions to accelerate fixed-point
MATLAB algorithms. After generating a MEX function, test it in MATLAB to verify that its operation is
functionally equivalent to the original MATLAB algorithm. Then compare the speed of execution of
the MEX function with that of the MATLAB algorithm. If the MEX function speed is not sufficiently
fast, you might improve it using one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate high performance
code.

Note The default MATLAB compiler for Windows 64-bit platforms, lcc, is designed to generate
code quickly. It is not designed to generate high performance code.

• “Modifying MATLAB Code for Acceleration” on page 33-7
• “Control Run-Time Checks” on page 33-12

33 Accelerating MATLAB Algorithms

33-6

Modifying MATLAB Code for Acceleration

How to Modify Your MATLAB Code for Acceleration
You might improve the efficiency of the generated code using one of the following optimizations:

• “Unroll for-Loops and parfor-Loops” on page 35-35
• “Inline Code” on page 35-8
• “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6

 Modifying MATLAB Code for Acceleration

33-7

Profile MEX Functions by Using MATLAB Profiler
You can profile execution times for MEX functions generated by MATLAB Coder by using the MATLAB
Profiler. The profile for the generated code shows the number of calls and the time spent for each line
of the corresponding MATLAB function. Use the Profiler to identify the lines of MATLAB code that
produce generated code that take the most time. This information can help you identify and correct
performance issues early in the development cycle. For more information on the MATLAB Profiler, see
profile and “Profile Your Code to Improve Performance”.

The graphical interface to the Profiler is not supported in MATLAB Online.

MEX Profile Generation
You can use the MATLAB Profiler with a generated MEX function. Alternatively, if you have a test file
that calls your MATLAB function, you can generate the MEX function and profile it in one step. You
can perform these operations at the command line or in the MATLAB Coder app.

To use the Profiler with a generated MEX function:

1 Enable MEX profiling by setting the configuration object property EnableMexProfiling to
true.

Alternatively, you can use codegen with the -profile option.

The equivalent setting in the MATLAB Coder app is Enable execution profiling in the
Generate step.

2 Generate the MEX file MyFunction_mex.
3 Run the MATLAB Profiler and view the Profile Summary Report, which opens in a separate

window.

profile on;
MyFunction_mex;
profile viewer;

Make sure that you have not changed or moved the original MATLAB file MyFunction.m.
Otherwise, the Profiler does not consider MyFunction_mex for profiling.

If you have a test file MyFunctionTest.m that calls your MATLAB function, you can:

• Generate the MEX function and profile it in one step by using codegen with the -test and the -
profile options. If you turned on the MATLAB Profiler before, turn it off before you use these
two options together.

codegen MyFunction -test MyFunctionTest -profile
• Profile the MEX function by selecting Enable execution profiling in the Verify step of the app. If

you turned on the MATLAB Profiler before, turn it off before you perform this action.

Example
You use the Profiler to identify the functions or the lines of the MATLAB code that produce generated
code that take the most time. Following is an example of a MATLAB function that converts the
representation of its input matrices A and B from row-major to column-major layout in one of its lines.

33 Accelerating MATLAB Algorithms

33-8

Such a conversion has a long execution time for large matrices. Avoiding the conversion by modifying
that particular line makes the function more efficient.

Consider the MATLAB function:

function [y] = MyFunction(A,B) %#codegen

% Generated code uses row-major representation of matrices A and B
coder.rowMajor;
length = size(A,1);

% Summing absolute values of all elements of A and B by traversing over the
% matrices row by row
sum_abs = 0;
for row = 1:length
 for col = 1:length
 sum_abs = sum_abs + abs(A(row,col)) + abs(B(row,col));
 end
end

% Calling external C function 'foo.c' that returns the sum of all elements
% of A and B
sum = 0;
sum = coder.ceval('foo',coder.ref(A),coder.ref(B),length);

% Returning the difference of sum_abs and sum
y = sum_abs - sum;
end

The generated code for this function uses a row-major representation of the square matrices A and B.
The code first computes sum_abs (the sum of absolute values of all elements of A and B) by
traversing over the matrices row by row. This algorithm is optimized for matrices that are
represented in a row-major layout. The code then uses coder.ceval to call the external C function
foo.c:

#include <stdio.h>
#include <stdlib.h>
#include "foo.h"

double foo(double *A, double *B, double length)
{
 int i,j,s;
 double sum = 0;
 s = (int)length;

 /*Summing all the elements of A and B*/
 for(i=0;i<s*s;i++)
 {
 sum += A[i] + B[i];
 }
 return(sum);
}

The corresponding C header file foo.h is:

#include "rtwtypes.h"

double foo(double *A, double *B, double length);

 Profile MEX Functions by Using MATLAB Profiler

33-9

foo.c returns the variable sum, which is the sum of all elements of A and B. The performance of the
function foo.c is independent of whether the matrices A and B are represented in row-major or
column-major layouts. MyFunction returns the difference of sum_abs and sum.

You can measure the performance of MyFunction for large input matrices A and B, and then
optimize it further:

1 Enable MEX profiling and generate MEX code for MyFunction. Run MyFunction_mex for two
large random matrices A and B. View the Profile Summary Report.

A = rand(20000);
B = rand(20000);

codegen MyFunction -args {A,B} foo.c foo.h -profile

profile on;
MyFunction_mex(A,B);
profile viewer;

A separate window opens showing the Profile Summary Report.

The Profile Summary Report shows the total time and the self time for the MEX file and its child,
which is the generated code for the original MATLAB function.

2 Under Function Name, click the first link to view the Profile Detail Report for the generated code
for MyFunction. You can see the lines where the most time was spent:

3 The line calling coder.ceval takes a lot of time (16.914 s). This line has considerable execution
time because coder.ceval converts the representation of the matrices A and B from row-major
layout to column-major layout before passing them to the external C function. You can avoid this
conversion by using an additional argument -layout:rowMajor in coder.ceval:

sum = coder.ceval('-layout:rowMajor','foo',coder.ref(A),coder.ref(B),length);
4 Generate the MEX function and profile again using the modified MyFunction.

A = rand(20000);
B = rand(20000);

codegen MyFunction -args {A,B} foo.c foo.h -profile

profile on;
MyFunction_mex(A,B);
profile viewer;

The Profile Detail Report for MyFunction shows that the line calling coder.ceval now takes
only 0.653 s:

33 Accelerating MATLAB Algorithms

33-10

Effect of Folding Expressions on MEX Code Coverage
When you use coder.const to fold expressions into constants, it causes a difference in the code
coverage between the MATLAB function and the MEX function. For example, consider the function:

function y = MyFoldFunction %#codegen
a = 1;
b = 2;
c = a + b;
y = 5 + coder.const(c);
end

Profiling the MATLAB function MyFoldFunction shows this code coverage in the Profile Detail
Report:

However, profiling the MEX function MyFoldFunction_mex shows a different code coverage:

Lines 2, 3, and 4 are not executed in the generated code because you have folded the expression c =
a + b into a constant for code generation.

This example uses user-defined expression folding. The code generator sometimes automatically folds
certain expressions to optimize the performance of the generated code. Such optimizations also cause
the coverage of the MEX function to be different from the MATLAB function.

See Also
profile | codegen | coder.MexCodeConfig | coder.rowMajor | coder.ceval | coder.const

More About
• “Profile Your Code to Improve Performance”
• “Generate Code That Uses Row-Major Array Layout” on page 38-4

 Profile MEX Functions by Using MATLAB Profiler

33-11

Control Run-Time Checks

In this section...
“Types of Run-Time Checks” on page 33-12
“When to Disable Run-Time Checks” on page 33-12
“How to Disable Run-Time Checks” on page 33-13

Types of Run-Time Checks
The code generated for your MATLAB functions includes the following run-time checks and external
calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB functions and
stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity checks, violations result
in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated for MATLAB functions.
Enabling responsiveness checks also enables graphics refreshing.

Caution These checks are enabled by default. Without these checks, the only way to end a long-
running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results, are enabled by default for
debugging purposes. For more information about extrinsic functions, see “Use the coder.extrinsic
Construct” on page 20-9.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more generated code and slower
MEX function execution than generating code with the checks disabled. Similarly, extrinsic calls are
time consuming and increase memory usage and execution time. Disabling run-time checks and
extrinsic calls usually results in streamlined generated code and faster MEX function execution. The
following table lists issues to consider when disabling run-time checks and extrinsic calls.

Consider disabling... Only if...
Memory integrity checks You have already verified that array bounds and

dimension checking is unnecessary.
Responsiveness checks You are sure that you will not need to stop

execution of your application using Ctrl+C.

33 Accelerating MATLAB Algorithms

33-12

Consider disabling... Only if...
Extrinsic calls You are using extrinsic calls only for functions

that do not affect application results.

How to Disable Run-Time Checks
You can disable run-time checks explicitly from the project settings dialog box, the command line, or
a MEX configuration dialog box.

Disabling Run-Time Checks Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to MEX.
3 Click More Settings.
4 On the Speed tab, clear Ensure memory integrity, Enable responsiveness to CTRL+C and

graphics refreshing, or Keep Extrinsic calls, as applicable.

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');
2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or

ResponsivenessChecks properties to false, as applicable:

mexcfg.IntegrityChecks = false;
mexcfg.ExtrinsicCalls = false;
mexcfg.ResponsivenessChecks = false;

 Control Run-Time Checks

33-13

Algorithm Acceleration Using Parallel for-Loops (parfor)
In this section...
“Parallel for-Loops (parfor) in Generated Code” on page 33-14
“How parfor-Loops Improve Execution Speed” on page 33-14
“When to Use parfor-Loops” on page 33-15
“When Not to Use parfor-Loops” on page 33-15
“parfor-Loop Syntax” on page 33-15
“parfor Restrictions” on page 33-16

Parallel for-Loops (parfor) in Generated Code
To potentially accelerate execution, you can generate MEX functions or C/C++ code from MATLAB
code that contains parallel for-loops (parfor-loops).

A parfor-loop, like the standard MATLAB for-loop, executes a series of statements (the loop body)
over a range of values. Unlike the for-loop, however, the iterations of the parfor-loop can run in
parallel on multiple cores on the target hardware.

Running the iterations in parallel might significantly improve execution speed of the generated code.
For more information, see “How parfor-Loops Improve Execution Speed” on page 33-14.

Note The parallel execution occurs only in generated MEX functions or C/C++ code; not the original
MATLAB code. To accelerate your MATLAB code, generate a MEX function from the parfor-loop.
Then, call the MEX function from your code. For more information, see “Workflow for Accelerating
MATLAB Algorithms” on page 33-2.

To use parfor in your MATLAB code, you require a Parallel Computing Toolbox™ license.

MATLAB Coder software uses the Open Multiprocessing (OpenMP) application interface to support
shared-memory, multicore code generation. If you want distributed parallelism, use the Parallel
Computing Toolbox product. By default, MATLAB Coder uses up to as many cores as it finds available.
If you specify the number of threads to use, MATLAB Coder uses at most that number of cores for the
threads, even if additional cores are available. For more information, see parfor.

Because the loop body can execute in parallel on multiple threads, it must conform to certain
restrictions. If MATLAB Coder software detects loops that do not conform to parfor specifications, it
produces an error. For more information, see “parfor Restrictions” on page 33-16.

How parfor-Loops Improve Execution Speed
A parfor-loop might provide better execution speed than its analogous for-loop because several
threads can compute concurrently on the same loop.

Each execution of the body of a parfor-loop is called an iteration. The threads evaluate iterations in
arbitrary order and independently of each other. Because each iteration is independent, they do not
have to be synchronized. If the number of threads is equal to the number of loop iterations, each

33 Accelerating MATLAB Algorithms

33-14

thread performs one iteration of the loop. If there are more iterations than threads, some threads
perform more than one loop iteration.

For example, when a loop of 100 iterations runs on 20 threads, each thread executes five iterations of
the loop simultaneously. If your loop takes a long time to run because of the large number of
iterations or individual iterations being lengthy, you can reduce the run time significantly using
multiple threads. In this example, you might not, however, get 20 times improvement in speed
because of parallelization overheads, such as thread creation and deletion.

When to Use parfor-Loops
Use parfor when you have:

• Many iterations of a simple calculation. parfor divides the loop iterations into groups so that
each thread executes one group of iterations.

• A loop iteration that takes a long time to execute. parfor executes the iterations simultaneously
on different threads. Although this simultaneous execution does not reduce the time spent on an
individual iteration, it might significantly reduce overall time spent on the loop.

When Not to Use parfor-Loops
Do not use parfor when:

• An iteration of your loop depends on other iterations. Running the iterations in parallel can lead to
erroneous results.

To help you avoid using parfor when an iteration of your loop depends on other iterations,
MATLAB Coder specifies a rigid classification of variables. For more information, see
“Classification of Variables in parfor-Loops” on page 33-20. If MATLAB Coder detects loops that
do not conform to the parfor specifications, it does not generate code and produces an error.

Reductions are an exception to the rule that loop iterations must be independent. A reduction
variable accumulates a value that depends on all the iterations together, but is independent of the
iteration order. For more information, see “Reduction Variables” on page 33-22.

• There are only a few iterations that perform some simple calculations.

Note For small number of loop iterations, you might not accelerate execution due to
parallelization overheads. Such overheads include time taken for thread creation, data
synchronization between threads, and thread deletion.

parfor-Loop Syntax
• For a parfor-loop, use this syntax:

parfor i = InitVal:EndVal
parfor (i = InitVal:EndVal)

• To specify the maximum number of threads, use this syntax:

parfor (i = InitVal:EndVal,NumThreads)

For more information, see parfor.

 Algorithm Acceleration Using Parallel for-Loops (parfor)

33-15

parfor Restrictions
• The parfor loop does not support the syntax:

parfor (i=initVal:step:endVal)
parfor i=initVal:step:endVal

• You must use a compiler that supports the Open Multiprocessing (OpenMP) application interface.
See https://www.mathworks.com/support/compilers/current_release/. If you use a
compiler that does not support OpenMP, MATLAB Coder treats the parfor-loops as for-loops. In
the generated MEX function or C/C++ code, the loop iterations run on a single thread.

• The OpenMP application interface is not compatible with JIT MEX compilation. See “JIT
Compilation Does Not Support OpenMP” on page 37-3.

• The type of the loop index must be representable by an integer type on the target hardware. Use a
type that does not require a multiword type in the generated code.

• parfor for standalone code generation requires the toolchain approach for building executables
or libraries. Do not change settings that cause the code generator to use the template makefile
approach. See “Project or Configuration Is Using the Template Makefile” on page 31-19.

• Do not use the following constructs in the body of a parfor loop:

• Nested parfor-loops

You can have a parfor loop inside another parfor-loop. However, the inner parfor loop will
be executed on a single thread as an ordinary for-loop.

Inside a parfor loop, you can call a function that contains another parfor-loop.
• Break and return statements

You cannot use break or return statements inside a parfor-loop.
• Global variables

You cannot write to a global variable inside a parfor-loop.
• Reductions on MATLAB classes

You cannot use reductions on MATLAB classes inside a parfor-loop.
• Reductions on char variables

You cannot use reductions on char variables inside a parfor-loop.

For example, you cannot generate C code for the following MATLAB code:

c = char(0);
parfor i=1:10
 c = c + char(1);
end

In the parfor-loop, MATLAB makes c a double. For code generation, c cannot change type.
• Reductions using external C code

You cannot use coder.ceval in reductions inside a parfor-loop.. For example, you cannot
generate code for the following parfor-loop:

33 Accelerating MATLAB Algorithms

33-16

parfor i=1:4
 y=coder.ceval('myCFcn',y,i);
end

Instead, write a local function that calls the C code using coder.ceval and call this function
in the parfor-loop. For example:

parfor i=1:4
 y = callMyCFcn(y,i);
end
...
function y = callMyCFcn(y,i)
 y = coder.ceval('mCyFcn', y , i);
end

• Extrinsic function calls

You cannot call extrinsic functions using coder.extrinsic inside a parfor-loop. Calls to
functions that contain extrinsic calls result in a run-time error.

• Inlining functions

MATLAB Coder does not inline functions into parfor-loops, including functions that use
coder.inline('always').

• Unrolling loops

You cannot use coder.unroll inside a parfor-loop.

If a loop is unrolled inside a parfor-loop, MATLAB Coder cannot classify the variable. For
example:

for j=coder.unroll(3:6)
 y(i,j)=y(i,j)+i+j;
end

This code is unrolled to:

y(i,3)=y(i,3)+i+3;
...
y(i,6)=y(i,6)+i+6;

In the unrolled code, MATLAB Coder cannot classify the variable y because y is indexed in
different ways inside the parfor-loop.

MATLAB Coder does not support variables that it cannot classify. For more information, see
“Classification of Variables in parfor-Loops” on page 33-20.

• varargin/varargout

You cannot use varargin or varargout inside a parfor-loop.

 Algorithm Acceleration Using Parallel for-Loops (parfor)

33-17

Control Compilation of parfor-Loops
By default, MATLAB Coder generates code that can run the parfor-loop on multiple threads. To treat
the parfor-loops as for-loops that run on a single thread, disable parfor with one of these methods:

• By using the codegen function with -O disable:openmp option at the command line.
• By using a code generation configuration object with the property EnableOpenMP set to false. For

example:

cfg = coder.config('lib');
cfg.EnableOpenMP = false;
codegen myFunction -config cfg

• By setting Enable OpenMP library if possible to No under All Settings tab in the project
settings dialog box.

When to Disable parfor
Disable parfor if you want to:

• Compare the execution times of the serial and parallel versions of the generated code.
• Investigate failures. If the parallel version of the generated code fails, disable parfor and

generate a serial version to facilitate debugging.
• Use C compilers that do not support OpenMP.

See Also
parfor

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 33-14
• “Configure Build Settings” on page 27-13

33 Accelerating MATLAB Algorithms

33-18

Reduction Assignments in parfor-Loops

What are Reduction Assignments?
Reduction assignments, or reductions, are an exception to the rule that loop iterations must be
independent. A reduction variable accumulates a value that depends on all the loop iterations
together, but is independent of the iteration order. For a list of supported reduction variables see
“Reduction Variables” on page 33-22.

Multiple Reductions in a parfor-Loop
You can perform the same reduction assignment multiple times within a parfor-loop provided that
you use the same data type each time.

For example, in the following parfor-loop, u(i) and v(i) must be the same type.

parfor i = 1:10;
 X = X + u(i);
 X = X + v(i);
end

Similarly, the following example is valid provided that u(i) and v(i) are the same type.

parfor i=1:10
 r = foo(r,u(i));
 r = foo(r,v(i));
end

 Reduction Assignments in parfor-Loops

33-19

Classification of Variables in parfor-Loops
In this section...
“Overview” on page 33-20
“Sliced Variables” on page 33-20
“Broadcast Variables” on page 33-22
“Reduction Variables” on page 33-22
“Temporary Variables” on page 33-27

Overview
MATLAB Coder classifies variables inside a parfor-loop into one of the categories in the following
table. It does not support variables that it cannot classify. If a parfor-loop contains variables that
cannot be uniquely categorized or if a variable violates its category restrictions, the parfor-loop
generates an error.

Classification Description
Loop Serves as a loop index for arrays
Sliced An array whose segments are operated on by different iterations of the loop
Broadcast A variable defined before the loop whose value is used inside the loop, but not

assigned inside the loop
Reduction Accumulates a value across iterations of the loop, regardless of iteration order
Temporary A variable created inside the loop, but unlike sliced or reduction variables, not

available outside the loop

Each of these variable classifications appears in this code fragment:

a=0;
c=pi;
z=0;
r=rand(1,10);
parfor i=1:10
 a=i; % 'a' is a temporary variable
 z=z+i; % 'z' is a reduction variable

 b(i)=r(i); % 'b' is a sliced output variable;
 % 'r' a sliced input variable

 if i<=c % 'c' is a broadcast variable

 d=2*a; % 'd' is a temporary variable
 end
end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices, which are then
operated on separately by different threads. Each iteration of the loop works on a different slice of
the array.

33 Accelerating MATLAB Algorithms

33-20

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)
 B(i) = f(A(i));
end

Characteristics of a Sliced Variable

A variable in a parfor-loop is sliced if it has the following characteristics:

• Type of First-Level Indexing — The first level of indexing is parentheses, ().
• Fixed Index Listing — Within the first-level parenthesis, the list of indices is the same for all

occurrences of a given variable.
• Form of Indexing — Within the list of indices for the variable, exactly one index involves the loop

variable.
• Shape of Array — In assigning to a sliced variable, the right-hand side of the assignment is not []

or '' (these operators indicate deletion of elements).

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in
parentheses, (). For example, A(...). If you reference a variable using dot notation, A.x, the
variable is not sliced.

Variable A on the left is not sliced; variable A on the right is sliced:

A.q(i,12) A(i,12).q

Fixed Index Listing. Within the first-level parentheses of a sliced variable's indexing, the list of
indices is the same for all occurrences of a given variable.

Variable B on the left is not sliced because B is indexed by i and i+1 in different places. Variable B on
the right is sliced.

parfor i = 1:10
 B(i) = B(i+1) + 1;
end

parfor i = 1:10
 B(i+1) = B(i+1) + 1;
end

Form of Indexing. Within the list of indices for a sliced variable, one index is of the form i, i+k, i-k,
k+i, or k-i.

• i is the loop variable.
• k is a constant or a simple (nonindexed) variable.
• Every other index is a constant, a simple variable, colon, or end.

When you use other variables along with the loop variable to index an array, you cannot set these
variables inside the loop. These variables are constant over the execution of the entire parfor
statement. You cannot combine the loop variable with itself to form an index expression.

In the following examples, i is the loop variable, j and k are nonindexed variables.

Variable A Is Not Sliced Variable A Is Sliced
A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

 Classification of Variables in parfor-Loops

33-21

Shape of Array. A sliced variable must maintain a constant shape. In the following examples, the
variable A is not sliced:

A(i,:) = [];
A(end + 1) = i;

Broadcast Variables
A broadcast variable is a variable other than the loop variable or a sliced variable that is not modified
inside the loop.

Reduction Variables
MATLAB supports an important exception, called reduction, to the rule that loop iterations must be
independent. A reduction variable accumulates a value that depends on all the iterations together,
but is independent of the iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both sides of an assignment statement, such as any of the following,
where expr is a MATLAB expression.

X = X + expr X = expr + X
X = X - expr See Associativity in Reduction Assignments in

“Requirements for Reduction Assignments” on page
33-24

X = X .* expr X = expr .* X
X = X * expr X = expr * X
X = X & expr X = expr & X
X = X | expr X = expr | X
X = [X, expr] X = [expr, X]
X = [X; expr] X = [expr; X]
X = min(X, expr) X = min(expr, X)
X = max(X, expr) X = max(expr, X)
X = union(X, expr) X = union(expr, X)
X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction assignment. By
definition, a reduction variable can appear only in assignments of this type.

The general form of a reduction assignment is

X = f(X, expr) X = f(expr, X)

The following example shows a typical usage of a reduction variable X.

X = 0; % Do some initialization of X
parfor i = 1:n
 X = X + d(i);
end

33 Accelerating MATLAB Algorithms

33-22

This loop is equivalent to the following, where you calculate each d(i) by a different iteration.

X = X + d(1) + ... + d(n)

In a regular for-loop, the variable X would get its value either before entering the loop or from the
previous iteration of the loop. However, this concept does not apply to parfor-loops.

In a parfor-loop, the value of X is never transmitted from client to workers or from worker to
worker. Rather, additions of d(i) are done in each worker, with i ranging over the subset of 1:n
being performed on that worker. The results are then transmitted back to the client, which adds the
partial sums of the workers into X. Thus, workers do some of the additions, and the client does the
rest.

Notes About Required and Recommended Guidelines

If your parfor code does not adhere to the guidelines and restrictions labeled as Required, you get
an error. MATLAB catches some of these errors at the time it reads the code, and others when it
executes the code. These errors are labeled as Required (static) or Required (dynamic)
respectively. Guidelines that do not cause errors are labeled as Recommended. You can use MATLAB
Code Analyzer to help parfor-loops comply with the guidelines.

Basic Rules for Reduction Variables

The following requirements further define the reduction assignments associated with a given
variable.

Required (static): For any reduction variable, the same reduction function or operation must be
used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses + in one instance, and
[,] in another. The parfor-loop on the right is valid.

Invalid Valid
parfor i = 1:n
 if testLevel(k)
 A = A + i;
 else
 A = [A, 4+i];
 end
 % loop body continued
end

parfor i = 1:n
 if testLevel(k)
 A = A + i;
 else
 A = A + i + 5*k;
 end
 % loop body continued
end

Required (static): If the reduction assignment uses *, [,], or [;], then X must be consistently
specified as the first or second argument in every reduction assignment.

The parfor-loop on the left is not valid because the order of items in the concatenation is not
consistent throughout the loop. The parfor-loop on the right is valid.

 Classification of Variables in parfor-Loops

33-23

Invalid Valid
parfor i = 1:n
 if testLevel(k)
 A = [A, 4+i];
 else
 A = [r(i), A];
 end
 % loop body continued
end

parfor i = 1:n
 if testLevel(k)
 A = [A, 4+i];
 else
 A = [A, r(i)];
 end
 % loop body continued
end

Required (static): You cannot index or subscript a reduction variable.

The code on the left is not valid because it tries to index a, and so MATLAB cannot classify it as a
reduction variable. To fix it, the code on the right uses a non-indexed variable.

Invalid Valid
a.x = 0
parfor i = 1:10
 a.x = a.x + 1;
end

tmpx = 0
parfor i = 1:10
 tmpx = tmpx + 1;
end
a.x = tmpx;

Requirements for Reduction Assignments

Reduction Assignments. In addition to the specific forms of reduction assignment listed in the table in
“Reduction Variables” on page 33-22, the only other (and more general) form of a reduction
assignment is

X = f(X, expr) X = f(expr, X)

Required (static): f can be a function or a variable. If f is a variable, then you cannot change f in
the parfor body (in other words, it is a broadcast variable).

If f is a variable, then for all practical purposes its value at run time is a function handle. However, as
long as the right side can be evaluated, the resulting value is stored in X.

The parfor-loop on the left does not execute correctly because the statement f = @times causes f
to be classified as a temporary variable. Therefore f is cleared at the beginning of each iteration. The
parfor-loop on the right is correct, because it does not assign f inside the loop.

Invalid Valid
f = @(x,k)x * k;
parfor i = 1:n
 a = f(a,i);
 % loop body continued
 f = @times; % Affects f
end

f = @(x,k)x * k;
parfor i = 1:n
 a = f(a,i);
 % loop body continued
end

The operators && and || are not listed in the table in “Reduction Variables” on page 33-22. Except for
&& and ||, all the matrix operations of MATLAB have a corresponding function f, such that u op v
is equivalent to f(u,v). For && and ||, such a function cannot be written because u&&v and u||v
might or might not evaluate v. However, f(u,v) always evaluates v before calling f. Therefore &&
and || are excluded from the table of allowed reduction assignments for a parfor-loop.

33 Accelerating MATLAB Algorithms

33-24

Every reduction assignment has an associated function f. The properties of f that ensure
deterministic behavior of a parfor statement are discussed in the following sections.

Associativity in Reduction Assignments. The following practice is recommended for the function f, as
used in the definition of a reduction variable. However, this rule does not generate an error if not
adhered to. Therefore, it is up to you to ensure that your code meets this recommendation.

Recommended: To get deterministic behavior of parfor-loops, the reduction function f must be
associative.

To be associative, the function f must satisfy the following for all a, b, and c.

f(a,f(b,c)) = f(f(a,b),c)

The classification rules for variables, including reduction variables, are purely syntactic. They cannot
determine whether the f you have supplied is truly associative or not. Associativity is assumed, but if
you violate this rule, each execution of the loop might result in different answers.

Note The addition of mathematical real numbers is associative. However, the addition of floating-
point numbers is only approximately associative. Different executions of this parfor statement might
produce values of X with different round-off errors. You cannot avoid this cost of parallelism.

For example, the statement on the left yields 1, while the statement on the right returns 1 + eps:

(1 + eps/2) + eps/2 1 + (eps/2 + eps/2)

Except for the minus operator (-), all special cases listed in the table in “Reduction Variables” on
page 33-22 have a corresponding (approximately) associative function. MATLAB calculates the
assignment X = X - expr by using X = X + (-expr). (So, technically, the function for calculating
this reduction assignment is plus, not minus.) However, the assignment X = expr - X cannot be
written using an associative function, which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions, including +, .*, min, and max,
intersect, and union, are also commutative. That is, they satisfy the following for all a and b.

f(a,b) = f(b,a)

Noncommutative functions include * (because matrix multiplication is not commutative for matrices
in which both dimensions have size greater than one), [,], and [;]. Noncommutativity is the reason
that consistency in the order of arguments to these functions is required. As a practical matter, a
more efficient algorithm is possible when a function is commutative as well as associative, and
parfor is optimized to exploit commutativity.

Recommended: Except in the cases of *, [,], and [;], the function f of a reduction assignment
must be commutative. If f is not commutative, different executions of the loop might result in
different answers.

Violating the restriction on commutativity in a function used for reduction could result in unexpected
behavior, even if it does not generate an error.

Unless f is a known noncommutative built-in function, it is assumed to be commutative. There is
currently no way to specify a user-defined, noncommutative function in parfor.

 Classification of Variables in parfor-Loops

33-25

Recommended: An overload of +, *, .*, [,], or [;] must be associative if it is used in a reduction
assignment in a parfor-loop.

Recommended: An overload of +, .*, union, or intersect must be commutative.

Similarly, because of the special treatment of X = X - expr, the following is recommended.

Recommended: An overload of the minus operator (-) must obey the mathematical law that X -
(y + z) is equivalent to (X - y) - z.

Using a Custom Reduction Function

In this example, you run computations in a loop and store the maximum value and corresponding loop
index. You can use your own reduction function and a parfor-loop to speed up your code. In each
iteration, store the value of the computation and the loop index in a 2-element row vector. Use a
custom reduction function to compare this vector to a stored vector. If the value from the
computation is greater than the stored value, replace the old vector with the new vector.

Create a reduction function valueAndIndex. The function takes two vectors as inputs:
valueAndIndexA and valueAndIndexB. Each vector contains a value and an index. The reduction
function valueAndIndex returns the vector with the greatest value (first element).

function v = compareValue(valueAndIndexA, valueAndIndexB)
 valueA = valueAndIndexA(1);
 valueB = valueAndIndexB(1);
 if valueA > valueB
 v = valueAndIndexA;
 else
 v = valueAndIndexB;
 end
end

Create a 1-by-2 vector of all zeros, maxValueAndIndex.

maxValueAndIndex = [0 0];

Run a parfor-loop. In each iteration, use rand to create a random value. Then, use the reduction
function valueAndIndex to compare maxValueAndIndex to the random value and loop index.
When you store the result as maxValueAndIndex, you use maxValueAndIndex as a reduction
variable.

parfor ii = 1:100
 % Simulate some actual computation
 thisValueAndIndex = [rand() ii];

 % Compare value
 maxValueAndIndex = compareValue(maxValueAndIndex, thisValueAndIndex);
end

After the parfor-loop finishes running, the reduction variable maxValueAndIndex is available on
the client. The first element is the largest random value computed in the parfor-loop, and the
second element is the corresponding loop index.

maxValueAndIndex

33 Accelerating MATLAB Algorithms

33-26

maxValueAndIndex =

 0.9706 89.0000

Chaining Reduction Operators

MATLAB classifies assignments of the form X = expr op X or X = X op expr as reduction
statements when they are equivalent to the parenthesized assignments X = (expr) op X or X = X
op (expr) respectively. X is a variable, op is a reduction operator, and expr is an expression with
one or more binary reduction operators. Consequently, due to the MATLAB operator precedence
rules, MATLAB might not classify some assignments of the form X = expr op1 X op2 expr2 ...,
that chain operators, as reduction statements in parfor-loops.

In this example, MATLAB classifies X as a reduction variable because the assignment is equivalent to
X = X + (1 * 2).

X = 0;
parfor i=1:10
 X = X + 1 * 2;
end

In this example, MATLAB classifies X as a temporary variable because the assignment, equivalent to X
= (X * 1) + 2, is not of the form X = (expr) op X or X = X op (expr).

X = 0;
parfor i=1:10
 X = X * 1 + 2;
end

As a best practice, use parentheses to explicitly specify operator precedence for chained reduction
assignments.

Temporary Variables
A temporary variable is a variable that is the target of a direct, nonindexed assignment, but is not a
reduction variable. In the following parfor-loop, a and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10
 a = i; % Variable a is temporary
 z = z + i;
 if i <= 5
 d = 2*a; % Variable d is temporary
 end
end

In contrast to the behavior of a for-loop, before each iteration of a parfor-loop, MATLAB Coder
effectively clears temporary variables. Because the iterations must be independent, the values of
temporary variables cannot be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are defined separately for
each iteration.

A temporary variable in the context of the parfor statement is different from a variable with the
same name that exists outside the loop.

 Classification of Variables in parfor-Loops

33-27

Uninitialized Temporaries

Because temporary variables are cleared at the beginning of every iteration, MATLAB Coder can
detect certain cases in which an iteration through the loop uses the temporary variable before it is
set in that iteration. In this case, MATLAB Coder issues a static error rather than a run-time error,
because there is little point in allowing execution to proceed if a run-time error will occur. For
example, suppose you write:

 b = true;
 parfor i = 1:n
 if b && some_condition(i)
 do_something(i);
 b = false;
 end
 ...
 end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a temporary variable
because it occurs directly as the target of an assignment inside the loop. Therefore, it is cleared at
the start of each iteration, so its use in the condition of the if is uninitialized. (If you change parfor
to for, the value of b assumes sequential execution of the loop, so that do_something(i) is
executed for only the lower values of i until b is set false.)

33 Accelerating MATLAB Algorithms

33-28

Accelerate MATLAB Algorithms That Use Parallel for-Loops
(parfor)

This example shows how to generate a MEX function for a MATLAB algorithm that contains a
parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10
 a(i,:)=real(fft(r(i,:)));
end

2 Generate a MEX function for test_parfor. At the MATLAB command line, enter:

codegen test_parfor

codegen generates a MEX function, test_parfor_mex, in the current folder.
3 Run the MEX function. At the MATLAB command line, enter:

test_parfor_mex

Because you did not specify the maximum number of threads to use, the generated MEX function
executes the loop iterations in parallel on the maximum number of available cores.

 Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)

33-29

Specify Maximum Number of Threads in parfor-Loops
This example shows how to specify the maximum number of threads to use for a parfor-loop.
Because you specify the maximum number of threads to use, the generated MEX function executes
the loop iterations in parallel on as many cores as available, up to the maximum number that you
specify. If you specify more threads than there are cores available, the MEX function uses the
available cores.

1 Write a MATLAB function, specify_num_threads, that uses one input to specify the maximum
number of threads to execute a parfor-loop in the generated MEX function. For example:

function y = specify_num_threads(u) %#codegen
 y = ones(1,100);
 % u specifies maximum number of threads
 parfor (i = 1:100,u)
 y(i) = i;
 end
end

2 Generate a MEX function for specify_num_threads. Use -args {0} to specify that input u is
a scalar double. Use -report to generate a code generation report. At the MATLAB command
line, enter:

codegen -report specify_num_threads -args {0}

codegen generates a MEX function, specify_num_threads_mex, in the current folder.
3 Run the MEX function, specifying that it try to run in parallel on four threads. At the MATLAB

command line, enter:

specify_num_threads_mex(4)

The generated MEX function runs on up to four cores. If less than four cores are available, the
MEX function runs on the maximum number of cores available at the time of the call.

33 Accelerating MATLAB Algorithms

33-30

Troubleshooting parfor-Loops

Global or Persistent Declarations in parfor-Loop
The body of a parfor-loop cannot contain a global or persistent variable declaration.

Compiler Does Not Support OpenMP
The MATLAB Coder software uses the Open Multiprocessing (OpenMP) application interface to
support shared-memory, multicore code generation. To generate a loop that runs in parallel on
shared-memory, multicore platforms, use a compiler that supports OpenMP. OpenMP is enabled by
default. If your compiler does not support OpenMP, MATLAB Coder generates a warning.

Install a compiler that supports OpenMP. See https://www.mathworks.com/support/
compilers/current_release/.

 Troubleshooting parfor-Loops

33-31

Generate MEX Code to Accelerate Simulation of Bouncing Balls
This example shows how to accelerate MATLAB® algorithm execution using a generated MEX
function. It uses the codegen command to generate a MEX function for a complicated application
that uses multiple MATLAB files. You can use codegen to check that your MATLAB code is suitable
for code generation and, in many cases, to accelerate your MATLAB algorithm. You can run the MEX
function to check for run-time errors.

Prerequisites

There are no prerequisites for this example.

About the run_balls Function

The run_balls.m function takes a single input to specify the number of bouncing balls to simulate.
The simulation runs and plots the balls bouncing until there is no energy left and returns the state
(positions) of all the balls.

type run_balls

% balls = run_balls(n)
% Given 'n' number of balls, run a simulation until the balls come to a
% complete halt (or when the system has no more kinetic energy).
function balls = run_balls(n) %#codegen

coder.extrinsic('fprintf');

% Copyright 2010-2013 The MathWorks, Inc.

% Seeding the random number generator will guarantee that we get
% precisely the same simulation every time we call this function.
old_settings = rng(1283,'V4');

% The 'cdata' variable is a matrix representing the colordata bitmap which
% will be rendered at every time step.
cdata = zeros(400,600,'uint8');

% Setup figure windows
im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.
balls = initialize_balls(cdata, n);

energy = 2; % Something greater than 1
iteration = 1;
while energy > 1
 % Clear the bitmap
 cdata(:,:) = 0;
 % Apply one iteration of movement
 [cdata,balls,energy] = step_function(cdata,balls);
 % Render the current state
 cdata = draw_balls(cdata, balls);
 iteration = iteration + 1;
 if mod(iteration,10) == 0
 fprintf(1, 'Iteration %d\n', iteration);
 end
 refresh_image(im, cdata);

33 Accelerating MATLAB Algorithms

33-32

end
fprintf(1, 'Completed iterations: %d\n', iteration);

% Restore RNG settings.
rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the MATLAB
file to compile. Pass an example input (-args 0) to indicate that the generated MEX function will be
called with an input of type double.

codegen run_balls -args 0

Code generation successful.

The run_balls function calls other MATLAB functions, but you need to specify only the entry-point
function when calling codegen.

By default, codegen generates a MEX function named run_balls_mex in the current folder. This
allows you to test the MATLAB code and MEX function and compare the results.

Compare Results

Run and time the original run_balls function followed by the generated MEX function.

tic, run_balls(50); t1 = toc;

Iteration 10
Iteration 20
Iteration 30
Iteration 40
Iteration 50
Iteration 60
Iteration 70
Iteration 80
Iteration 90
Iteration 100
Iteration 110
Iteration 120
Iteration 130
Iteration 140
Iteration 150
Iteration 160
Iteration 170
Iteration 180
Iteration 190
Iteration 200
Iteration 210
Iteration 220
Iteration 230
Iteration 240
Iteration 250
Iteration 260
Iteration 270
Iteration 280
Completed iterations: 281

tic, run_balls_mex(50); t2 = toc;

 Generate MEX Code to Accelerate Simulation of Bouncing Balls

33-33

Iteration 10
Iteration 20
Iteration 30
Iteration 40
Iteration 50
Iteration 60
Iteration 70
Iteration 80
Iteration 90
Iteration 100
Iteration 110
Iteration 120
Iteration 130
Iteration 140
Iteration 150
Iteration 160
Iteration 170
Iteration 180
Iteration 190
Iteration 200
Iteration 210
Iteration 220
Iteration 230
Iteration 240
Iteration 250
Iteration 260
Iteration 270
Iteration 280

33 Accelerating MATLAB Algorithms

33-34

Completed iterations: 281

Estimated speed up is:

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

Speed up: x ~3.9

 Generate MEX Code to Accelerate Simulation of Bouncing Balls

33-35

Generate MEX Code to Calculate Geodesics in Curved Space-
Time

These examples are using Einstein's General Relativity to calculate geodesics in curved space-time.

Prerequisites

There are no prerequisites for this example.

Example: Computing the Precession of the Planet Mercury

This example computes the precession of the planet Mercury numerically. The precession is a slight
rotation of the elliptical orbit around the sun. Analytically, using the equations of general relativity
the value is extremely small, an extra 43" (arc seconds) per century. An arc second is 1/3600th of one
degree (counting 360 degrees for a complete revolution.) Even though the extra precession is
extremely small it matches exactly with observation. Pure Newtonian mechanics (if we choose to
ignore all the other planets of our solar system) predicts no precession.

This application is using Euler's method with variable time step where the major time step is .5
seconds. We reduce the time step as we approach one complete revolution. The precession is
computed as the planet is reaching its maximum distance from the sun for which we compute its
relative angle to the coordinate axis.

Generate the MEX Function: Precession of the Planet Mercury

Generate a MEX function using the command codegen followed by the name of the MATLAB file to
compile.

codegen gr_mercury_precession

Code generation successful.

The gr_mercury_precession function calls other MATLAB functions, but you need to specify only
the entry-point function when calling codegen.

By default, codegen generates a MEX function named gr_mercury_precession_mex in the
current folder. This allows you to test the MATLAB code and MEX function and compare the results.

Run the MEX Function: Precession of the Planet Mercury

Run the generated MEX function.

gr_mercury_precession_mex

Progress: 5%
Progress: 10%
Progress: 15%
Progress: 20%
Progress: 25%
Progress: 30%
Progress: 35%
Progress: 40%
Progress: 45%
Progress: 50%
Progress: 55%
Progress: 60%

33 Accelerating MATLAB Algorithms

33-36

Progress: 65%
Progress: 70%
Progress: 75%
Progress: 80%
Progress: 85%
Progress: 90%
Progress: 95%
Progress: 100%

precession: 0.10468" (0 years 87.87009 days) => 43.481"/century

Example: Ray-tracing a Black Hole

Einstein's equations of motion in general relativity can handle any object at any speed, so let's apply
it to photons that travel with the speed of light. In this configuration we have a black hole in front of a
background image. To make the effect more visible, we increase the mass of the black hole to
astronomical proportions as well as the background image. In this way we can study the effects of
gravitational lensing; the background image becomes distorted by the curved space-time produced by
the black hole.

Generate a MEX Function: Ray-tracing a Black Hole

codegen gr_raytrace

Code generation successful.

 Generate MEX Code to Calculate Geodesics in Curved Space-Time

33-37

Run the MEX Function: Ray-tracing a Black Hole

Ray-tracing the picture takes a minute or two on a 2 GHz x86 machine. On your screen, you see the
original picture (the Vittorio Emanuele Mall in Milano, Italy) and, to the right, the rendered image of
the same picture with a black hole in front of it.

gr_raytrace_mex('mall.jpg');

Progress: 5%
Progress: 10%
Progress: 15%
Progress: 20%
Progress: 25%
Progress: 30%
Progress: 35%
Progress: 40%
Progress: 45%
Progress: 50%
Progress: 55%
Progress: 60%
Progress: 65%

33 Accelerating MATLAB Algorithms

33-38

Progress: 70%
Progress: 75%
Progress: 80%
Progress: 85%
Progress: 90%
Progress: 95%
Progress: 100%

 Generate MEX Code to Calculate Geodesics in Curved Space-Time

33-39

Generate Accelerated MEX Code for Reverberation Using
MATLAB Classes

This example shows how to accelerate the execution of a MATLAB® algorithm that uses MATLAB
classes. The classes create a reverberation effect, that is, the "echo" you hear in a large empty room.

Implementing a Simple Reverberation Effect

There are many ways to implement a reverberation effect with different characteristics. In terms of
audio quality, this is not an advanced effect, but shows the capabilities of using MATLAB classes with
MATLAB Coder™.

This reverberation effect is implemented based on the following block diagram:

The diagram shows only the first delay line. Imagine another seven delay lines being repeated in the
diagram but each delay line has an individual delay and associated feedback gain block. The
Householder reflection (i.e. hhreflect function) is essentially mixing/permuting the signals without
changing the energy of the total signal. Therefore, we are essentially duplicating the incoming signal
and feeding it back with small time displacements. The result is a reverberation effect.

Files Used

• reverb_test.m: Main file testing the reverberation effect
• do_reverb.m: Function abstraction of the Reverb class
• Reverb.m: Effect implementation implemented as a MATLAB class
• Delay.m: Delay effect for Reverb.m implemented as a MATLAB class
• hhreflect.m: Householder reflection for Reverb.m
• get_prime.m: Function to compute prime numbers (for Reverb.m)
• speech_dft.mat: Test sample file

Generate a MEX Function

codegen do_reverb

Code generation successful.

33 Accelerating MATLAB Algorithms

33-40

Run the MEX Function

This processes the sample file (speech_dft.mat), applies the reverberation effect, and outputs the
result to the computer's audio output.

reverb_test;

Running time = 16 milliseconds

Generate a Faster MEX Function

Disable the integrity checks (e.g. out of bound checks for matrices) to obtain a faster but potentially
unsafe MEX function.

cfg = coder.config;
cfg.IntegrityChecks = false;
codegen -config cfg do_reverb

Code generation successful.

Retry the MEX Function

reverb_test;

Running time = 7 milliseconds

 Generate Accelerated MEX Code for Reverberation Using MATLAB Classes

33-41

Using PARFOR to Speed Up an Image Contrast Enhancement
Algorithm

This example shows how to generate a standalone C library from MATLAB® code that applies a
simple histogram equalization function to images to improve image contrast. The example uses
parfor to process each of the standard three RGB image planes on separate threads. The example
also shows how to generate and run a MEX function in MATLAB prior to generating C code to verify
that the MATLAB code is suitable for code generation.

MATLAB Coder™ uses the OpenMP portable shared memory parallel programming standard to
implement its support for parfor. See The OpenMP API Specification for Parallel Programming.
Whereas MATLAB supports parfor by creating multiple worker sessions, MATLAB Coder uses
OpenMP to create multiple threads running on the same machine.

Prerequisites

In order to support parallelization, the compiler must support the OpenMP shared memory parallel
programming standard. If your compiler does not have this support, then you can still run this
example, but the generated code will run serially.

About the histequalize Function

The histequalize.m function takes an image (represented as an NxMx3 matrix) and returns an
image with enhanced contrast.

type histequalize

function equalizedImage = histequalize(originalImage) %#codegen
% equalizedImage = histequalize(originalImage)
% Histogram equalization (or linearization) for improving image contrast.
% Given an NxMx3 image, equalizes the histogram of each of the three image
% planes in order to improve image contrast.

 assert(size(originalImage,1) <= 8192);
 assert(size(originalImage,2) <= 8192);
 assert(size(originalImage,3) == 3);
 assert(isa(originalImage, 'uint8'));

 [L, originalHist] = computeHistogram(originalImage);
 equalizedImage = equalize(L, originalHist, originalImage);
end

function [L, originalHist] = computeHistogram(originalImage)
 L = double(max(max(max(originalImage)))) + 1;
 originalHist = coder.nullcopy(zeros(3,L));
 sz = size(originalImage);
 N = sz(1);
 M = sz(2);
 parfor plane = 1:sz(3)
 planeHist = zeros(1,L);
 for y = 1:N
 for x = 1:M
 r = originalImage(y,x,plane);
 planeHist(r+1) = planeHist(r+1) + 1;
 end
 end

33 Accelerating MATLAB Algorithms

33-42

https://www.openmp.org

 originalHist(plane,:) = planeHist;
 end
end

function equalizedImage = equalize(L, originalHist, originalImage)
 equalizedImage = coder.nullcopy(originalImage);
 sz = size(originalImage);
 N = sz(1);
 M = sz(2);
 normalizer = (L - 1)/(N*M);
 parfor plane = 1:sz(3)
 planeHist = originalHist(plane,:);
 for y = 1:N
 for x = 1:M
 r = originalImage(y,x,plane);
 s = 0;
 for j = 0:int32(r)
 s = s + planeHist(j+1);
 end
 s = normalizer * s;
 equalizedImage(y,x,plane) = s;
 end
 end
 end
end

Generate the MEX Function

Generate a MEX function using the codegen command.

codegen histequalize

Code generation successful.

Before generating C code, you should first test the MEX function in MATLAB to ensure that it is
functionally equivalent to the original MATLAB code and that no run-time errors occur. By default,
codegen generates a MEX function named histequalize_mex in the current folder. This allows you
to test the MATLAB code and MEX function and compare the results.

Read in the Original Image

Use the standard imread command to read the low-contrast image.

lcIm = imread('LowContrast.jpg');
image(lcIm);

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

33-43

Run the MEX Function (The Histogram Equalization Algorithm)

Pass the low-contrast image.

hcIm = histequalize_mex(lcIm);

Display the Result

image(hcIm);

33 Accelerating MATLAB Algorithms

33-44

Generate Standalone C Code

codegen -config:lib histequalize

Code generation successful.

Using codegen with the -config:lib option produces a standalone C library. By default, the code
generated for the library is in the folder codegen/lib/histequalize/.

Inspect the Generated Function

Notice that the generated code contains OpenMP pragmas that control parallelization of the code
using multiple threads.

type codegen/lib/histequalize/histequalize.c

/*
 * File: histequalize.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:09:48
 */

/* Include Files */
#include "histequalize.h"
#include "histequalize_data.h"
#include "histequalize_emxutil.h"
#include "histequalize_initialize.h"

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

33-45

#include "histequalize_types.h"
#include "omp.h"
#include <math.h>
#include <string.h>

/* Function Declarations */
static void computeHistogram(const emxArray_uint8_T *originalImage, double *L,
 double originalHist_data[],
 int originalHist_size[2]);

static void equalize(double L, const double originalHist_data[],
 const emxArray_uint8_T *originalImage,
 emxArray_uint8_T *equalizedImage);

static double rt_roundd_snf(double u);

/* Function Definitions */
/*
 * Arguments : const emxArray_uint8_T *originalImage
 * double *L
 * double originalHist_data[]
 * int originalHist_size[2]
 * Return Type : void
 */
static void computeHistogram(const emxArray_uint8_T *originalImage, double *L,
 double originalHist_data[],
 int originalHist_size[2])
{
 double planeHist_data[256];
 int b_i;
 int i;
 int loop_ub;
 int maxval_size_idx_1;
 int npages;
 int p;
 int plane;
 int vlen;
 int x;
 int xOffset;
 int xPageOffset;
 int y;
 short planeHist_size[2];
 unsigned char maxval_data[24576];
 unsigned char maxval[3];
 const unsigned char *originalImage_data;
 unsigned char b_maxval;
 unsigned char r;
 originalImage_data = originalImage->data;
 maxval_size_idx_1 = originalImage->size[1];
 if (originalImage->size[1] == 0) {
 maxval_size_idx_1 = originalImage->size[1];
 vlen = originalImage->size[1] * 3;
 if (vlen - 1 >= 0) {
 memset(&maxval_data[0], 0, vlen * sizeof(unsigned char));
 }
 } else {
 vlen = originalImage->size[0];
 npages = originalImage->size[1] * 3;

33 Accelerating MATLAB Algorithms

33-46

 for (p = 0; p < npages; p++) {
 xPageOffset = p * vlen;
 maxval_data[p] = originalImage_data[xPageOffset];
 for (i = 2; i <= vlen; i++) {
 xOffset = (xPageOffset + i) - 1;
 if (maxval_data[p] < originalImage_data[xOffset]) {
 maxval_data[p] = originalImage_data[xOffset];
 }
 }
 }
 }
 for (p = 0; p < 3; p++) {
 xPageOffset = p * maxval_size_idx_1;
 maxval[p] = maxval_data[xPageOffset];
 for (i = 2; i <= maxval_size_idx_1; i++) {
 xOffset = (xPageOffset + i) - 1;
 if (maxval[p] < maxval_data[xOffset]) {
 maxval[p] = maxval_data[xOffset];
 }
 }
 }
 b_maxval = maxval[0];
 if (maxval[0] < maxval[1]) {
 b_maxval = maxval[1];
 }
 if (b_maxval < maxval[2]) {
 b_maxval = maxval[2];
 }
 *L = (double)b_maxval + 1.0;
 originalHist_size[0] = 3;
 originalHist_size[1] = b_maxval + 1;
 vlen = originalImage->size[0];
 npages = originalImage->size[1];
#pragma omp parallel for num_threads(omp_get_max_threads()) private(\
 r, planeHist_data, planeHist_size, loop_ub, y, x, b_i)

 for (plane = 0; plane < 3; plane++) {
 loop_ub = (int)*L;
 planeHist_size[1] = (short)*L;
 memset(&planeHist_data[0], 0, loop_ub * sizeof(double));
 for (y = 0; y < vlen; y++) {
 for (x = 0; x < npages; x++) {
 r = originalImage_data[(y + originalImage->size[0] * x) +
 originalImage->size[0] * originalImage->size[1] *
 plane];
 b_i = (int)(r + 1U);
 if (r + 1U > 255U) {
 b_i = 255;
 }
 loop_ub = (int)(r + 1U);
 if (r + 1U > 255U) {
 loop_ub = 255;
 }
 planeHist_data[b_i - 1] = planeHist_data[loop_ub - 1] + 1.0;
 }
 }
 loop_ub = planeHist_size[1];
 for (b_i = 0; b_i < loop_ub; b_i++) {

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

33-47

 originalHist_data[plane + 3 * b_i] = planeHist_data[b_i];
 }
 }
}

/*
 * Arguments : double L
 * const double originalHist_data[]
 * const emxArray_uint8_T *originalImage
 * emxArray_uint8_T *equalizedImage
 * Return Type : void
 */
static void equalize(double L, const double originalHist_data[],
 const emxArray_uint8_T *originalImage,
 emxArray_uint8_T *equalizedImage)
{
 double normalizer;
 double s;
 int M;
 int N;
 int i;
 int j;
 int plane;
 int x;
 int y;
 const unsigned char *originalImage_data;
 unsigned char r;
 unsigned char *equalizedImage_data;
 originalImage_data = originalImage->data;
 N = equalizedImage->size[0] * equalizedImage->size[1] *
 equalizedImage->size[2];
 equalizedImage->size[0] = originalImage->size[0];
 equalizedImage->size[1] = originalImage->size[1];
 equalizedImage->size[2] = 3;
 emxEnsureCapacity_uint8_T(equalizedImage, N);
 equalizedImage_data = equalizedImage->data;
 N = originalImage->size[0];
 M = originalImage->size[1];
 normalizer = (L - 1.0) / ((double)originalImage->size[0] *
 (double)originalImage->size[1]);
#pragma omp parallel for num_threads(omp_get_max_threads()) private(s, r, y, \
 x, i, j)

 for (plane = 0; plane < 3; plane++) {
 for (y = 0; y < N; y++) {
 for (x = 0; x < M; x++) {
 r = originalImage_data[(y + originalImage->size[0] * x) +
 originalImage->size[0] * originalImage->size[1] *
 plane];
 s = 0.0;
 i = r;
 for (j = 0; j <= i; j++) {
 s += originalHist_data[plane + 3 * j];
 }
 s *= normalizer;
 s = rt_roundd_snf(s);
 if (s < 256.0) {
 if (s >= 0.0) {

33 Accelerating MATLAB Algorithms

33-48

 r = (unsigned char)s;
 } else {
 r = 0U;
 }
 } else if (s >= 256.0) {
 r = MAX_uint8_T;
 } else {
 r = 0U;
 }
 equalizedImage_data[(y + equalizedImage->size[0] * x) +
 equalizedImage->size[0] * equalizedImage->size[1] *
 plane] = r;
 }
 }
 }
}

/*
 * Arguments : double u
 * Return Type : double
 */
static double rt_roundd_snf(double u)
{
 double y;
 if (fabs(u) < 4.503599627370496E+15) {
 if (u >= 0.5) {
 y = floor(u + 0.5);
 } else if (u > -0.5) {
 y = u * 0.0;
 } else {
 y = ceil(u - 0.5);
 }
 } else {
 y = u;
 }
 return y;
}

/*
 * equalizedImage = histequalize(originalImage)
 * Histogram equalization (or linearization) for improving image contrast.
 * Given an NxMx3 image, equalizes the histogram of each of the three image
 * planes in order to improve image contrast.
 *
 * Arguments : const emxArray_uint8_T *originalImage
 * emxArray_uint8_T *equalizedImage
 * Return Type : void
 */
void histequalize(const emxArray_uint8_T *originalImage,
 emxArray_uint8_T *equalizedImage)
{
 double originalHist_data[768];
 double L;
 int originalHist_size[2];
 if (!isInitialized_histequalize) {
 histequalize_initialize();
 }
 computeHistogram(originalImage, &L, originalHist_data, originalHist_size);

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

33-49

 equalize(L, originalHist_data, originalImage, equalizedImage);
}

/*
 * File trailer for histequalize.c
 *
 * [EOF]
 */

33 Accelerating MATLAB Algorithms

33-50

Use Generated Code to Accelerate an Application Deployed
with MATLAB Compiler

This example shows how to use generated code to accelerate an application that you deploy with
MATLAB® Compiler™. The example accelerates an algorithm by using MATLAB® Coder™ to
generate a MEX version of the algorithm. It uses MATLAB Compiler to deploy a standalone
application that calls the MEX function. The deployed application uses the MATLAB® Runtime which
enables royalty-free deployment to someone who does not have MATLAB.

This workflow is useful when:

• You want to deploy an application to a platform that the MATLAB Runtime supports.
• The application includes a computationally intensive algorithm that is suitable for code

generation.
• The generated MEX for the algorithm is faster than the original MATLAB algorithm.
• You do not need to deploy readable C/C++ source code for the application.

The example application uses a DSP algorithm that requires the DSP System Toolbox™.

Create the MATLAB Application

For acceleration, it is a best practice to separate the computationally intensive algorithm from the
code that calls it.

In this example, myRLSFilterSystemIDSim implements the algorithm. myRLSFilterSystemIDApp
provides a user interface that calls myRLSFilterSystemIDSim.

myRLSFilterSystemIDSim simulates system identification by using recursive least-squares (RLS)
adaptive filtering. The algorithm uses dsp.VariableBandwidthFIRFilter to model the
unidentified system and dsp.RLSFilter to identify the FIR filter.

myRLSFilterSystemIDApp provides a user interface that you use to dynamically tune simulation
parameters. It runs the simulation for a specified number of time steps or until you stop the
simulation. It plots the results of the simulation on scopes.

For details about this application, see “System Identification Using RLS Adaptive Filtering” (DSP
System Toolbox) in the DSP System Toolbox documentation.

In a writable folder, create myRLSFilterSystemIDSim and myRLSFilterSystemIDApp.
Alternatively, to access these files, click Open Script.

myRLSFilterSystemIDSim

function [tfe,err,cutoffFreq,ff] = ...
 myRLSFilterSystemIDSim(tuningUIStruct)
% myRLSFilterSystemIDSim implements the algorithm used in
% myRLSFilterSystemIDApp.
% This function instantiates, initializes, and steps through the System
% objects used in the algorithm.
%
% You can tune the cutoff frequency of the desired system and the
% forgetting factor of the RLS filter through the GUI that appears when

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-51

% myRLSFilterSystemIDApp is executed.

% Copyright 2013-2017 The MathWorks, Inc.

%#codegen

% Instantiate and initialize System objects. The objects are declared
% persistent so that they are not recreated every time the function is
% called inside the simulation loop.
persistent rlsFilt sine unknownSys transferFunctionEstimator
if isempty(rlsFilt)
 % FIR filter models the unidentified system
 unknownSys = dsp.VariableBandwidthFIRFilter('SampleRate',1e4,...
 'FilterOrder',30,...
 'CutoffFrequency',.48 * 1e4/2);
 % RLS filter is used to identify the FIR filter
 rlsFilt = dsp.RLSFilter('ForgettingFactor',.99,...
 'Length',28);
 % Sine wave used to generate input signal
 sine = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',1e4,...
 'Frequency',50);
 % Transfer function estimator used to estimate frequency responses of
 % FIR and RLS filters.
 transferFunctionEstimator = dsp.TransferFunctionEstimator(...
 'FrequencyRange','centered',...
 'SpectralAverages',10,...
 'FFTLengthSource','Property',...
 'FFTLength',1024,...
 'Window','Kaiser');
end

if tuningUIStruct.Reset
 % reset System objects
 reset(rlsFilt);
 reset(unknownSys);
 reset(transferFunctionEstimator);
 reset(sine);
end

% Tune FIR cutoff frequency and RLS forgetting factor
if tuningUIStruct.ValuesChanged
 param = tuningUIStruct.TuningValues;
 unknownSys.CutoffFrequency = param(1);
 rlsFilt.ForgettingFactor = param(2);
end

% Generate input signal - sine wave plus Gaussian noise
inputSignal = sine() + .1 * randn(1024,1);

% Filter input though FIR filter
desiredOutput = unknownSys(inputSignal);

% Pass original and desired signals through the RLS Filter
[rlsOutput , err] = rlsFilt(inputSignal,desiredOutput);

% Prepare system input and output for transfer function estimator
inChans = repmat(inputSignal,1,2);

33 Accelerating MATLAB Algorithms

33-52

outChans = [desiredOutput,rlsOutput];

% Estimate transfer function
tfe = transferFunctionEstimator(inChans,outChans);

% Save the cutoff frequency and forgetting factor
cutoffFreq = unknownSys.CutoffFrequency;
ff = rlsFilt.ForgettingFactor;

end

myRLSFilterSystemIDApp

function scopeHandles = myRLSFilterSystemIDApp(numTSteps)
% myRLSFilterSystemIDApp initialize and execute RLS Filter
% system identification example. Then, display results using
% scopes. The function returns the handles to the scope and UI objects.
%
% Input:
% numTSteps - number of time steps
% Outputs:
% scopeHandles - Handle to the visualization scopes

% Copyright 2013-2017 The MathWorks, Inc.

if nargin == 0
 numTSteps = Inf; % Run until user stops simulation.
end

% Create scopes
tfescope = dsp.ArrayPlot('PlotType','Line',...
 'Position',[8 696 520 420],...
 'YLimits',[-80 30],...
 'SampleIncrement',1e4/1024,...
 'YLabel','Amplitude (dB)',...
 'XLabel','Frequency (Hz)',...
 'Title','Desired and Estimated Transfer Functions',...
 'ShowLegend',true,...
 'XOffset',-5000);

msescope = timescope('SampleRate',1e4,...
 'Position',[8 184 520 420],...
 'TimeSpanSource','property','TimeSpan',0.01,...
 'YLimits',[-300 10],'ShowGrid',true,...
 'YLabel','Mean-Square Error (dB)',...
 'Title','RLSFilter Learning Curve');

screen = get(0,'ScreenSize');
outerSize = min((screen(4)-40)/2, 512);
tfescope.Position = [8, screen(4)-outerSize+8, outerSize+8,...
 outerSize-92];
msescope.Position = [8, screen(4)-2*outerSize+8, outerSize+8, ...
 outerSize-92];

% Create UI to tune FIR filter cutoff frequency and RLS filter

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-53

% forgetting factor
Fs = 1e4;
param = struct([]);
param(1).Name = 'Cutoff Frequency (Hz)';
param(1).InitialValue = 0.48 * Fs/2;
param(1).Limits = Fs/2 * [1e-5, .9999];
param(2).Name = 'RLS Forgetting Factor';
param(2).InitialValue = 0.99;
param(2).Limits = [.3, 1];
hUI = HelperCreateParamTuningUI(param, 'RLS FIR Demo');
set(hUI,'Position',[outerSize+32, screen(4)-2*outerSize+8, ...
 outerSize+8, outerSize-92]);

% Execute algorithm
while(numTSteps>=0)

 S = HelperUnpackUIData(hUI);

 drawnow limitrate; % needed to process UI callbacks

 [tfe,err] = myRLSFilterSystemIDSim(S);

 if S.Stop % If "Stop Simulation" button is pressed
 break;
 end
 if S.Pause
 continue;
 end

 % Plot transfer functions
 tfescope(20*log10(abs(tfe)));
 % Plot learning curve
 msescope(10*log10(sum(err.^2)));
 numTSteps = numTSteps - 1;
end

if ishghandle(hUI) % If parameter tuning UI is open, then close it.
 delete(hUI);
 drawnow;
 clear hUI
end

scopeHandles.tfescope = tfescope;
scopeHandles.msescope = msescope;
end

Test the MATLAB Application

Run the system identification application for 100 time steps. The application runs the simulation for
100 time steps or until you click Stop Simulation. It plots the results on scopes.

scope1 = myRLSFilterSystemIDApp(100);
release(scope1.tfescope);
release(scope1.msescope);

33 Accelerating MATLAB Algorithms

33-54

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-55

Prepare Algorithm for Acceleration

When you use MATLAB Coder to accelerate a MATLAB algorithm, the code must be suitable for code
generation.

1. Make sure that myRLSFilterSystemIDSim.m includes the %#codegen directive after the
function signature.

This directive indicates that you intend to generate code for the function. In the MATLAB Editor, it
enables the code analyzer to detect code generation issues.

2. Screen the algorithm for unsupported functions or constructs.

coder.screener('myRLSFilterSystemIDSim');

The code generation readiness tool does not find code generation issues in this algorithm.

Accelerate the Algorithm

To accelerate the algorithm, this example use the MATLAB Coder codegen command. Alternatively,
you can use the MATLAB Coder app. For code generation, you must specify the type, size, and
complexity of the input arguments. The function myRLSFilterSystemIDSim takes a structure that
stores tuning information. Define an example tuning structure and pass it to codegen by using the -
args option.

ParamStruct.TuningValues = [2400 0.99];
ParamStruct.ValuesChanged = false;
ParamStruct.Reset = false;
ParamStruct.Pause = false;
ParamStruct.Stop = false;
codegen myRLSFilterSystemIDSim -args {ParamStruct};

Code generation successful.

codegen creates the MEX function myRLSFilterSystemIDSim_mex in the current folder.

Compare MEX Function and MATLAB Function Performance

1. Time 100 executions of myRLSFilterSystemIDSim.

clear myRLSFilterSystemIDSim
disp('Running the MATLAB function ...')

33 Accelerating MATLAB Algorithms

33-56

tic
nTimeSteps = 100;
for ind = 1:nTimeSteps
 myRLSFilterSystemIDSim(ParamStruct);
end
tMATLAB = toc;

Running the MATLAB function ...

2. Time 100 executions of myRLSFilterSystemIDSim_mex.

clear myRLSFilterSystemIDSim
disp('Running the MEX function ...')
tic
for ind = 1:nTimeSteps
 myRLSFilterSystemIDSim_mex(ParamStruct);
end
tMEX = toc;

disp('RESULTS:')
disp(['Time for original MATLAB function: ', num2str(tMATLAB),...
 ' seconds']);
disp(['Time for MEX function: ', num2str(tMEX), ' seconds']);
disp(['The MEX function is ', num2str(tMATLAB/tMEX),...
 ' times faster than the original MATLAB function.']);

Running the MEX function ...
RESULTS:
Time for original MATLAB function: 2.0567 seconds
Time for MEX function: 0.22156 seconds
The MEX function is 9.2827 times faster than the original MATLAB function.

Optimize the MEX code

You can sometimes generate faster MEX by using a different C/C++ compiler or by using certain
options or optimizations. See “Accelerate MATLAB Algorithms” on page 33-6.

For this example, the MEX is sufficiently fast without further optimization.

Modify the Application to Call the MEX Function

Modify myRLSFilterSystemIDApp so that it calls myRLSFilterSystemIDSim_mex instead of
myRLSFilterSystemIDSim.

Save the modified function in myRLSFilterSystemIDApp_acc.m.

Test the Application with the Accelerated Algorithm

clear myRLSFilterSystemIDSim_mex;
scope2 = myRLSFilterSystemIDApp_acc(100);
release(scope2.tfescope);
release(scope2.msescope);

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-57

33 Accelerating MATLAB Algorithms

33-58

The behavior of the application that calls the MEX function is the same as the behavior of the
application that calls the original MATLAB function. However, the plots update more quickly because
the simulation is faster.

Create the Standalone Application

1. To open the Application Compiler App, on the Apps tab, under Application Deployment, click the
app icon.

2. Specify that the main file is myRLSFilterSystemIDApp_acc.

The app determines the required files for this application. The app can find the MATLAB files and
MEX-files that an application uses. You must add other types of files, such as MAT-files or images, as
required files.

3. In the Packaging Options section of the toolstrip, make sure that the Runtime downloaded
from web check box is selected.

This option creates an application installer that downloads and installs the MATLAB Runtime with the
deployed MATLAB application.

4. Click Package and save the project.

5. In the Package window, make sure that the Open output folder when process completes check
box is selected.

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-59

When the packaging is complete, the output folder opens.

Install the Application

1. Open the for_redistribution folder.

2. Run MyAppInstaller_web.

3. If you connect to the internet by using a proxy server, enter the server settings.

4. Advance through the pages of the installation wizard.

• On the Installation Options page, use the default installation folder.
• On the Required Software page, use the default installation folder.
• On the License agreement page, read the license agreement and accept the license.
• On the Confirmation page, click Install.

If the MATLAB Runtime is not already installed, the installer installs it.

5. Click Finish.

Run the Application

1. Open a terminal window.

2. Navigate to the folder where the application is installed.

• For Windows®, navigate to C:\Program Files\myRLSFilterSystemIDApp_acc.
• For macOS, navigate to /Applications/myRLSFilterSystemIDApp_acc.
• For Linux, navigate to /usr/myRLSFilterSystemIDApp_acc.

3. Run the application by using the appropriate command for your platform.

• For Windows, use application\myRLSFilterSystemIDApp_acc.
• For macOS, use myRLSFilterSystemIDApp_acc.app/Contents/MacOS/

myRLSFilterSystemIDApp_acc.
• For Linux, use /myRLSFilterSystemIDApp_acc.

33 Accelerating MATLAB Algorithms

33-60

Starting the application takes approximately the same amount of time as starting MATLAB.

See Also

More About
• “System Identification Using RLS Adaptive Filtering” (DSP System Toolbox)
• “Workflow for Accelerating MATLAB Algorithms” on page 33-2
• “Accelerate MATLAB Algorithms” on page 33-6
• “Create Standalone Application from MATLAB” (MATLAB Compiler)
• “About the MATLAB Runtime” (MATLAB Compiler)
• MATLAB Compiler Support for MATLAB and toolboxes

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

33-61

https://www.mathworks.com/products/compiler/compiler_support.html

External Code Integration

• “Call Custom C/C++ Code from the Generated Code” on page 34-2
• “Configure Build for External C/C++ Code” on page 34-9
• “Develop Interface for External C/C++ Code” on page 34-12
• “Mapping MATLAB Types to Types in Generated Code” on page 34-15
• “Generate Code to Read a Text File” on page 34-19
• “Generate C/C++ Strings from MATLAB Strings and Character Row Vectors” on page 34-27

34

Call Custom C/C++ Code from the Generated Code
In this section...
“Call C Code” on page 34-2
“Return Multiple Values from a C Function” on page 34-3
“Pass Data by Reference” on page 34-4
“Integrate External Code that Uses Custom Data Types” on page 34-5
“Integrate External Code that Uses Pointers, Structures, and Arrays” on page 34-6

From within your MATLAB code, you can directly call external C/C++ code, also called custom code
or legacy code. To call C/C++ functions, use coder.ceval. The code generator integrates your C/C+
+ code into the C/C++ code generated from MATLAB. Integrate code when there are external
libraries, optimized code, or object files developed in C/C++ that you want to use with your
generated code. When the external code uses variable types that are not defined or recognized by
MATLAB, use the coder.opaque function in conjunction with coder.ceval. To reserve certain
identifier names for use in your custom C/C++ code that you want to integrate with the generated
code, use the coder.reservedName function.

Following are some of the primary workflows for external code integration. For more examples, see
the coder.ceval reference page.

Note By using coder.ceval, you gain unrestricted access to external code. Misuse of these
functions or errors in your code can destabilize MATLAB and cause it to stop working. To debug your
code and analyze error messages from compilation, view the Build Logs tab in the code generation
report.

Use coder.ceval only in MATLAB code intended for code generation. coder.ceval generates an
error in uncompiled MATLAB code. To determine if a MATLAB function is executing in MATLAB, use
coder.target. If the function is executing in MATLAB, call the MATLAB version of the C/C++
function.

Call C Code
This example shows how to integrate a simple C function with MATLAB® code by using
coder.ceval. Consider the MATLAB function, mathOps:

function [added, multed] = mathOps(in1, in2)
added = in1+in2;
multed = in1*in2;
end

For this example, suppose that you want to implement the addition operation by using external C
code. Consider the C function, adder, implemented in the file adder.c:

#include <stdio.h>
#include <stdlib.h>
#include "adder.h"

34 External Code Integration

34-2

double adder(double in1, double in2)
{
 return in1 + in2;
}

To integrate adder with your MATLAB code, you need a header file that contains the function
prototype. See the file adder.h:

double adder(double in1, double in2);

Use the coder.ceval command to call the C function in mathOpsIntegrated.m. Include the
header file by using coder.cinclude.

function [added, multed] = mathOpsIntegrated(in1, in2)
%#codegen
% for code generation, preinitialize the output variable
% data type, size, and complexity
added = 0;
% generate an include in the C code
coder.cinclude('adder.h');
% evaluate the C function
added = coder.ceval('adder', in1, in2);
multed = in1*in2;
end

To generate code, use the codegen command. Specify the source file adder.c as an input. To test
the C code, execute the MEX function and inspect the output results.

codegen mathOpsIntegrated -args {1, 2} adder.c

[test1, test2] = mathOpsIntegrated_mex(10, 20)

Code generation successful.

test1 =

 30

test2 =

 200

Return Multiple Values from a C Function
The C language restricts functions from returning multiple outputs. Instead, they return only a single,
scalar value. The MATLAB functions coder.ref, coder.rref and coder.wref allow you to return
multiple outputs from an external C/C++ function.

For example, suppose you write a MATLAB function foo that takes two inputs x and y and returns
three outputs a, b, and c. In MATLAB, you call this function as follows:

 Call Custom C/C++ Code from the Generated Code

34-3

[a,b,c] = foo(x,y)

If you rewrite foo as a C function, you cannot return three separate values a, b, and c through a
return statement. Instead, create a C function with multiple pointer type arguments and pass the
output parameters by reference. For example:

void foo(double x,double y,double *a,double *b,double *c)

Then you can call the C function from a MATLAB function by using the coder.ceval function.

coder.ceval('foo',x,y,coder.ref(a),coder.ref(b),coder.ref(c));

If your external C function only writes to or only reads from the memory that is passed by reference,
you can use the coder.wref or coder.rref functions instead of coder.ref. Under certain
circumstances, these functions can enable further optimization of the generated code. When you use
coder.wref(arg) to pass arg by reference, your external C/C++ function must fully initialize the
memory referenced by arg.

Pass Data by Reference
This example shows how to pass data by reference to and from an external C function.

Pass by reference is an important technique for C/C++ code integration. When you pass data by
reference, the program does not need to copy data from one function to another. With pass by value,
C code can return only a single scalar variable. With pass by reference, C code can return multiple
variables, including arrays.

Consider the MATLAB function adderRef. This function uses external C code to add two arrays. The
coder.rref and coder.wref commands instruct the code generator to pass pointers to the arrays,
rather than copy them.

function out = adderRef(in1, in2)
%#codegen
out = zeros(size(in1));
% the input numel(in1) is converted to integer type
% to match the cAdd function signature
coder.ceval('cAdd', coder.rref(in1), coder.rref(in2), coder.wref(out), int32(numel(in1)));
end

The C code, cAdd.c, uses linear indexing to access the elements of the arrays:

#include <stdio.h>
#include <stdlib.h>
#include "cAdd.h"

void cAdd(const double* in1, const double* in2, double* out, int numel)
{
 int i;
 for (i=0; i<numel; i++) {
 out[i] = in1[i] + in2[i];
 }
}

To build the C code you must provide a header file, cAdd.h, with the function signature:

34 External Code Integration

34-4

void cAdd(const double* in1, const double* in2, double* out, int numel);

Test the C code by generating a MEX function and comparing its output with the output from the
addition operation in MATLAB.

A = rand(2,2)+1;
B = rand(2,2)+10;

codegen adderRef -args {A, B} cAdd.c cAdd.h -report

if (adderRef_mex(A,B) - (A+B) == 0)
 fprintf(['\n' 'adderRef was successful.']);
end

Code generation successful: To view the report, open('codegen\mex\adderRef\html\report.mldatx')

adderRef was successful.

Integrate External Code that Uses Custom Data Types
This example shows how to call a C function that uses data types that are not natively defined within
MATLAB®.

For example, if your C code performs file input or output on a C 'FILE *' type, there is no
corresponding type within MATLAB. To interact with this data type in your MATLAB code, you must
initialize it by using the function coder.opaque. In the case of structure types, you can use
coder.cstructname.

For example, consider the MATLAB function addCTypes.m. This function uses coder.ceval with
input types defined in external code. The function coder.opaque initializes the type in MATLAB.

function [out] = addCTypes(a,b)
%#codegen
% generate include statements for header files
coder.cinclude('MyStruct.h');
coder.cinclude('createStruct.h');
coder.cinclude('useStruct.h');
% initialize variables before use
in = coder.opaque('MyStruct');
out = 0;
% call C functions
in = coder.ceval('createStruct',a,b);
out = coder.ceval('useStruct',in);
end

The createStruct function outputs a C structure type:

#include <stdio.h>
#include <stdlib.h>
#include "MyStruct.h"
#include "createStruct.h"

 Call Custom C/C++ Code from the Generated Code

34-5

struct MyStruct createStruct(double a, double b) {
 struct MyStruct out;
 out.p1 = a;
 out.p2 = b;
 return out;
}

The useStruct function performs an operation on the C type:

#include "MyStruct.h"
#include "useStruct.h"

double useStruct(struct MyStruct in) {
 return in.p1 + in.p2;
}

To generate code, specify the source (.c) files as inputs:

codegen addCTypes -args {1,2} -report createStruct.c useStruct.c

Code generation successful: To view the report, open('codegen\mex\addCTypes\html\report.mldatx')

Integrate External Code that Uses Pointers, Structures, and Arrays
This example shows how to integrate external code that operates on a C style array with MATLAB®
code. The external code computes a summation over array data. You can customize the code to
change the input data or computation.

This example shows how to combine multiple different elements of external code integration
functionality. For example, you:

• Interface with an external structure type by using coder.cstructname
• Interface with an external pointer type by using coder.opaque
• Execute external code by using coder.ceval
• Pass data by reference to external code by using coder.ref

Explore the Integrated Code

The extSum function uses external C code to compute a summation operation on an array of 32-bit
integers. The array size is controlled by a user input.

function x = extSum(u)
%#codegen
% set bounds on input type to use static memory allocation
u = int32(u);
assert(0 < u && u < 101);
% initialize an array
temparray = int32(1):u;
% declare an external structure and use it
s = makeStruct(u);
x = callExtCode(s, temparray);

34 External Code Integration

34-6

To simplify the generated code, you set bounds on the size of the array. The bounds prevents the use
of dynamic memory allocation in the generated code.

The function makeStruct declares a MATLAB structure type and initializes one of the fields to a
pointer type by using coder.opaque. The C structure corresponding to this definition is contained in
a header file that you provide by using the HeaderFile parameter in the coder.cstructname
function. The C structure type provides a simple representation for an array of integers.

function s = makeStruct(u)
% create structure type based on external header definition
s.numel = u;
s.vals = coder.opaque('int32_T *','NULL');
coder.cstructname(s,'myArrayType','extern','HeaderFile','arrayCode.h');

With the external structure type fully initialized, you pass it as an input to the external code in the
callExtCode function. This function initializes the array, calls an operation on the array to return a
single output, and then frees the initialized memory.

function x = callExtCode(s, temparray)
% declare output type
x = int32(0);
% declare external source file
coder.updateBuildInfo('addSourceFiles','arrayCode.c');
% call c code
coder.ceval('arrayInit',coder.ref(s),coder.ref(temparray));
x = coder.ceval('arraySum',coder.ref(s));
coder.ceval('arrayDest',coder.ref(s));

The function uses coder.updateBuildInfo to provide the .c file to the code generator.

Generate a MEX Function

To generate a MEX function that you can run and test in MATLAB, enter:

codegen extSum -args {10}

Code generation successful.

Test the MEX function. Enter:

extSum_mex(10)

ans =

 int32

 55

 Call Custom C/C++ Code from the Generated Code

34-7

The external C code, contained in the files arrayCode.c and arrayCode.h, uses the custom type
definition int32_T. The generated MEX code produces and uses this custom type definition. If you
want to generate standalone (lib, dll, or exe) code that uses this custom data type, then you can
modify the DataTypeReplacement property of your configuration object. See “Mapping MATLAB
Types to Types in Generated Code” on page 34-15.

See Also
codegen | coder.wref | coder.ceval | coder.rref | coder.ref | coder.cinclude |
coder.cstructname | coder.opaque | coder.reservedName

More About
• “Configure Build for External C/C++ Code” on page 34-9
• “Unit Test External C Code with MATLAB Coder” on page 29-33

34 External Code Integration

34-8

Configure Build for External C/C++ Code
In this section...
“Provide External Files for Code Generation” on page 34-9
“Configure Build from Within a Function” on page 34-9
“Configure Build by Using the Configuration Object” on page 34-10
“Configure Build by Using the MATLAB Coder App” on page 34-11

To integrate your external C/C++ code with MATLAB, you must provide the external files to the code
generator. These files consist of source files, header files, object files, and library files that are used to
build the generated code.

You can configure the build at the command line, within a function, or by setting code generation
configuration object properties. Specify files at the command line for a quick and simple way to
generate code. When you want to preconfigure a function for other projects and code deployments,
configure the build within the function. The configuration object provides a standardized set of build
properties. You can also specify external files by using the MATLAB Coder App, or by using a class
derived from coder.ExternalDependency. For more information, see “Develop Interface for
External C/C++ Code” on page 34-12.

Provide External Files for Code Generation
Suppose that you want to generate code for a function that uses coder.ceval to call the C function
myCFn. The external source and header files for myCFn reside in the folder C:\custom. Use this
command:

codegen myMatlabFn C:\custom\myCFn.c C:\custom\myCFn.h

Configure Build from Within a Function
This example shows how to configure the build for external C/C++ code from within a MATLAB®
function. Configure the build within a function so that you can more easily integrate it with other
projects.

Suppose that you have a top-level MATLAB function, myFn:

function [out] = myFn(in)
%#codegen
y = mySubFn(in);
out = y + 10;
end

This function calls another function, mySubFn, that uses the external C code foo.c. By using
coder.updateBuildInfo and coder.cinclude, you set all the necessary external code
dependencies from within mySubFn.

function [y] = mySubFn(x)
%#codegen

 Configure Build for External C/C++ Code

34-9

coder.cinclude('foo.h');
coder.updateBuildInfo('addSourceFiles', 'foo.c');
% Pre-initialize y to double type.
y = 0;
y = coder.ceval('foo',x);
end

You can generate code containing mySubFn without needing to configure additional build settings or
specify external file inputs at the command line. To generate code for the top-level function myFn,
enter:

codegen myFn -args {5} -report

Code generation successful: To view the report, open('codegen\mex\myFn\html\report.mldatx')

Configure Build by Using the Configuration Object
Customize a build by setting properties of the code generation configuration object. With these
properties you can specify external file locations, custom source code, and other build parameters.

Custom Code Property Description
CustomHeaderCode Specify code to appear near the top of each C/C++ header file generated

from your MATLAB code.
CustomInclude Specify a list of include directories to add to the include path when

compiling the generated code. Provide an absolute path or a path relative
to the project folder. If your folder path name contains spaces, you must
enclose it in double quotes:

cfg.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomLibrary Specify a list of static library or object files to link with the generated
code.

CustomSource Specify a list of source files to compile and link with the generated code.
The build process looks for the source files first in the current folder and
then in the include folders that you specify in CustomInclude.

CustomSourceCode Specify code to appear near the top of the generated C/C++ source file,
outside of a function. Do not specify a C static function definition.

For example, declare a standalone code configuration object and specify these properties:

cfg = coder.config('lib');
cfg.CustomInclude = 'C:\custom\src C:\custom\lib';
cfg.CustomSource = 'cfunction.c';
cfg.CustomLibrary = 'chelper.obj clibrary.lib';
cfg.CustomSourceCode = '#include "cgfunction.h"';

Apply the properties at the command line by using the codegen command with the -config
argument:

codegen -config cfg myMatlabFn

34 External Code Integration

34-10

Configure Build by Using the MATLAB Coder App
1 Open the MATLAB Coder App and proceed to the Generate Code step.
2 On the Generate Code page, to open the Generate dialog box, click the Generate arrow .
3 Click More Settings.
4 On the Custom Code tab, choose your build configuration settings. Click Help to display

information about the entry fields.

See Also
codegen | coder.cinclude | coder.updateBuildInfo | coder.config | coder.CodeConfig |
coder.MexCodeConfig | coder.ExternalDependency

More About
• “Call Custom C/C++ Code from the Generated Code” on page 34-2
• “Build Process Customization” on page 27-116

 Configure Build for External C/C++ Code

34-11

Develop Interface for External C/C++ Code
You can develop an interface to external code by using the base class coder.ExternalDependency.
Using a class for external code can provide certain advantages. You can:

• Place related functions into a single package, without exposing them to the user (encapsulation).
• Create an extensible interface that can be shared across projects.
• Define custom build configuration settings so that build information is preconfigured.

Create a class from coder.ExternalDependency
To instantiate a class derived from the abstract class coder.ExternalDependency, you must define
the methods getDescriptiveName, isSupportedContext, and updateBuildInfo. These
methods address error reporting, build support, and build configuration.

Consider an example of a subclass called myExternalMathAPI derived from
coder.ExternalDependency. This subclass assumes that you have all your needed source and
header files contained in your current working folder, with no other dependencies. If you have
additional dependencies, such as source, library, or header files, you can redefine
updateBuildInfo, or derive a subclass from myExternalMathAPI which overloads the
updateBuildInfo method as necessary and adds new methods to the interface. To assist in build
configuration, you can use the build information and build context objects accessible by the
updateBuildInfo method.

classdef myExternalMathAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 % Provide a name for use in error messages
 function bName = getDescriptiveName(~)
 bName = 'myExternalMathAPI';
 end

 % Error out if build context is not supported
 function supported = isSupportedContext(buildContext)
 myTarget = {'mex','rtw'};
 if buildContext.isCodeGenTarget(myTarget)
 supported = true;
 else
 error('API only supported for mex, lib, exe, dll');
 end
 end

 % Configure simple build in this example
 % Redefine the method as necessary for your dependencies
 function updateBuildInfo(buildInfo, buildContext)
 src = {'extAdd.c','extSub.c','extDiv.c'};
 buildInfo.addSourceFiles(src);
 end

 % Define class methods
 function c = add(a, b)
 coder.cinclude('extAdd.h');

34 External Code Integration

34-12

 c = 0;
 c = coder.ceval('extAdd', a, b);
 end

 function c = subtract(a, b)
 coder.cinclude('extSubtract.h');
 c = 0;
 c = coder.ceval('extSub', a, b);
 end

 function c = divide(a, b)
 coder.cinclude('extDivide.h');
 c = 0;
 c = coder.ceval('extDiv', a, b);
 end
 end
end

Call the external C/C++ code through the interface:

myExternalMathAPI.add(a,b);
myExternalMathAPI.substract(a,b);
myExternalMathAPI.divide(a,b);

Best Practices for Using coder.ExternalDependency
Provide an Error Message for Unsupported Build

The isSupportedContext method returns true if the external code interface is supported in the
build context. If the external code interface is not supported, use error to terminate code generation
with an error message. For example:

function supported = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 supported = true;
 else
 error('MyLibrary is not available for this target');
 end
end

Parametrize Methods for MATLAB and Generated Code

Parametrize methods that call external functions so that the methods run in MATLAB. For example:

function c = add(a, b)
 if coder.target('MATLAB')
 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % running in generated code, call library function
 c = 0;
 c = coder.ceval('extAdd', a, b);
 end
end

 Develop Interface for External C/C++ Code

34-13

Parametrize updateBuildInfo for Multiple Platforms

Parametrize the updateBuildInfo method to support multiple platforms. For example, use
coder.BuildConfig.getStdLibInfo to get the platform-specific library file extensions.

function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Parametrize library extension
 libName = strcat('myLib', linkLibExt);
 % Other linking parameters
 libPath = 'c:\Link_Objects';
 libPriority = '';
 libPreCompiled = true;
 libLinkOnly = true;

 % Linking command
 buildInfo.addLinkObjects(libName,libPath,libPriority,libPreCompiled,libLinkOnly);
end

See Also
coder.ExternalDependency | coder.BuildConfig | error | coder.ceval |
coder.updateBuildInfo

More About
• “Build Process Customization” on page 27-116
• “Integrate External/Custom Code” on page 35-42
• “Configure Build for External C/C++ Code” on page 34-9
• “Static Methods”

34 External Code Integration

34-14

Mapping MATLAB Types to Types in Generated Code
The code generator produces data types in C/C++ that correspond to the data types that you use in
your MATLAB code. The data types that are generated depend on the target platform and compiler.
The code generator can produce either built-in C data types, such as short, long, int, and so on, or
custom data types defined by using C typedef statements. By default, the code generator produces
built-in types for standalone code (lib, dll, or exe) and custom types for MEX code. To use built-in C
types, modify the DataTypeReplacement property of the code generation configuration object or
use the MATLAB Coder App. For more information, see “Specify Data Types Used in Generated Code”
on page 27-24.

To produce custom C/C++ types, the code generator uses predefined data types in the header file
tmwtypes.h, located in fullfile(matlabroot,'extern','include'). The code generator can
also produce custom data types based on analysis of your MATLAB code. Custom data types are
defined in the files rtwtypes.h and myFunction_types.h located in the code generation directory.
myFunction is the name of your top-level function. The code generator cannot produce code for
every data type that exists within MATLAB. See “MATLAB Language Features Supported for C/C++
Code Generation” on page 2-24.

When you do not use built-in C data types, the code generator produces these data types:

MATLAB Data Type Corresponding Custom C/C++ Data Type
logical boolean_T
char char_T
string rtString
int8 int8_T
int16 int16_T
int32 int32_T
int64 int64_T
uint8 uint8_T
uint16 uint16_T
uint32 uint32_T
uint64 uint64_T
single real32_T
double real_T
complex See “Complex Types” on page 34-16.
struct See “Structure Types” on page 34-16.
fi See “Fixed-Point Types” on page 34-16.

When a variable is passed by reference, the corresponding custom data type uses the dereference
operator. For example, the corresponding custom C/C++ data type for int8 when passed by
reference is int8_T*.

Dynamically allocated arrays map to a custom emxArray_ type. For example, a dynamically allocated
char array maps to a type of emxArray_char_T. A dynamically allocated double array maps to the
type emxArray_real_T. Dynamic allocation occurs, for example, when array size is not known at

 Mapping MATLAB Types to Types in Generated Code

34-15

compile time or when you create a variable-size array by using coder.varsize without specifying
explicit upper bounds. For more information on variable-size arrays, see “Use C Arrays in the
Generated Function Interfaces” on page 32-3.

Complex Types
In MATLAB, complexity is defined as a property of a data type. This table lists the predefined data
types that the code generator uses for MATLAB complex data types.

MATLAB Complex Data Type Corresponding Custom C/C++ Data Type
int8 cint8_T
int16 cint16_T
int32 cint32_T
int64 cint64_T
uint8 cuint8_T
uint16 cuint16_T
uint32 cuint32_T
uint64 cuint64_T
single creal32_T
double creal_T

The code generator defines each complex value as a structure with a real component re and an
imaginary component im. For example, see the typedef for creal32_T from tmwtypes.h:

typedef struct {
 real32_T re;/* Real component*/
 real32_T im;/* Imaginary component*/
} creal32_T;

Suppose you define a variable x of type creal32_T. The generated code accesses the real
component as x.re and the imaginary component as x.im.

If your C/C++ library requires a different representation, you can define your own versions of
MATLAB Coder complex types, for example, by using coder.cstructname. However, you must use
the names re for the real components and im for the imaginary components in your definitions.

For more information, see “Code Generation for Complex Data” on page 5-8.

Structure Types
MATLAB Coder maps structures to C/C++ types field-by-field. The order of the structure fields in the
MATLAB definition is preserved. To control the name of the generated C/C++ structure type, or
provide a definition, use the coder.cstructname function. If you are not using dynamic memory
allocation, arrays in structures translate into single-dimension arrays, not pointers. For more
information, see “Structures”.

Fixed-Point Types
The numerictype properties of a fi object determine its C/C++ data type. By default, the code
generator tries to use built-in C/C++ types. However, you can choose to use custom C/C++ data

34 External Code Integration

34-16

types instead. The following table shows how the Signedness, WordLength, and FractionLength
properties determine the custom C/C++ data type. The custom C/C++ data type is the next larger
target word size that can store the fixed-point value, based on its word length. The sign of the integer
type matches the sign of the fixed-point type.

Signedness Word Length Fraction Length Corresponding
Custom C/C++
Data Type

1 8 7 int8_T
1 13 10 int16_T
1 16 15 int16_T
0 19 15 uint32_T

Character Vectors
The MATLAB Coder software maps MATLAB character vectors to C/C++ character arrays. These
character arrays are not C/C++ strings because they are not null-terminated. If you pass a MATLAB
character vector to external C/C++ code that expects a C/C++ string, the generated C/C++
character array must be null-terminated. To generate a null-terminated C/C++ character array,
append a zero to the end of the MATLAB character vector. For example, ['sample text' 0].
Otherwise, generated code that expects a string can stop working without compiler errors or
warnings.

Multiword Types
Multiword types are custom types that are generated when the target hardware cannot store your
MATLAB data type in a built-in C/C++ type. Multiword types are generated as C/C++ structure types
that contain an array of integers. The array dimensions depend on the size of the widest integer type
on the target hardware.

For example, for a 128-bit fixed-point type, if the widest integer type on the target hardware is 32-
bits, the software generates a structure with an array of four 32-bit integers.

typedef struct
{
 unsigned int chunks[4];
} uint128m_T;

If the widest integer type on the target hardware is a long with a size of 64-bits, the code generator
produces a structure with an array of two 64-bit long types.

typedef struct
{
 unsigned long chunks[2];
} uint128m_T;

The C/C++ data type generated from a 64-bit integer MATLAB type depends on the sizes of the
integer types on the target hardware. If a built-in type wide enough to store 64-bits does not exist,
then the 64-bit MATLAB Coder type maps to a custom multiword type.

 Mapping MATLAB Types to Types in Generated Code

34-17

See Also
coder.cstructname | coder.opaque

More About
• “Fundamental MATLAB Classes”
• “Integrate External Code that Uses Custom Data Types” on page 34-5

34 External Code Integration

34-18

Generate Code to Read a Text File
This example shows how to generate a standalone C library from MATLAB® code that reads a file
from disk using the functions fopen/fread/fclose.

About the readfile Function

The readfile.m function takes a file name (or path) as input and returns a string containing the
contents of the file.

type readfile

% y = readfile(filename)
% Read file 'filename' and return a MATLAB string with the contents
% of the file.
function y = readfile(filename) %#codegen

% Put class and size constraints on function input.
assert(isa(filename, 'char'));
assert(size(filename, 1) == 1);
assert(size(filename, 2) <= 1024);

% Call fopen(filename 'r'), but we need to convert the MATLAB
% string into a C type string (which is the same string with the
% NUL (\0) string terminator).
f = fopen(filename, 'r');

% Call fseek(f, 0, SEEK_END) to set file position to the end of
% the file.
fseek(f, 0, 'eof');

% Call ftell(f) which will return the length of the file in bytes
% (as current file position is at the end of the file).
filelen = int32(ftell(f));

% Reset current file position
fseek(f,0,'bof');

% Initialize a buffer
maxBufferSize = int32(2^16);
buffer = zeros(1, maxBufferSize,'uint8');

% Remaining is the number of bytes to read (from the file)
remaining = filelen;

% Index is the current position to read into the buffer
index = int32(1);

while remaining > 0
 % Buffer overflow?
 if remaining + index > size(buffer,2)
 fprintf('Attempt to read file which is bigger than internal buffer.\n');
 fprintf('Current buffer size is %d bytes and file size is %d bytes.\n', maxBufferSize, filelen);
 break
 end
 % Read as much as possible from the file into internal buffer

 Generate Code to Read a Text File

34-19

 [dataRead, nread] = fread(f,remaining, 'char');
 buffer(index:index+nread-1) = dataRead;
 n = int32(nread);
 if n == 0
 % Nothing more to read
 break;
 end
 % Did something went wrong when reading?
 if n < 0
 fprintf('Could not read from file: %d.\n', n);
 break;
 end
 % Update state variables
 remaining = remaining - n;
 index = index + n;
end

% Close file
fclose(f);

y = char(buffer(1:index));

Generate the MEX Function for Testing

Generate a MEX function using the codegen command.

codegen readfile

Code generation successful.

Before generating C code, you should first test the MEX function in MATLAB to ensure that it is
functionally equivalent to the original MATLAB code and that no run-time errors occur. By default,
codegen generates a MEX function named readfile_mex in the current folder. This allows you to
test the MATLAB code and MEX function and compare the results.

Run the MEX Function

Call the generated MEX function and display the size of the returned string and its first 100
characters.

y = readfile_mex('readfile.m');
size(y)

ans = 1×2

 1 1857

y(1:100)

ans =
 '% y = readfile(filename)
 % Read file 'filename' and return a MATLAB string with the contents
 % of th'

Generate C Code

codegen -config:lib readfile

34 External Code Integration

34-20

Code generation successful.

Using codegen with the specified -config cfg option produces a standalone C library.

Inspect the Generated Code

By default, the code generated for the library is in the folder codegen/lib/readfile/.

The files are:

dir codegen/lib/readfile/

. readfile.lib readfile_rtw.mk

.. readfile.obj readfile_rtw.rsp

.gitignore readfile_data.c readfile_rtw_comp.rsp
_clang-format readfile_data.h readfile_rtw_ref.rsp
buildInfo.mat readfile_data.obj readfile_rtwutil.c
codeInfo.mat readfile_emxAPI.c readfile_rtwutil.h
codedescriptor.dmr readfile_emxAPI.h readfile_rtwutil.obj
compileInfo.mat readfile_emxAPI.obj readfile_terminate.c
examples readfile_emxutil.c readfile_terminate.h
fileManager.c readfile_emxutil.h readfile_terminate.obj
fileManager.h readfile_emxutil.obj readfile_types.h
fileManager.obj readfile_initialize.c rtw_proj.tmw
interface readfile_initialize.h rtwtypes.h
readfile.c readfile_initialize.obj setup_msvc.bat
readfile.h readfile_rtw.bat

Inspect the C Code for the readfile.c Function

type codegen/lib/readfile/readfile.c

/*
 * File: readfile.c
 *
 * MATLAB Coder version : 5.4
 * C/C++ source code generated on : 26-Feb-2022 13:08:04
 */

/* Include Files */
#include "readfile.h"
#include "fileManager.h"
#include "readfile_data.h"
#include "readfile_emxutil.h"
#include "readfile_initialize.h"
#include "readfile_rtwutil.h"
#include "readfile_types.h"
#include <stddef.h>
#include <stdio.h>
#include <string.h>

/* Function Definitions */
/*
 * Put class and size constraints on function input.
 *
 * Arguments : const char filename_data[]
 * const int filename_size[2]
 * emxArray_char_T *y
 * Return Type : void

 Generate Code to Read a Text File

34-21

 */
void readfile(const char filename_data[], const int filename_size[2],
 emxArray_char_T *y)
{
 FILE *filestar;
 int wherefrom;
 emxArray_uint8_T *At;
 double position;
 int b_index;
 int i;
 int i1;
 int numRead;
 int other2Read;
 int remaining;
 unsigned char buffer[65536];
 signed char fileid;
 unsigned char *At_data;
 char *y_data;
 boolean_T exitg1;
 if (!isInitialized_readfile) {
 readfile_initialize();
 }
 /* y = readfile(filename) */
 /* Read file 'filename' and return a MATLAB string with the contents */
 /* of the file. */
 /* Call fopen(filename 'r'), but we need to convert the MATLAB */
 /* string into a C type string (which is the same string with the */
 /* NUL (\0) string terminator). */
 fileid = cfopen(filename_data, filename_size);
 /* Call fseek(f, 0, SEEK_END) to set file position to the end of */
 /* the file. */
 wherefrom = SEEK_END;
 filestar = fileManager(fileid);
 if ((fileid == 0) || (fileid == 1) || (fileid == 2)) {
 filestar = NULL;
 }
 if (!(filestar == NULL)) {
 fseek(filestar, (long int)0.0, wherefrom);
 }
 /* Call ftell(f) which will return the length of the file in bytes */
 /* (as current file position is at the end of the file). */
 filestar = fileManager(fileid);
 if ((fileid == 0) || (fileid == 1) || (fileid == 2)) {
 filestar = NULL;
 }
 if (filestar == NULL) {
 position = -1.0;
 } else {
 long position_t;
 position_t = ftell(filestar);
 position = (double)position_t;
 }
 position = rt_roundd_snf(position);
 if (position < 2.147483648E+9) {
 if (position >= -2.147483648E+9) {
 i = (int)position;
 } else {
 i = MIN_int32_T;

34 External Code Integration

34-22

 }
 } else if (position >= 2.147483648E+9) {
 i = MAX_int32_T;
 } else {
 i = 0;
 }
 /* Reset current file position */
 wherefrom = SEEK_SET;
 filestar = fileManager(fileid);
 if ((fileid == 0) || (fileid == 1) || (fileid == 2)) {
 filestar = NULL;
 }
 if (!(filestar == NULL)) {
 fseek(filestar, (long int)0.0, wherefrom);
 }
 /* Initialize a buffer */
 memset(&buffer[0], 0, 65536U * sizeof(unsigned char));
 /* Remaining is the number of bytes to read (from the file) */
 remaining = i;
 /* Index is the current position to read into the buffer */
 b_index = 1;
 emxInit_uint8_T(&At);
 At_data = At->data;
 exitg1 = false;
 while ((!exitg1) && (remaining > 0)) {
 /* Buffer overflow? */
 if (b_index > MAX_int32_T - remaining) {
 other2Read = MAX_int32_T;
 } else {
 other2Read = remaining + b_index;
 }
 if (other2Read > 65536) {
 printf("Attempt to read file which is bigger than internal buffer.\n");
 fflush(stdout);
 printf("Current buffer size is %d bytes and file size is %d bytes.\n",
 65536, i);
 fflush(stdout);
 exitg1 = true;
 } else {
 size_t nBytes;
 int bytesOut;
 int dims_idx_0;
 boolean_T doEOF;
 /* Read as much as possible from the file into internal buffer */
 if (remaining >= MAX_int32_T) {
 dims_idx_0 = 1024;
 doEOF = true;
 } else {
 dims_idx_0 = remaining;
 doEOF = false;
 }
 nBytes = sizeof(char);
 filestar = fileManager(fileid);
 if ((fileid == 0) || (fileid == 1) || (fileid == 2)) {
 filestar = NULL;
 }
 if (!doEOF) {
 if (filestar == NULL) {

 Generate Code to Read a Text File

34-23

 At->size[0] = 0;
 bytesOut = 0;
 } else {
 short bdims_idx_0;
 i1 = At->size[0];
 At->size[0] = remaining;
 emxEnsureCapacity_uint8_T(At, i1);
 At_data = At->data;
 if (dims_idx_0 > 1024) {
 bdims_idx_0 = 1024;
 } else {
 bdims_idx_0 = (short)dims_idx_0;
 }
 bytesOut = 0;
 numRead = 1;
 while ((bytesOut < dims_idx_0) && (numRead > 0)) {
 int c;
 char tbuf[1024];
 c = bdims_idx_0;
 other2Read = dims_idx_0 - bytesOut;
 if (bdims_idx_0 > other2Read) {
 c = other2Read;
 }
 numRead = 0;
 other2Read = 1;
 while ((numRead < c) && (other2Read > 0)) {
 size_t numReadSizeT;
 numReadSizeT = fread(&tbuf[numRead], nBytes,
 (size_t)(c - numRead), filestar);
 other2Read = (int)numReadSizeT;
 numRead += (int)numReadSizeT;
 }
 for (other2Read = 0; other2Read < numRead; other2Read++) {
 At_data[other2Read + bytesOut] = (unsigned char)tbuf[other2Read];
 }
 bytesOut += numRead;
 }
 i1 = bytesOut + 1;
 numRead = At->size[0];
 for (other2Read = i1; other2Read <= numRead; other2Read++) {
 At_data[other2Read - 1] = 0U;
 }
 if (bytesOut < remaining) {
 i1 = At->size[0];
 if (bytesOut < 1) {
 At->size[0] = 0;
 } else {
 At->size[0] = bytesOut;
 }
 emxEnsureCapacity_uint8_T(At, i1);
 At_data = At->data;
 }
 }
 } else {
 At->size[0] = 0;
 if (filestar == NULL) {
 bytesOut = 0;
 } else {

34 External Code Integration

34-24

 int c;
 c = 1;
 bytesOut = 0;
 while (c > 0) {
 char tbuf[1024];
 c = 0;
 numRead = 1;
 while ((c < 1024) && (numRead > 0)) {
 size_t numReadSizeT;
 numReadSizeT =
 fread(&tbuf[c], nBytes, (size_t)(1024 - c), filestar);
 numRead = (int)numReadSizeT;
 c += (int)numReadSizeT;
 }
 if (c < 1) {
 other2Read = 0;
 } else {
 other2Read = c;
 }
 i1 = At->size[0];
 numRead = At->size[0];
 At->size[0] += other2Read;
 emxEnsureCapacity_uint8_T(At, numRead);
 At_data = At->data;
 for (numRead = 0; numRead < other2Read; numRead++) {
 At_data[i1 + numRead] = (unsigned char)tbuf[numRead];
 }
 bytesOut += c;
 }
 }
 }
 position = (double)b_index + (double)bytesOut;
 if (position < 2.147483648E+9) {
 if (position >= -2.147483648E+9) {
 i1 = (int)position;
 } else {
 i1 = MIN_int32_T;
 }
 } else {
 i1 = MAX_int32_T;
 }
 if (b_index > i1 - 1) {
 numRead = -1;
 i1 = -1;
 } else {
 numRead = b_index - 2;
 i1 -= 2;
 }
 other2Read = i1 - numRead;
 for (i1 = 0; i1 < other2Read; i1++) {
 buffer[(numRead + i1) + 1] = At_data[i1];
 }
 if (bytesOut == 0) {
 /* Nothing more to read */
 exitg1 = true;

 /* Did something went wrong when reading? */
 } else if (bytesOut < 0) {

 Generate Code to Read a Text File

34-25

 printf("Could not read from file: %d.\n", bytesOut);
 fflush(stdout);
 exitg1 = true;
 } else {
 /* Update state variables */
 remaining -= bytesOut;
 if ((b_index < 0) && (bytesOut < MIN_int32_T - b_index)) {
 b_index = MIN_int32_T;
 } else if ((b_index > 0) && (bytesOut > MAX_int32_T - b_index)) {
 b_index = MAX_int32_T;
 } else {
 b_index += bytesOut;
 }
 }
 }
 }
 emxFree_uint8_T(&At);
 /* Close file */
 cfclose(fileid);
 i = y->size[0] * y->size[1];
 y->size[0] = 1;
 y->size[1] = b_index;
 emxEnsureCapacity_char_T(y, i);
 y_data = y->data;
 for (i = 0; i < b_index; i++) {
 y_data[i] = (signed char)buffer[i];
 }
}

/*
 * File trailer for readfile.c
 *
 * [EOF]
 */

34 External Code Integration

34-26

Generate C/C++ Strings from MATLAB Strings and Character
Row Vectors

By default, MATLAB strings and character row vectors are mapped to C/C++ character arrays in the
generated code. To generate C/C++ strings from MATLAB strings or character row vectors, the
MATLAB string or character row vector must be null-terminated (end with zero, 0). For example, the
string "Hello World"+char(0) and character row vector ['Hello World', 0] are null-
terminated.

If a MATLAB string or character row vector is not null-terminated, for example 'Hello World', the
MATLAB string is mapped to character arrays { 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o',
'r', 'l', 'd' } in the generated C/C++ code.

In MATLAB, consider this function:

function t = CharArrayNullAtEnd()
 t = ['Hello World',0];
end

The corresponding C/C++ code generated for this function is:

void CharArrayNullAtEnd(char t[12])
{
 int i;
 static const char cv[12] = "Hello World";
 for (i = 0; i < 12; i++) {
 t[i] = cv[i];
 }
}

Generating C/C++ strings instead of character arrays improves the readability of the generated code.

Note If the length of the characters is less than the LoopUnrollThreshold, a double quoted C/C+
+ string is not generated in the code even if it is null-terminated. Instead, the code generator
produces a C character array that has individual character assignments. By default, the assigned
value to LoopUnrollThreshold is 5. For more information on loop unrolling, see “Unroll for-Loops
and parfor-Loops” on page 35-35.

Add New Line to Strings in Generated Code
When you generate C/C++ strings from null-terminated MATLAB strings or a character row vector,
use the newline function in the MATLAB string or character row vector. The code generator maps
newline function to newline character '\n' in the generated code. If you use the character '\n' in
the MATLAB code instead, it is escaped and is mapped to '\\n' in the generated code.

In MATLAB, consider this function:
function StringNewline()

 string1 = ['Hello World' 0];
 string2 = ['My MATLAB' 0];
 formatSpecifier = ['%s' newline 0];
 coder.cinclude('<stdio.h>');
 coder.ceval('printf',coder.rref(formatSpecifier),coder.rref(string1));
 coder.ceval('printf',coder.rref(formatSpecifier),coder.rref(string2));

 Generate C/C++ Strings from MATLAB Strings and Character Row Vectors

34-27

end

The corresponding C/C++ code generated for this function is:

void StringNewline(const emlrtStack *sp)
{
 static const char_T formatSpecifier[4] = "%s\n";
 static const char_T string1[12] = "Hello World";
 static const char_T string2[14] = "My MATLAB";
 (void)sp;
 printf(formatSpecifier, string1);
 printf(formatSpecifier, string2);
}

In the MATLAB function StringNewline, if formatSpecifier is '%s\n' instead of ['%s'
newline 0], then the character '\n' is escaped and you have {'\\','n'} in the generated C/C+
+ code.

Limitations
A MATLAB character row vector that has multiple nulls, for example ['Hello', 0, 0], is not
supported for C/C++ string generation.

See Also
codegen | coder | coder.config | newline | coder.rref | coder.ceval

More About
• “Code Generation for Strings” on page 5-16
• “Loop unrolling threshold” (Simulink Coder)

34 External Code Integration

34-28

Generate Efficient and Reusable Code

• “Optimization Strategies” on page 35-3
• “Modularize MATLAB Code” on page 35-5
• “Avoid Data Copies of Function Inputs in Generated Code” on page 35-6
• “Inline Code” on page 35-8
• “Control Inlining to Fine-Tune Performance and Readability of Generated Code” on page 35-9
• “Fold Function Calls into Constants” on page 35-14
• “Control Stack Space Usage” on page 35-15
• “Stack Allocation and Performance” on page 35-18
• “Dynamic Memory Allocation and Performance” on page 35-19
• “Minimize Dynamic Memory Allocation” on page 35-20
• “Provide Maximum Size for Variable-Size Arrays” on page 35-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 35-25
• “Set Dynamic Memory Allocation Threshold” on page 35-26
• “Optimize Dynamic Array Access” on page 35-28
• “Excluding Unused Paths from Generated Code” on page 35-30
• “Prevent Code Generation for Unused Execution Paths” on page 35-31
• “Generate Code with Parallel for-Loops (parfor)” on page 35-33
• “Minimize Redundant Operations in Loops” on page 35-34
• “Unroll for-Loops and parfor-Loops” on page 35-35
• “Disable Support for Integer Overflow or Nonfinites” on page 35-40
• “Integrate External/Custom Code” on page 35-42
• “MATLAB Coder Optimizations in Generated Code” on page 35-46
• “Use coder.const with Extrinsic Function Calls” on page 35-49
• “memcpy Optimization” on page 35-51
• “memset Optimization” on page 35-52
• “Reuse Large Arrays and Structures” on page 35-53
• “LAPACK Calls in Generated Code” on page 35-54
• “Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” on page 35-55
• “BLAS Calls in Generated Code” on page 35-58
• “Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls”

on page 35-59
• “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls”

on page 35-63
• “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code”

on page 35-67
• “Speed Up MEX Generation by Using JIT Compilation” on page 35-71

35

• “Automatically Parallelize for Loops in Generated Code” on page 35-73
• “Specify Maximum Number of Threads to Run Parallel for-Loops in the Generated Code”

on page 35-79
• “Optimize Generated Code for Fast Fourier Transform Functions” on page 35-83

35 Generate Efficient and Reusable Code

35-2

Optimization Strategies
MATLAB Coder introduces certain optimizations when generating C/C++ code or MEX functions from
your MATLAB code. For more information, see “MATLAB Coder Optimizations in Generated Code” on
page 35-46.

To optimize your generated code further, you can:

• Adapt your MATLAB code.
• Control code generation using the configuration object from the command-line or the project

settings dialog box.

To optimize the execution speed of generated code, for these conditions, perform the following
actions as necessary:

Condition Action
You have for-loops whose iterations are independent
of each other.

“Generate Code with Parallel for-Loops (parfor)” on
page 35-33

“Automatically Parallelize for Loops in Generated
Code” on page 35-73

You have variable-size arrays in your MATLAB code. “Minimize Dynamic Memory Allocation” on page 35-
20

You have multiple variable-size arrays in your MATLAB
code. You want dynamic memory allocation for larger
arrays and static allocation for smaller ones.

“Set Dynamic Memory Allocation Threshold” on page
35-26

You want your generated function to be called by
reference.

“Avoid Data Copies of Function Inputs in Generated
Code” on page 35-6

You are calling small functions in your MATLAB code. “Inline Code” on page 35-8
You have limited target memory for your generated
code. You want to inline small functions and generate
separate code for larger ones.

“Control Inlining to Fine-Tune Performance and
Readability of Generated Code” on page 35-9

You do not want to generate code for expressions that
contain constants only.

“Fold Function Calls into Constants” on page 35-14

You have loop operations in your MATLAB code that do
not depend on the loop index.

“Minimize Redundant Operations in Loops” on page
35-34

You have integer operations in your MATLAB code. You
know beforehand that integer overflow does not occur
during execution of your generated code.

“Disable Support for Integer Overflow” on page 35-40

You know beforehand that Infs and NaNs do not occur
during execution of your generated code.

“Disable Support for Nonfinite Numbers” on page 35-
40

You have for-loops with few iterations. “Unroll for-Loops and parfor-Loops” on page 35-35
You already have legacy C/C++ code optimized for
your target environment.

“Integrate External/Custom Code” on page 35-42

You want to speed up the code generated for basic
vector and matrix functions.

“Speed Up Matrix Operations in Generated Standalone
Code by Using BLAS Calls” on page 35-59

 Optimization Strategies

35-3

Condition Action
You want to speed up the code generated for linear
algebra functions.

“Speed Up Linear Algebra in Generated Standalone
Code by Using LAPACK Calls” on page 35-55

You want to speed up the code generated for fast
fourier transform (FFT) functions.

“Speed Up Fast Fourier Transforms in Generated
Standalone Code by Using FFTW Library Calls” on
page 35-63

To optimize the memory usage of generated code, for these conditions, perform the following actions
as necessary:

Condition Action
You have if/else/elseif statements or
switch/case/otherwise statements in your
MATLAB code. You do not require some branches
of the statements in your generated code.

“Prevent Code Generation for Unused Execution
Paths” on page 35-31

You want your generated function to be called by
reference.

“Avoid Data Copies of Function Inputs in
Generated Code” on page 35-6

You have limited stack space for your generated
code.

“Control Stack Space Usage” on page 35-15

You are calling small functions in your MATLAB
code.

“Inline Code” on page 35-8

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining to Fine-Tune Performance and
Readability of Generated Code” on page 35-9

You do not want to generate code for expressions
that contain constants only.

“Fold Function Calls into Constants” on page 35-
14

You have loop operations in your MATLAB code
that do not depend on the loop index.

“Minimize Redundant Operations in Loops” on
page 35-34

You have integer operations in your MATLAB
code. You know beforehand that integer overflow
does not occur during execution of your
generated code.

“Disable Support for Integer Overflow” on page
35-40

You know beforehand that Inf-s and NaN-s does
not occur during execution of your generated
code.

“Disable Support for Nonfinite Numbers” on page
35-40

Your MATLAB code has variables that are large
arrays or structures. Your variables are not
reused in the generated code. They are
preserved. You want to see if the extra memory
required to preserve the variable names of the
large arrays or structures affects performance.

“Reuse Large Arrays and Structures” on page 35-
53

35 Generate Efficient and Reusable Code

35-4

Modularize MATLAB Code
For large MATLAB code, streamline code generation by modularizing the code:

1 Break up your MATLAB code into smaller, self-contained sections.
2 Save each section in a MATLAB function.
3 Generate C/C++ code for each function.
4 Call the generated C/C++ functions in sequence from a wrapper MATLAB function using

coder.ceval.
5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this approach also supplies you
with C/C++ code for the individual sections. You can reuse the code for the individual sections later
by integrating them with other generated C/C++ code using coder.ceval.

 Modularize MATLAB Code

35-5

Avoid Data Copies of Function Inputs in Generated Code
You can reduce the number of copies in your generated code by writing functions that use the same
variable as both an input and an output. For example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a variable acts as both input and
output, the generated code passes the variable by reference instead of redundantly copying the input
to a temporary variable. In the preceding example, input A is passed by reference in the generated
code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(double *A, double B)
{
 *A *= B;
}
...

The reference parameter optimization reduces memory usage and execution time, especially when
the variable passed by reference is a large data structure. To achieve these benefits at the call site,
call the function with the same variable as both input and output.

By contrast, suppose that you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

The generated code passes the inputs by value and returns the value of the output:

...
/* Function Definitions */
double foo2(double A, double B)
{
 return A * B;
}
...

In some cases, the output of the function cannot be a modified version of its inputs. If you do not use
the inputs later in the function, you can modify your code to operate on the inputs instead of on a
copy of the inputs. One method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen
 x1=u1+1;
 y1=bar(x1);
end

function y2=bar(u2)
 % Since foo does not use x1 later in the function,
 % it would be optimal to do this operation in place
 x2=u2.*2;
 % The change in dimensions in the following code

35 Generate Efficient and Reusable Code

35-6

 % means that it cannot be done in place
 y2=[x2,x2];
end

You can modify the code to eliminate redundant copies.

function y1=foo(u1) %#codegen
 u1=u1+1;
 [y1, u1]=bar(u1);
end

function [y2, u2]=bar(u2)
 u2=u2.*2;
 % The change in dimensions in the following code
 % still means that it cannot be done in place
 y2=[u2,u2];
end

The reference parameter optimization does not apply to constant inputs. If the same variable is an
input and an output, and the input is constant, the code generator treats the output as a separate
variable. For example, consider the function foo:

function A = foo(A, B) %#codegen
A = A * B;
end

Generate code in which A has a constant value 2.

codegen -config:lib foo -args {coder.Constant(2) 3} -report

The generated code defines the constant A and returns the value of the output.

...
#define A (2.0)
...
double foo(double B)
{
 return A * B;
}
...

See Also

Related Examples
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page 27-122

 Avoid Data Copies of Function Inputs in Generated Code

35-7

Inline Code
Inlining is a technique that replaces a function call with the contents (body) of that function. Inlining
eliminates the overhead of a function call, but can produce larger C/C++ code. Inlining can create
opportunities for further optimization of the generated C/C++ code. The code generator uses internal
heuristics to determine whether to inline functions in the generated code. You can use the
coder.inline directive to fine-tune these heuristics for individual functions. For more information,
see coder.inline.

See Also

More About
• “Control Inlining to Fine-Tune Performance and Readability of Generated Code” on page 35-9

35 Generate Efficient and Reusable Code

35-8

Control Inlining to Fine-Tune Performance and Readability of
Generated Code

Inlining is an optimization technique that replaces a function call with the contents (body) of that
function. Inlining eliminates the overhead of a function call, thereby improving speed.

Depending on your application, too much code inlining can also have certain disadvantages:

• Inlining can produce larger C/C++ code and reduce code readability. For example, suppose that
you call a certain function foo many times in your source MATLAB code. If the code generator
always inlines foo, the generated code size increases because foo is inlined every time it is
called. However, for this to happen, the call sites must be different. For example, inlining does not
lead to large code size if foo is called several times inside a loop.

• For out-of-line functions, stack space for variables local to the function is released when the
function returns. For inlined functions, stack space remains occupied by the local variables even
when the function returns. So, if you have limited RAM or stack space, you might want to restrict
function inlining.

The code generator uses internal heuristics to determine whether to inline functions in the generated
code. This help topic explains how to fine-tune these heuristics and generate code that meets the
speed, readability, and stack space requirements of your application.

Control Inlining of a Specific MATLAB Function
To instruct the code generator to either always or never inline a certain MATLAB function, use the
coder.inline('always') and coder.inline('never') directives inside the body of that
function. To learn more about these directives, see coder.inline.

Control Inlining by Using Code Generation Settings
You might have different speed and readability requirements for the code generated for functions that
you write and the code generated for MathWorks functions. Certain code generation settings enable
you to separately control the inlining behavior for these two parts of the generated code base and at
the boundary between them. These settings apply to both MEX and standalone code generation.

Code Configuration
Parameter

Description Options

In a code configuration object:
InlineBetweenUserFunctio
ns

In the MATLAB Coder app: On
the All Settings tab, Inline
between user functions

Controls inlining behavior at all
call sites where a function that
you wrote calls another function
that you wrote

'Always' | 'Speed' (default) |
'Readability' | 'Never'

 Control Inlining to Fine-Tune Performance and Readability of Generated Code

35-9

Code Configuration
Parameter

Description Options

In a code configuration object:
InlineBetweenMathWorksFu
nctions

In the MATLAB Coder app: On
the All Settings tab, Inline
between MathWorks
functions

Controls inlining behavior at all
call sites where a MathWorks
function calls another
MathWorks function

'Always' | 'Speed' (default) |
'Readability' | 'Never'

In a code configuration object:
InlineBetweenUserAndMath
WorksFunctions

In the MATLAB Coder app: On
the All Settings tab, Inline
between user and
MathWorks functions

Controls inlining behavior at all
call sites where a function that
you wrote calls a MathWorks
function, or a MathWorks
function calls a function that
you wrote

'Always' | 'Speed' (default) |
'Readability' | 'Never'

Option descriptions:

• 'Always': Always performs inlining at a call site.
• 'Speed': Uses internal heuristics to determine whether to perform inlining at a call site. This

setting usually leads to highly optimized code. This setting is the default setting.
• 'Readability': Almost never inlines function calls, except for calls to very small functions.

Preserves modularity of code without sacrificing too much speed, whenever possible. Results in
highly readable code.

• 'Never': Never inlines function calls. Results in maximum readability. This setting might
significantly reduce the performance of the generated code.

Note In certain cases, the code generator might not strictly follow the option you choose for an
inlining parameter. For example, if the body of a MathWorks function contains the
coder.inline('never') directive and you set InlineBetweenMathWorksFunctions to
'Always', the code generator gives preference to the coder.inline directive and does not inline
that function. For more information, see “Interaction Between Different Inlining Controls” on page
35-11.

An Example Inlining Strategy

This is an example inlining strategy that balances the speed and readability of the generated code.
You instruct the code generator to perform these actions simultaneously:

• Preserve the modularity in the code that you write for better readability, even if that reduces the
speed of the generated code. For this behavior, set InlineBetweenUserFunctions to
'Readability'.

• Generate highly optimized code for MathWorks functions, even if that results in less readable code
because you are less likely to inspect this part of your code base. For this behavior, set
InlineBetweenMathWorksFunctions to 'Speed'.

35 Generate Efficient and Reusable Code

35-10

• In the generated code, separate functions that you write and MathWorks functions so that the
generated code does not look very different from your MATLAB code. For this behavior, set
InlineBetweenUserAndMathWorksFunctions to 'Readability'.

Interaction Between Different Inlining Controls
• The coder.inline('always') or coder.inline('never') directive placed inside the body

of a MATLAB function overrides the effect of the global inlining controls, including the codegen
options and the code configuration settings. See coder.inline.

Certain MathWorks functions include a call to the coder.inline directive that affects how those
functions interact with the global inlining settings. For example, if the body of a MathWorks
function contains the coder.inline('never') directive and you set
InlineBetweenMathWorksFunctions to 'Always', the code generator gives preference to the
coder.inline directive and does not inline that function.

• The -O disable:inline and -O enable:inline options of the codegen command override
the individual values of the three code configuration parameters
InlineBetweenUserFunctions, InlineBetweenMathWorksFunctions, and
InlineBetweenUserAndMathWorksFunctions.

Example: Control Inlining at the Boundary Between Your Functions
and MathWorks® Functions
This example shows how to control inlining behavior at all call sites where a function that you wrote
calls a MathWorks function, or a MathWorks function calls a function that you wrote.

Define A Function That Calls MathWorks Functions

Define a MATLAB function useBessely that accepts a double array x as input, processes the input
array by using the bessely function, and returns an array that has the same type and size as x.

type useBessely.m

function out = useBessely(x)
out = x + bessely(3,x);
end

Generate Code With Default Inlining Settings

Generate a static C++ library for the useBessely function. Specify the input to be a 1-by-100
double type. Use the default values for the inlining settings. These default values optimize the speed
of the generated code. Use the -c flag that instructs the code generator to produce source code only
and not build the source code.

codegen -c -lang:c++ -config:lib useBessely -args {zeros(1,100)} -report

Code generation successful: To view the report, open('codegen\lib\useBessely\html\report.mldatx')

Open the code generation report and inspect the generated code. Observe that no separate C++
function has been generated for the MathWorks function bessely. The code generator has inlined
the code for the bessely function into the C++ useBessely function that is contained in the file
useBessely.cpp.

 Control Inlining to Fine-Tune Performance and Readability of Generated Code

35-11

Generate Code With Modified Inlining Settings

Define a code configuration object cfg for generating a static C++ library. Set the property
InlineBetweenUserAndMathWorksFunctions to 'Never'. This setting instructs the code
generator to separate the function that you wrote and the MathWorks functions in the generated
code. As a result, the generated C++ code is less efficient but more readable than the inlined code.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.InlineBetweenUserAndMathWorksFunctions = 'Never';

Generate code by using cfg as the code configuration object. Specify the input to be a 1-by-100
double type. Use the -c flag that instructs the code generator to produce source code only and not
build the source code.

codegen -c -config cfg useBessely -args {zeros(1,100)} -report

Code generation successful: To view the report, open('codegen\lib\useBessely\html\report.mldatx')

Open the code generation report and inspect the generated code. The C++ function useBessely
now calls another C++ function coder::bessely that contains the code generated for the
MathWorks function bessely. As a reault, the generated C++ useBessely function looks similar to
the MATLAB useBessely function that you wrote.

type codegen/lib/useBessely/useBessely.cpp

//
// File: useBessely.cpp
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 13:05:48
//

// Include Files
#include "useBessely.h"
#include "bessely.h"
#include "rt_nonfinite.h"

// Function Definitions
//
// Arguments : const double x[100]
// creal_T out[100]
// Return Type : void
//
void useBessely(const double x[100], creal_T out[100])
{
 coder::bessely(x, out);
 for (int i{0}; i < 100; i++) {
 out[i].re += x[i];
 }
}

//
// File trailer for useBessely.cpp
//

35 Generate Efficient and Reusable Code

35-12

// [EOF]
//

See Also
coder.inline | codegen | coder.CodeConfig | coder.EmbeddedCodeConfig |
coder.MexCodeConfig

More About
• “Optimization Strategies” on page 35-3

 Control Inlining to Fine-Tune Performance and Readability of Generated Code

35-13

Fold Function Calls into Constants
This example shows how to specify constants in generated code using coder.const. The code
generator folds an expression or a function call in a coder.const statement into a constant in
generated code. Because the generated code does not have to evaluate the expression or call the
function every time, this optimization reduces the execution time of the generated code.

Write a function AddShift that takes an input Shift and adds it to the elements of a vector. The
vector consists of the square of the first 10 natural numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element of the
vector during vector creation. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the expression (1:10).^2 with coder.const((1:10).^2), and then generate code for
AddShift again using the codegen command. Open the Code Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator creates the vector containing the squares of the first 10 natural numbers. In the
generated code, it adds Shift to each element of this vector. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i;
 static const signed char iv[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i = 0; i < 10; i++) {
 y[i] = (double)iv[i] + Shift;
 }
}

See Also
coder.const

More About
• “Use coder.const with Extrinsic Function Calls” on page 35-49

35 Generate Efficient and Reusable Code

35-14

Control Stack Space Usage
You can control the maximum stack size used by your compiler or hardware. A stack is a block of
memory that stores local variables for program execution. Stack memory is allocated during code
generation. Stack allocation is typically more efficient for memory usage than static allocation.

The value of the configuration setting StackUsageMax is measured in bytes. Based on information
from the target hardware settings and the possible execution paths in the code, the software
estimates the stack variables that a certain value of StackUsageMax can accommodate. This
estimate does not account for stack size changes introduced by the C compiler. Variables that do not
fit in stack memory are spilled off the stack. The variables that are spilled off the stack are stored in
static memory or a spill structure if you are trying to generate reentrant code.

• You can increase StackUsageMax to raise the number of variables allocated to stack memory. If
your target hardware has sufficient stack space, this reduces the amount of variables that are
spilled off the stack.

• You can decrease StackUsageMax to reduce the number of variables allocated to stack memory.
If your target hardware lacks sufficient stack space, this increases the number of variables that
are spilled off of the stack.

Variables in recursive functions that couldn't fit on the stack are not stored in a static memory, or in a
spill structure if you generate reentrant code. Variables in recursive functions are not spilled off the
stack, even if they exceed the stack usage size.

Similarly, code generation does not account for the stack usage of custom code in calls to
coder.ceval.

This example shows how to set the maximum stack space that the generated code uses. Set the
maximum stack usage when:

• You have limited stack space, for instance, in embedded targets.
• Your C compiler reports a run-time stack overflow.

Control Stack Space Usage by Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Set Build type to Source Code, MEX, Static Library, Dynamic Library, or Executable

(depending on your requirements).
3 Click More Settings.
4 On the Memory tab, set Stack usage max to the value that you want.

Control Stack Space Usage at the Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib', mex,'dll', or 'exe' (depending on your
requirements). For example:

cfg = coder.config('lib');
2 Set the property StackUsageMax to the value that you want.

cfg.StackUsageMax=400000;

 Control Stack Space Usage

35-15

Generated Code Without Spilled Variables

The various outcomes depend on the amount of stack space.

On generating code for the following MATLAB code with ample stack space, the generated code is:

function y = fooNorm(x)
b = cast(x,'uint32');
y = sum(b);
end

The input to the function fooNorm(x) is a 100-by-100 matrix of ones.

void fooNorm(const double x[10000], double y[100])
{
 double d;
 unsigned int b[10000];
 ...
}
static void main_fooNorm(void)
{
 double dv[10000];
 double y[100];
 argInit_100x100_real_T(dv);
 fooNorm(dv, y);
}

This code snippet highlights the entry-point function fooNorm. The function main_fooNorm declares
the variable dv[10000] and y[100]on the stack, which is the input to the function fooNorm.

Generated Code That Has Spilled Variables

When you generate code for the same MATLAB code with insufficient stack space, the code is:

void fooNorm(const double x[10000], double y[100])
{
 static unsigned int b[10000];
 double d;
 ...
}
static void main_fooNorm(void)
{
 static double dv[10000];
 static double y[100];
 argInit_100x100_real_T(dv);
 fooNorm(dv, y);
}

The variables b[10000], dv[10000], and y[100] are declared as static variables because they do
not fit on the stack.

Generated Reentrant Code That Has Spilled Variables

When you generate reentrant code for the same MATLAB code with insufficient stack space, the
generated code is:

void fooNorm(fooNormStackData *SD, const double x[10000], double y[100])
{

35 Generate Efficient and Reusable Code

35-16

 double d;
 ...
}
static void main_fooNorm(void)
{
 static double dv[10000];
 static double y[100];
 argInit_100x100_real_T(dv);
 fooNorm(&fooNormStackDataGlobal, dv, y);
}

The input to fooNorm is a structure fooNormStackData. On generating reentrant code, when
variables spill off the stack, a spill structure is generated that holds the variables that do not fit on
the stack.

The structure fooNormStackData is defined as:

typedef struct {
 struct {
 unsigned int b[10000];
 } f0;
} fooNormStackData;

See Also

More About
• “Stack Allocation and Performance” on page 35-18
• “Generate Reentrant C Code from MATLAB Code” on page 36-2
• “Code Generation for Recursive Functions” on page 20-14

 Control Stack Space Usage

35-17

Stack Allocation and Performance
By default, local variables are allocated on the stack. Large variables that do not fit on the stack are
statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation. However, stack space is
sometimes limited, typically in embedded processors. MATLAB Coder allows you to manually set a
limit on the stack space usage to make your generated code suitable for your target hardware. You
can choose this limit based on the target hardware configurations. For more information, see
“Control Stack Space Usage” on page 35-15.

For limited stack space, you can choose to allocate large variables on the heap instead of using static
allocation. Heap allocation is slower but more memory-efficient than static allocation. To allocate
large variables on the heap, do one of the following:

Allocate Heap Space from Command Line
1 Create a configuration object. Set the property, MultiInstanceCode, to true.

cfg = coder.config('exe');
cfg.MultiInstanceCode = true;

2 Generate code using this configuration object.

Allocate Heap Space Using the MATLAB Coder App
1 Using the MATLAB Coder app, in the project settings dialog box, on the Memory tab, select the

Generate re-entrant code check box.

• Generate code.

See Also
“Control Stack Space Usage” on page 35-15 | “Generate Reentrant C Code from MATLAB Code” on
page 36-2

35 Generate Efficient and Reusable Code

35-18

Dynamic Memory Allocation and Performance
To achieve faster execution of generated code, minimize dynamic (or run-time) memory allocation of
arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated code. Instead, such arrays
are referenced indirectly through pointers. For such arrays, memory cannot be allocated during
compilation of generated code. Based on storage requirements for the arrays, memory is allocated
and freed at run time as required. This run-time allocation and freeing of memory leads to slower
execution of the generated code.

When Dynamic Memory Allocation Occurs
Dynamic memory allocation occurs when the code generator cannot find upper bounds for variable-
size arrays. The software cannot find upper bounds when you specify the size of an array using a
variable that is not a compile-time constant. An example of such a variable is an input variable (or a
variable computed from an input variable).

Instances in the MATLAB code that can lead to dynamic memory allocation are:

• Array initialization: You specify array size using a variable whose value is known only at run time.
• After initialization of an array:

• You declare the array as variable-size using coder.varsize without explicit upper bounds.
After this declaration, you expand the array by concatenation inside a loop. The number of loop
runs is known only at run time.

• You use a reshape function on the array. At least one of the size arguments to the reshape
function is known only at run time.

If you know the maximum size of the array, you can avoid dynamic memory allocation. You can then
provide an upper bound for the array and prevent dynamic memory allocation in generated code. For
more information, see “Minimize Dynamic Memory Allocation” on page 35-20.

 Dynamic Memory Allocation and Performance

35-19

Minimize Dynamic Memory Allocation
When possible, minimize dynamic memory allocation because it leads to slower execution of
generated code. Dynamic memory allocation occurs when the code generator cannot find upper
bounds for variable-size arrays.

If you know the maximum size of a variable-size array, you can avoid dynamic memory allocation.
Follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 35-21.
2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page 35-25.
• “Set Dynamic Memory Allocation Threshold” on page 35-26

Caution If a variable-size array in the MATLAB code does not have a maximum size, disabling
dynamic memory allocation leads to a code generation error. Before disabling dynamic memory
allocation, you must provide a maximum size for variable-size arrays in your MATLAB code.

See Also

More About
• “Dynamic Memory Allocation and Performance” on page 35-19

35 Generate Efficient and Reusable Code

35-20

Provide Maximum Size for Variable-Size Arrays
To constrain array size for variable-size arrays, do one of the following:

• Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use an assert statement with
relational operators to constrain the variable. Doing so helps the code generator to determine a
maximum size for the array.

The following examples constrain array size using assert statements:

• When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input variable N:

function y = array_init (N)
 assert(N <= 25); % Generates exception if N > 25
 y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In the absence of the
assert statement, y is assigned a pointer to an array in the generated code, thus allowing
dynamic memory allocation.

• When Array Size Is Obtained from Computation Using Input Variables

Define a function, array_init_from_prod, which takes two input variables, M and N, and
uses their product to specify the maximum size of an array, y.

function y = array_init_from_prod (M,N)
 size=M*N;
 assert(size <= 25); % Generates exception if size > 25
 y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic memory allocation:

function y = array_init_from_prod (M,N)
 assert(M <= 5);
 assert(N <= 5);
 size=M*N;
 y=zeros(1,size);

This code causes dynamic memory allocation because M and N can both have unbounded
negative values. Therefore, their product can be unbounded and positive even though,
individually, their positive values are bounded.

Tip Place the assert statement on a variable immediately before it is used to specify array size.

Tip You can use assert statements to restrict array sizes in most cases. When expanding an
array inside a loop, this strategy does not work if the number of loop runs is known only at run
time.

 Provide Maximum Size for Variable-Size Arrays

35-21

• Restrict Concatenations in a Loop Using coder.varsize with Upper Bounds

You can expand arrays beyond their initial size by concatenation. When you concatenate additional
elements inside a loop, there are two syntax rules for expanding arrays.

1 Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant, you can expand it by
concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements
 out = zeros(1,in);
 for i=1:5
 out = [out 0];
 end

2 Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as variable-size using
coder.varsize:

function out=ExpandArray() % Expand an array by five elements
 out = zeros(1,5);
 coder.varsize('out');
 for i=1:5
 out = [out 0];
 end

Either case leads to dynamic memory allocation. To prevent dynamic memory allocation in such
cases, use coder.varsize with explicit upper bounds. This example shows how to use
coder.varsize with explicit upper bounds:

Example 35.1. Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average of an N-element
subset of an array:

 function avg=RunningAverage(N)

% Array whose elements are to be averaged
 NumArray=[1 6 8 2 5 3];

% Initialize average:
% These will also be the first two elements of the function output
 avg=[0 0];

% Place a bound on the argument
 coder.varsize('avg',[1 8]);

% Loop to calculate running average
 for i=1:N
 s=0;
 s=s+sum(NumArray(1:i));
 avg=[avg s/i];
 % Increase the size of avg as required by concatenation
 end

35 Generate Efficient and Reusable Code

35-22

The output, avg, is an array that you can expand as required to accommodate the running
averages. As a new running average is calculated, it is added to the array avg through
concatenation, thereby expanding the array.

Because the maximum number of running averages is equal to the number of elements in
NumArray, you can supply an explicit upper bound for avg in the coder.varsize statement.
In this example, the upper bound is 8 (the two initial elements plus the six elements of
NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned an array of size 8 (static memory allocation). The
function definition for RunningAverage appears as follows (using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])
3 By contrast, if you remove the explicit upper bound, the generated code dynamically allocates

avg.

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');
4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby allowing dynamic
memory allocation. The function definition for RunningAverage appears as follows (using
built-in C types):

void Test(double N, emxArray_real_T *avg)

Note Dynamic memory allocation also occurs if you precede coder.varsize('avg') with
the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations within the loop.
• Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an argument and returns
array, out, having the same elements as in, but reshaped as an m-by-n-by-... matrix. If one of the
size variables m,n,.... is not a compile-time constant, then dynamic memory allocation of out
takes place.

To avoid dynamic memory allocation, use an assert statement before the reshape statement to
restrict the size variables m,n,... to numel(in). This example shows how to use an assert
statement before a reshape statement:

 Provide Maximum Size for Variable-Size Arrays

35-23

Example 35.2. Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and reshapes a matrix,
mat, to have N rows:

 function [out1,out2] = ReshapeMatrix(N)

 mat = [1 2 3 4 5; 4 5 6 7 8]
% Since mat has 10 elements, N must be a factor of 10
% to pass as argument to reshape

 out1 = reshape(mat,N,[]);
% N is not restricted

 assert(N < numel(mat));
% N is restricted to number of elements in mat
 out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input argument does not
have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size 100 (=10 X 10) in
the generated code.

Tip If your system has limited memory, do not use the assert statement in this way. For an
n-element matrix, the assert statement creates an n-by-n matrix, which might be large.

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 35-20
• “Disable Dynamic Memory Allocation During Code Generation” on page 35-25
• “Set Dynamic Memory Allocation Threshold” on page 35-26

More About
• “Dynamic Memory Allocation and Performance” on page 35-19

35 Generate Efficient and Reusable Code

35-24

Disable Dynamic Memory Allocation During Code Generation
To disable dynamic memory allocation using the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Memory tab, under Variable Sizing Support, set Dynamic memory allocation to

Never.

To disable dynamic memory allocation at the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');
2 Set the DynamicMemoryAllocation property of the configuration object to Off:

cfg.DynamicMemoryAllocation = 'Off';

If a variable-size array in the MATLAB code does not have a maximum upper bound, disabling
dynamic memory allocation leads to a code generation error. Therefore, you can identify variable-size
arrays in your MATLAB code that do not have a maximum upper bound. These arrays are the arrays
that are dynamically allocated in the generated code.

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 35-20
• “Provide Maximum Size for Variable-Size Arrays” on page 35-21
• “Set Dynamic Memory Allocation Threshold” on page 35-26

More About
• “Dynamic Memory Allocation and Performance” on page 35-19

 Disable Dynamic Memory Allocation During Code Generation

35-25

Set Dynamic Memory Allocation Threshold
This example shows how to specify a dynamic memory allocation threshold for variable-size arrays.
Dynamic memory allocation optimizes storage requirements for variable-size arrays, but causes
slower execution of generated code. Instead of disabling dynamic memory allocation for all variable-
size arrays, you can disable dynamic memory allocation for arrays less than a certain size.

Specify this threshold when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static memory
allocation can speed up generated code. Static memory allocation can lead to unused storage
space. However, you can decide that the unused storage space is not a significant consideration
for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use dynamic
memory allocation, you can significantly reduce storage requirements.

Set Dynamic Memory Allocation Threshold Using the MATLAB Coder
App
1 To open the Generate dialog box, on the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Memory tab, select the Enable variable-sizing check box.
4 Set Dynamic memory allocation to For arrays with max size at or above

threshold.
5 Set Dynamic memory allocation threshold to the value that you want.

The Dynamic memory allocation threshold value is measured in bytes. Based on information
from the target hardware settings, the software estimates the size of the array that a certain
value of DynamicMemoryAllocationThreshold can accommodate. This estimate excludes
possible C compiler optimizations such as putting variables in registers.

Set Dynamic Memory Allocation Threshold at the Command Line
1 Create a configuration object for code generation. Use coder.config with arguments

'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');
2 Set DynamicMemoryAllocation to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';
3 Set the property, DynamicMemoryAllocationThreshold, to the value that you want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured in bytes. Based on
information from the target hardware settings, the software estimates the size of the array that a
certain value of DynamicMemoryAllocationThreshold can accommodate. This estimate
excludes possible C compiler optimizations such as putting variables in registers.

35 Generate Efficient and Reusable Code

35-26

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 35-20
• “Provide Maximum Size for Variable-Size Arrays” on page 35-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 35-25

More About
• “Dynamic Memory Allocation and Performance” on page 35-19

 Set Dynamic Memory Allocation Threshold

35-27

Optimize Dynamic Array Access
You can make the dynamic arrays in the code run faster by using the configuration property
CacheDynamicArrayDataPointer. This property hoists the data pointer to a temporary variable.
This temporary variable is then used to access matrix data in the case of dynamic arrays.

By default, the property is enabled for MEX, static library, dynamic linked library, and executable
configurations. The cache dynamic array data pointer can bring down the execution time of dynamic
arrays almost equal to the execution time of static arrays. This property also helps to improve the
readability of the code in many cases.

Disable Cache Dynamic Array Data Pointer Property
To disable the property using the MATLAB Coder app:

1 Open the Generate dialog box. On the Generate Code page, click the Generate arrow .
2 Click More Settings.
3 On the Advanced tab, set Cache dynamic array data to No.

To disable the property at the command line:

1 In the MATLAB workspace, define the configuration object, using coder.config with
arguments 'mex', 'lib', 'dll', or 'exe' (depending on your requirements).

cfg = coder.config('lib');
2 Set the CacheDynamicArrayDataPointer property of the configuration object to false:

cfg.CacheDynamicArrayDataPointer = false;

Compare Generated C Code
Compare the generated C code to the enabled cache dynamic array data pointer and the disabled
cache dynamic array data pointer.

Consider a function matrixAdd.

function c = matrixAdd(a,b) %#codegen
c = a+b;
end

Define the configuration object and generate C code by using the codegen command.

1 To generate C code with the cache dynamic array data pointer enabled:

cfg = coder.config('lib');
codegen -config cfg matrixAdd -args {coder.typeof(0, [1 Inf]), coder.typeof(0, [1 Inf])} -report

Code generation successful: View report
2 To generate C code with the cache dynamic array data pointer disabled:

cfg = coder.config('lib');
cfg.CacheDynamicArrayDataPointer = false;
codegen -config cfg matrixAdd -args {coder.typeof(0, [1 Inf]), coder.typeof(0, [1 Inf])} -report

35 Generate Efficient and Reusable Code

35-28

Code generation successful: View report

Open the report and inspect the generated code.

This table compares the generated C codes. When the property is enabled, temporary variables such
as *a_data, *b_data, and *c_data are included in the generated code. The use of temporary
variables eliminates the need for double-pointer dereferencing to access the matrix data. Thus
improving the execution time of dynamic arrays in the generated C code.

Cache Dynamic Array Data Pointer Enabled Cache Dynamic Array Data Pointer Disabled
void matrixAdd(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *c)
{
 double *a_data;
 double *b_data;
 double *c_data;
 int i;
 b_data = b->data;
 a_data = a->data;
 if (a->size[1] == b->size[1]) {
 int loop_ub;
 i = c->size[0] * c->size[1];
 c->size[0] = 1;
 c->size[1] = a->size[1];
 emxEnsureCapacity_real_T(c, i);
 c_data = c->data;
 loop_ub = a->size[1];
 for (i = 0; i < loop_ub; i++) {
 c_data[i] = a_data[i] + b_data[i];
 }
 } else {
 plus(c, a, b);
 }
}

void matrixAdd(const emxArray_real_T *a, const emxArray_real_T *b,
 emxArray_real_T *c)
{
 int i;
 if (a->size[1] == b->size[1]) {
 int loop_ub;
 i = c->size[0] * c->size[1];
 c->size[0] = 1;
 c->size[1] = a->size[1];
 emxEnsureCapacity_real_T(c, i);
 loop_ub = a->size[1];
 for (i = 0; i < loop_ub; i++) {
 c->data[i] = a->data[i] + b->data[i];
 }
 } else {
 plus(c, a, b);
 }
}

Limitations
The cache dynamic array data pointer is not supported for:

• C++ coder::array
• GPU Coder
• Code Replacement Library (CRL) with data alignment specification

See Also
codegen | coder.config

More About
• “Dynamic Memory Allocation and Performance” on page 35-19

 Optimize Dynamic Array Access

35-29

Excluding Unused Paths from Generated Code
In certain situations, you do not need some branches of an: if, elseif, else statement, or a
switch, case, otherwise statement in your generated code. For instance:

• You have a MATLAB function that performs multiple tasks determined by a control-flow variable.
You might not need some of the tasks in the code generated from this function.

• You have an if/elseif/if statement in a MATLAB function performing different tasks based on
the nature (type/value) of the input. In some cases, you know the nature of the input beforehand.
If so, you do not need some branches of the if statement.

You can prevent code generation for the unused branches of an if/elseif/else statement or a
switch/case/otherwise statement. Declare the control-flow variable as a constant. The code
generator produces code only for the branch that the control-flow variable chooses.

See Also

Related Examples
• “Prevent Code Generation for Unused Execution Paths” on page 35-31

35 Generate Efficient and Reusable Code

35-30

Prevent Code Generation for Unused Execution Paths
In this section...
“Prevent Code Generation When Local Variable Controls Flow” on page 35-31
“Prevent Code Generation When Input Variable Controls Flow” on page 35-31

If a variable controls the flow of an: if, elseif, else statement, or a switch, case,
otherwise statement, declare it as constant so that code generation takes place for one branch of
the statement only.

Depending on the nature of the control-flow variable, you can declare it as constant in two ways:

• If the variable is local to the MATLAB function, assign it to a constant value in the MATLAB code.
For an example, see “Prevent Code Generation When Local Variable Controls Flow” on page 35-
31.

• If the variable is an input to the MATLAB function, you can declare it as constant using
coder.Constant. For an example, see “Prevent Code Generation When Input Variable Controls
Flow” on page 35-31.

Prevent Code Generation When Local Variable Controls Flow
1 Define a function SquareOrCube which takes an input variable, in, and squares or cubes its

elements based on whether the choice variable, ch, is set to s or c:

function out = SquareOrCube(ch,in) %#codegen
 if ch=='s'
 out = in.^2;
 elseif ch=='c'
 out = in.^3;
 else
 out = 0;
 end

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix based on the input for
ch.

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice variable, ch, and the
other branches of the if/elseif/if statement do not appear in the generated code.

Prevent Code Generation When Input Variable Controls Flow
1 Define a function MathFunc, which performs different mathematical operations on an input, in,

depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen
 %# codegen

 Prevent Code Generation for Unused Execution Paths

35-31

 switch flag
 case 1
 out=sin(in);
 case 2
 out=cos(in);
 otherwise
 out=sqrt(in);
 end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements of a 2-by-2 matrix
based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant using
coder.Constant:

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The variable, flag, and
the switch/case/otherwise statement do not appear in the generated code.

See Also

More About
• “Excluding Unused Paths from Generated Code” on page 35-30

35 Generate Efficient and Reusable Code

35-32

Generate Code with Parallel for-Loops (parfor)
This example shows how to generate C code for a MATLAB algorithm that contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10
 a(i,:)=real(fft(r(i,:)));
end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the generated C code
executes the loop iterations in parallel on the available number of cores.

3 To specify a maximum number of threads, rewrite the function test_parfor as follows:

function a = test_parfor(u) %#codegen
a=ones(10,256);
r=rand(10,256);
parfor (i=1:10,u)
 a(i,:)=real(fft(r(i,:)));
end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u, is a scalar double.
At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the number of cores
specified by the input, u. If less than u cores are available, the iterations run on the cores
available at the time of the call.

See Also

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 33-14
• “Classification of Variables in parfor-Loops” on page 33-20
• “Reduction Assignments in parfor-Loops” on page 33-19

 Generate Code with Parallel for-Loops (parfor)

35-33

Minimize Redundant Operations in Loops
This example shows how to minimize redundant operations in loops. When a loop operation does not
depend on the loop index, performing it inside a loop is redundant. This redundancy often goes
unnoticed when you are performing multiple operations in a single MATLAB statement inside a loop.
For example, in the following code, the inverse of the matrix B is being calculated 100 times inside
the loop although it does not depend on the loop index:

for i=1:100
 C=C + inv(B)*A^i*B;
 end

Performing such redundant loop operations can lead to unnecessary processing. To avoid
unnecessary processing, move operations outside loops as long as they do not depend on the loop
index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms in the following
power series expansion:

C = 1 + B−1AB + B−1A2B + ...

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
 C=zeros(size(A));

% Perform the series sum
 for i=1:n
 C=C+inv(B)*A^i*B;
 end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input arguments for A and B:

X = coder.typeof(zeros(4));
codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

In the generated code, the inversion of B is performed n times inside the loop. It is more
economical to perform the inversion operation once outside the loop because it does not depend
on the loop index.

3 Modify SeriesFunc as follows:

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
 C=zeros(size(A));

% Perform the inversion outside the loop
 inv_B=inv(B);

% Perform the series sum
 for i=1:n
 C=C+inv_B*A^i*B;
 end

This procedure performs the inversion of B only once, leading to faster execution of the
generated code.

35 Generate Efficient and Reusable Code

35-34

Unroll for-Loops and parfor-Loops
When the code generator unrolls a for-loop or parfor-loop, instead of producing a loop in the
generated code, it produces a copy of the loop body for each iteration. For small, tight loops,
unrolling can improve performance. However, for large loops, unrolling can significantly increase
code generation time and generate inefficient code.

Force for-Loop Unrolling by Using coder.unroll
The code generator uses heuristics to determine when to unroll a for-loop. To force loop unrolling,
use coder.unroll. This affects only the for loop that is immediately after coder.unroll. For
example:

function z = call_myloop()
%#codegen
z = myloop(5);
end

function b = myloop(n)
b = zeros(1,n);
coder.unroll();
for i = 1:n
 b(i)=i+n;
end
end

Here is the generated code for the for-loop:

 z[0] = 6.0;
 z[1] = 7.0;
 z[2] = 8.0;
 z[3] = 9.0;
 z[4] = 10.0;

To control when a for-loop is unrolled, use the coder.unroll flag argument. For example, unroll
the loop only when the number of iterations is less than 10.

function z = call_myloop()
%#codegen
z = myloop(5);
end

function b = myloop(n)
unroll_flag = n < 10;
b = zeros(1,n);
coder.unroll(unroll_flag);
for i = 1:n
 b(i)=i+n;
end
end

To unroll a for-loop, the code generator must be able to determine the bounds of the for-loop. For
example, code generation fails for the following code because the value of n is not known at code
generation time.

function b = myloop(n)
b = zeros(1,n);

 Unroll for-Loops and parfor-Loops

35-35

coder.unroll();
for i = 1:n
 b(i)=i+n;
end
end

Set Loop Unrolling Threshold for All for-Loops and parfor-Loops in the
MATLAB Code
If a for-loop is not preceded by coder.unroll, the code generator uses a loop unrolling threshold
to determine whether to automatically unroll the loop. If the number of loop iterations is less than the
threshold, the code generator unrolls the loop. If the number of iterations is greater than or equal to
the threshold, the code generator produces a for-loop. By using the loop unrolling threshold, you can
also unroll parfor-loops.

The default value of the threshold is 5. By modifying this threshold, you can fine-tune loop unrolling.
To modify the threshold:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set the LoopUnrollThreshold property.

• In the MATLAB Coder app, on the Speed tab, set Loop unrolling threshold.

Unlike the coder.unroll directive, the threshold applies to all for-loops in your MATLAB code. The
threshold can also apply to some for-loops produced during code generation.

For an individual loop, a coder.unroll directive takes precedence over the loop unrolling
optimization.

Unroll Simple for-Loops

Consider this function:

function [x,y] = call_myloops()
%#codegen
x = myloop1(5);
y = myloop2(5);
end

function b = myloop1(n)
b = zeros(1,n);
for i = 1:n
 b(i)=i+n;
end
end

function b = myloop2(n)
b = zeros(1,n);
for i = 1:n
 b(i)=i*n;
end
end

To set the value of the loop unrolling threshold to 6, and then generate a static library, run:

35 Generate Efficient and Reusable Code

35-36

cfg = coder.CodeConfig;
cfg.LoopUnrollThreshold = 6;
codegen call_myloops -config cfg

This is the generated code for the for-loops. The code generator unrolled both for-loops.

 x[0] = 6.0;
 y[0] = 5.0;
 x[1] = 7.0;
 y[1] = 10.0;
 x[2] = 8.0;
 y[2] = 15.0;
 x[3] = 9.0;
 y[3] = 20.0;
 x[4] = 10.0;
 y[4] = 25.0;

Unroll Nested for-Loops

Suppose that your MATLAB code has two nested for-loops.

• If the number of iterations of the inner loop is less than the threshold, the code generator first
unrolls the inner loop. Subsequently, if the product of the number of iterations of the two loops is
also less than the threshold, the code generator unrolls the outer loop. Otherwise the code
generator produces the outer for-loop.

• If the number of iterations of the inner loop is equal to or greater than the threshold, the code
generator produces both for-loops.

This behavior is generalized to multiple nested for-loops.

Consider the function nestedloops_1 with two nested for-loops:

function y = nestedloops_1
%#codegen
y = zeros(2,2);
for i = 1:2
 for j = 1:2
 y(i,j) = i+j;
 end
end
end

Generate code for nestedloops_1 with the loop unrolling threshold set to the default value of 5.
Here is the generated code for the for-loops. The code generator unrolled both for-loops because
the product of the number of iterations of the two loops is 4, which is less than the threshold.

 y[0] = 2.0;
 y[2] = 3.0;
 y[1] = 3.0;
 y[3] = 4.0;

Now, generate code for the function nestedloops_2 with the loop unrolling threshold set to the
default value of 5.

function y = nestedloops_2
%#codegen
y = zeros(3,2);

 Unroll for-Loops and parfor-Loops

35-37

for i = 1:3
 for j = 1:2
 y(i,j) = i+j;
 end
end
end

The number of iterations of the inner loop is less than the threshold. The code generator unrolls the
inner loop. But the product of the number of iterations of the two loops is 6, which is greater than the
threshold. Therefore, the code generator produces code for the outer for-loop. Here is the generated
code for the for-loops.

 for (i = 0; i < 3; i++) {
 y[i] = (double)i + 2.0;
 y[i + 3] = ((double)i + 1.0) + 2.0;
 }

Unroll parfor-Loops

Consider this MATLAB function:

function [x,y] = parallel_loops()
%#codegen
x = myloop1(5);
y = myloop2(6);
end

function b = myloop1(n)
b = zeros(1,n);
parfor (i = 1:n)
 b(i)=i+n;
end
end

function b = myloop2(n)
b = zeros(1,n);
parfor (i = 1:n)
 b(i)=i*n;
end
end

Set the value of the loop unrolling threshold to 6, and then generate a static library.

cfg = coder.CodeConfig;
cfg.LoopUnrollThreshold = 6;
codegen parallel_loops -config cfg

This is the generated code.

static void myloop1(double b[5])
{
 b[0] = 6.0;
 b[1] = 7.0;
 b[2] = 8.0;
 b[3] = 9.0;
 b[4] = 10.0;
}
static void myloop2(double b[6])

35 Generate Efficient and Reusable Code

35-38

{ int i;
#pragma omp parallel for num_threads(omp_get_max_threads())

 for (i = 0; i < 6; i++) {
 b[i] = ((double)i + 1.0) * 6.0;
 }}
void parallel_loops(double x[5], double y[6])
{
 if (!isInitialized_parallel_loops) {
 parallel_loops_initialize();
 }
 myloop1(x);
 myloop2(y);}

The code generator unrolled only the parfor-loop that has five iterations, which is less than the
threshold value.

See Also
coder.unroll

More About
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 37-14

 Unroll for-Loops and parfor-Loops

35-39

Disable Support for Integer Overflow or Nonfinites
The code generator produces supporting code for these situations:

• The result of an integer operation falls outside the range that a data type can represent, known as
integer overflow.

• An operation generates nonfinite values (inf and NaN).

If you know that these situations do not occur, to reduce the size of the generated code and increase
its speed, you can suppress generation of the supporting code. However, if you suppress generation
of the supporting code and one of these situations occurs, the behavior of the generated code might
not match the behavior of the original MATLAB code.

Disable Support for Integer Overflow
By default, the code generator produces code to handle integer overflow. Overflows saturate to either
the minimum or maximum value that the data type can represent. If you know that your code does
not depend on integer overflow support, to improve performance, you can disable the generation of
the code that handles integer overflow. To disable integer overflow support:

• In a code generation configuration object for MEX or standalone code (static library, dynamically
linked library, or executable program), set the SaturateOnIntegerOverflow property to
false.

• In the MATLAB Coder app, set Saturate on integer overflow to No.

Note Do not disable support for integer overflow unless you know that your code does not depend on
it. If you disable the support and run-time checking is enabled, the generated code produces an error
for integer overflow. If you disable integer overflow support and also disable run-time checking, the
behavior for integer overflow is undefined. Most C compilers wrap on overflow.

To check whether your code depends on integer overflow support:

1 Disable integer overflow support.
2 Enable checks to detect integer overflow at run time.

• For MEX, enable integrity checking. See “Control Run-Time Checks” on page 33-12.
• For standalone code (static library, dynamically linked library, or executable program), enable

run-time checks. See “Generate Standalone C/C++ Code That Detects and Reports Run-Time
Errors” on page 29-20.

3 Run the generated code over the full range of input values. If the generated code detects integer
overflow, it produces an error.

Disable Support for Nonfinite Numbers
By default, for standalone code (static library, dynamically linked library, or executable program), the
code generator produces code to handle nonfinite numbers (inf and NaN). If you know that your code
does not depend on nonfinite number support, to improve the performance of the generated code,
you can disable the support. To disable nonfinite support:

35 Generate Efficient and Reusable Code

35-40

• In a code generation configuration object, set the SupportNonFinite property to false.
• In the MATLAB Coder app, set Support nonfinite numbers to No.

If you disable nonfinite support, test that your generated code behaves as expected.

See Also

More About
• “Configure Build Settings” on page 27-13
• “Control Run-Time Checks” on page 33-12
• “Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors” on page 29-20

 Disable Support for Integer Overflow or Nonfinites

35-41

Integrate External/Custom Code
This example shows how to integrate external or custom code to enhance performance of generated
code. Although MATLAB Coder generates optimized code for most applications, you might have
custom code optimized for your specific requirements. For example:

• You have custom libraries optimized for your target environment.
• You have custom libraries for functions not supported by MATLAB Coder.
• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by MATLAB Coder.

This example illustrates how to integrate the function cublasSgemm from the NVIDIA CUDA Basic
Linear Algebra Subroutines (CUBLAS) library in generated code. This function performs matrix
multiplication on a Graphics Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class coder.ExternalDependency.
ExternalLib_API defines an interface to the CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API to be used for
error messages.

• isSupportedContext: Determines if the build context supports the CUBLAS library.
• updateBuildInfo: Adds header file paths and link files to the build information.
• GPU_MatrixMultiply: Defines the interface to the CUBLAS library function cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'ExternalLib_API';
 end

 function tf = isSupportedContext(ctx)
 if ctx.isMatlabHostTarget()
 tf = true;
 else
 error('CUBLAS library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, ctx)
 [~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

 % Include header file path
 % Include header files later using coder.cinclude
 hdrFilePath = 'C:\My_Includes';
 buildInfo.addIncludePaths(hdrFilePath);

 % Include link files
 linkFiles = strcat('libcublas', linkLibExt);

35 Generate Efficient and Reusable Code

35-42

 linkPath = 'C:\My_Libs';
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 linkFiles = strcat('libcudart', linkLibExt);
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 end

 %API for library function 'cuda_MatrixMultiply'
 function C = GPU_MatrixMultiply(A, B)
 assert(isa(A,'single'), 'A must be single.');
 assert(isa(B,'single'), 'B must be single.');

 if(coder.target('MATLAB'))
 C=A*B;
 else

 % Include header files
 % for external functions and typedefs
 % Header path included earlier using updateBuildInfo
 coder.cinclude('"cuda_runtime.h"');
 coder.cinclude('"cublas_v2.h"');

 % Compute dimensions of input matrices
 m = int32(size(A, 1));
 k = int32(size(A, 2));
 n = int32(size(B, 2));

 % Declare pointers to matrices on destination GPU
 d_A = coder.opaque('float*');
 d_B = coder.opaque('float*');
 d_C = coder.opaque('float*');

 % Compute memory to be allocated for matrices
 % Single = 4 bytes
 size_A = m*k*4;
 size_B = k*n*4;
 size_C = m*n*4;

 % Define error variables
 error = coder.opaque('cudaError_t');
 cudaSuccessV = coder.opaque('cudaError_t', ...
 'cudaSuccess');

 % Assign memory on destination GPU
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_A), size_A);
 assert(error == cudaSuccessV, ...
 'cudaMalloc(A) failed');
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_B), size_B);
 assert(error == cudaSuccessV, ...

 Integrate External/Custom Code

35-43

 'cudaMalloc(B) failed');
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_C), size_C);
 assert(error == cudaSuccessV, ...
 'cudaMalloc(C) failed');

 % Define direction of copying
 hostToDevice = coder.opaque('cudaMemcpyKind', ...
 'cudaMemcpyHostToDevice');

 % Copy matrices to destination GPU
 error = coder.ceval('cudaMemcpy', ...
 d_A, coder.rref(A), size_A, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

 error = coder.ceval('cudaMemcpy', ...
 d_B, coder.rref(B), size_B, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

 % Define type and size for result
 C = zeros(m, n, 'single');

 error = coder.ceval('cudaMemcpy', ...
 d_C, coder.rref(C), size_C, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 % Define handle variables for external library
 handle = coder.opaque('cublasHandle_t');
 blasSuccess = coder.opaque('cublasStatus_t', ...
 'CUBLAS_STATUS_SUCCESS');

 % Initialize external library
 ret = coder.opaque('cublasStatus_t');
 ret = coder.ceval('cublasCreate', coder.wref(handle));
 assert(ret == blasSuccess, 'cublasCreate failed');

 TRANSA = coder.opaque('cublasOperation_t', ...
 'CUBLAS_OP_N');
 alpha = single(1);
 beta = single(0);

 % Multiply matrices on GPU
 ret = coder.ceval('cublasSgemm', handle, ...
 TRANSA,TRANSA,m,n,k, ...
 coder.rref(alpha),d_A,m, ...
 d_B,k, ...
 coder.rref(beta),d_C,k);

 assert(ret == blasSuccess, 'cublasSgemm failed');

 % Copy result back to local host
 deviceToHost = coder.opaque('cudaMemcpyKind', ...
 'cudaMemcpyDeviceToHost');
 error = coder.ceval('cudaMemcpy', coder.wref(C), ...
 d_C, size_C, deviceToHost);
 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

35 Generate Efficient and Reusable Code

35-44

 end
 end
 end
end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API, include the following
line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that solely performs this
matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen
 C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the CUBLAS libraries, set the
target language for code generation to C++.

cfg=coder.config('mex');
cfg.TargetLang='C++';

4 Generate code for Matrix_Multiply using cfg as the configuration object and two 2 X 2
matrices of type single as arguments. Since cublasSgemm supports matrix multiplication for
data type float, the corresponding MATLAB matrices must have type single.

codegen -config cfg Matrix_Multiply ...
 -args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2 identity matrices of
type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also
coder.ceval | coder.opaque | coder.rref | coder.wref | assert |
coder.ExternalDependency | coder.BuildConfig

More About
• “Develop Interface for External C/C++ Code” on page 34-12

 Integrate External/Custom Code

35-45

MATLAB Coder Optimizations in Generated Code
In this section...
“Constant Folding” on page 35-46
“Loop Fusion” on page 35-47
“Successive Matrix Operations Combined” on page 35-47
“Unreachable Code Elimination” on page 35-47
“memcpy Calls” on page 35-48
“memset Calls” on page 35-48

To improve the execution speed and memory usage of generated code, MATLAB Coder introduces the
following optimizations:

Constant Folding
When possible, the code generator evaluates expressions in your MATLAB code that involve compile-
time constants only. In the generated code, it replaces these expressions with the result of the
evaluations. This behavior is known as constant folding. Because of constant folding, the generated
code does not have to evaluate the constants during execution.

The following example shows MATLAB code that is constant-folded during code generation. The
function MultiplyConstant multiplies every element in a matrix by a scalar constant. The function
evaluates this constant using the product of three compile-time constants, a, b, and c.

function out=MultiplyConstant(in) %#codegen
 a=pi^4;
 b=1/factorial(4);
 c=exp(-1);
 out=in.*(a*b*c);
end

The code generator evaluates the expressions involving compile-time constants, a,b, and c. It
replaces these expressions with the result of the evaluation in generated code.

Constant folding can occur when the expressions involve scalars only. To explicitly enforce constant
folding of expressions in other cases, use the coder.const function. For more information, see “Fold
Function Calls into Constants” on page 35-14.

Control Constant Folding

You can control the maximum number of instructions that can be constant-folded from the command
line or the project settings dialog box.

• At the command line, create a configuration object for code generation. Set the property
ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');
cfg.ConstantFoldingTimeout = 200;

• Using the app, in the project settings dialog box, on the All Settings tab, set the field Constant
folding timeout to the value that you want.

35 Generate Efficient and Reusable Code

35-46

Loop Fusion
When possible, the code generator fuses successive loops with the same number of runs into a single
loop in the generated code. This optimization reduces loop overhead.

The following code contains successive loops, which are fused during code generation. The function
SumAndProduct evaluates the sum and product of the elements in an array Arr. The function uses
two separate loops to evaluate the sum y_f_sum and product y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen
 y_f_sum = 0;
 y_f_prod = 1;
 for i = 1:length(Arr)
 y_f_sum = y_f_sum+Arr(i);
 end
 for i = 1:length(Arr)
 y_f_prod = y_f_prod*Arr(i);
 end

The code generated from this MATLAB code evaluates the sum and product in a single loop.

Successive Matrix Operations Combined
When possible, the code generator converts successive matrix operations in your MATLAB code into a
single loop operation in generated code. This optimization reduces excess loop overhead involved in
performing the matrix operations in separate loops.

The following example contains code where successive matrix operations take place. The function
ManipulateMatrix multiplies every element of a matrix Mat with a factor. To every element in
the result, the function then adds a shift:

function Res=ManipulateMatrix(Mat,factor,shift)
 Res=Mat*factor;
 Res=Res+shift;
end

The generated code combines the multiplication and addition into a single loop operation.

Unreachable Code Elimination
When possible, the code generator suppresses code generation from unreachable procedures in your
MATLAB code. For instance, if a branch of an if, elseif, else statement is unreachable, then
code is not generated for that branch.

The following example contains unreachable code, which is eliminated during code generation. The
function SaturateValue returns a value based on the range of its input x.

function y_b = SaturateValue(x) %#codegen
 if x>0
 y_b = x;
 elseif x>10 %This is redundant
 y_b = 10;
 else
 y_b = -x;
 end

 MATLAB Coder Optimizations in Generated Code

35-47

The second branch of the if, elseif, else statement is unreachable. If the variable x is greater
than 10, it is also greater than 0. Therefore, the first branch is executed in preference to the second
branch.

MATLAB Coder does not generate code for the unreachable second branch.

memcpy Calls
To optimize generated code that copies consecutive array elements, the code generator tries to
replace the code with a memcpy call. A memcpy call can be more efficient than code, such as a for-
loop or multiple, consecutive element assignments.

See “memcpy Optimization” on page 35-51.

memset Calls
To optimize generated code that assigns a literal constant to consecutive array elements, the code
generator tries to replace the code with a memset call. A memset call can be more efficient than
code, such as a for-loop or multiple, consecutive element assignments.

See “memset Optimization” on page 35-52.

35 Generate Efficient and Reusable Code

35-48

Use coder.const with Extrinsic Function Calls
You can use coder.const to fold a function call into a constant in the generated code. The code
generator evaluates the function call and replaces it with the result of the evaluation. If you make the
function call extrinsic, the function call is evaluated by MATLAB instead of by the code generator. Use
coder.const with an extrinsic function call to:

• Reduce code generation time, especially for constant-folding of computationally intensive
expressions.

• Force constant-folding when coder.const is unable to constant-fold.

To make an individual function call extrinsic, use feval. To make all calls to a particular function
extrinsic, use coder.extrinsic.

Reduce Code Generation Time by Using coder.const with feval
Consider this function that folds a computationally intensive expression besselj(3, zTable) into a
constant:

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(besselj(3,zTable));
j = interp1(zTable,jTable,z);
end

To make code generation of fcn faster, evaluate besselj(3, zTable) in MATLAB by using feval.

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

Force Constant-Folding by Using coder.const with feval
Consider this function that folds the function call rand(1,100) into a constant.

function yi = fcn(xi)
y = coder.const(rand(1,100));
yi = interp1(y,xi);
end

Code generation ends with an error.

codegen fcn -args {0} -config:lib -report

??? The input to coder.const cannot be reduced to a constant.

To successfully constant-fold rand(1,100), evaluate it in MATLAB by using feval.

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

 Use coder.const with Extrinsic Function Calls

35-49

See Also
coder.const | coder.extrinsic

More About
• “Fold Function Calls into Constants” on page 35-14
• “Use MATLAB Engine to Execute a Function Call in Generated Code” on page 20-8

35 Generate Efficient and Reusable Code

35-50

memcpy Optimization
To optimize generated code that copies consecutive array elements, the code generator tries to
replace the code with a memcpy call. A memcpy call can be more efficient than a for-loop or multiple,
consecutive element assignments. This table shows examples of generated C code with and without
the memcpy optimization.

Code Generated with memcpy Optimization Code Generated Without memcpy
Optimization

 memcpy(&C[0], &A[0], 10000U * sizeof(double)); for (i0 = 0; i0 < 10000; i0++) {
 C[i0] = A[i0];

 memcpy(&Z[0], &X[0],1000U * sizeof(double)); Z[0] = X[0];
Z[1] = X[1];
Z[2] = X[2];
...
Z[999] = X[999];

To enable or disable the memcpy optimization:

• At the command line, set the code configuration object property EnableMemcpy to true or
false. The default value is true.

• In the MATLAB Coder app, set Use memcpy for vector assignment to Yes or No. The default
value is Yes.

When the memcpy optimization is enabled, the use of memcpy depends on the number of bytes to
copy. The number of bytes to copy is the number of array elements multiplied by the number of bytes
required for the C/C++ data type.

• If the number of elements to copy is known at compile time, then the code generator produces a
memcpy call only when the number of bytes is greater than or equal to the memcpy threshold.

• If the number of elements is not known at compile time, then the code generator produces a
memcpy call without regard to the threshold.

The default memcpy threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

The memset optimization also uses the memcpy threshold.

In certain cases, the code generator can produce a memcpy call without regard to the EnableMemcpy
or MemcpyThreshold parameters, or their equivalent settings in the app.

See Also

More About
• “memset Optimization” on page 35-52
• “MATLAB Coder Optimizations in Generated Code” on page 35-46
• “Optimization Strategies” on page 35-3

 memcpy Optimization

35-51

memset Optimization
To optimize generated code that assigns a literal constant to consecutive array elements, the code
generator tries to replace the code with a memset call. A memset call can be more efficient than a
for-loop or multiple, consecutive element assignments. This table shows examples of generated C
code with and without memset.

Code Generated with memset Optimization Code Generated Without memset
Optimization

 memset(&Y[0], 125, 100U * sizeof(signed char)); for (i = 0; i < 100; i++) {
 Y[i] = 125;

memset(&Z[0], 0, 1000U * sizeof(double)); Z[0] = 0.0;
Z[1] = 0.0;
Z[2] = 0.0;
...
Z[999] = 0.0;

The code generator can use the memset optimization for assignment of an integer constant or a
floating-point zero. The use of memset depends on:

• The size of the value to assign. The size must meet the requirements for a C/C++ memset call.
• The number of bytes to assign. The number of bytes to assign is the number of array elements

multiplied by the number of bytes required for the C/C++ data type.

• If the number of elements to assign is known at compile time, then the code generator
produces a memset call only when the number of bytes is greater than or equal to the
threshold.

• If the number of elements is not known at compile time, then the code generator produces a
memset call without regard to the threshold.

The memset optimization threshold is the same as the memcpy optimization threshold. The default
threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

For assignment of floating-point zero, to enable or disable the memset optimization:

• At the command line, set the code configuration object property InitFltsAndDblsToZero to
true or false. The default value is true.

• In the MATLAB Coder app, set Use memset to initialize floats and doubles to 0.0 to Yes or
No. The default value is Yes.

See Also

More About
• “memcpy Optimization” on page 35-51
• “MATLAB Coder Optimizations in Generated Code” on page 35-46
• “Optimization Strategies” on page 35-3

35 Generate Efficient and Reusable Code

35-52

Reuse Large Arrays and Structures
Variable reuse can reduce memory usage or improve execution speed, especially when your code has
large structures or arrays. However, variable reuse results in less readable code. If reduced memory
usage is more important than code readability, specify that you want the code generator to reuse your
variables in the generated code.

The code generator can reuse the name and memory of one variable for another variable when:

• Both variables have the same memory requirements.
• Memory access for one variable does not interfere with memory access for the other variable.

The code generator reuses your variable names for other variables or reuses other variable names for
your variables. For example, for code such as:

if (s>0)
 myvar1 = 0;
 ...
else
 myvar2 = 0;
 ...
end

the generated code can look like this code:

 if (s > 0.0) {
 myvar2 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

To specify that you want the code generator to reuse your variables:

• In a code generation configuration object, set the PreserveVariableNames parameter to
'None'.

• In the MATLAB Coder app, set Preserve variable names to None.

See Also

More About
• “Preserve Variable Names in Generated Code” on page 27-38
• “Optimization Strategies” on page 35-3
• “Configure Build Settings” on page 27-13

 Reuse Large Arrays and Structures

35-53

LAPACK Calls in Generated Code
To improve the execution speed of code generated for certain linear algebra functions, MATLAB
Coder can generate calls to LAPACK functions instead of generating the code for the linear algebra
functions. LAPACK is a software library for numerical linear algebra. MATLAB Coder uses the
LAPACKE C interface to LAPACK.

For MEX generation, if the input arrays for the linear algebra functions meet certain criteria, the
code generator produces LAPACK calls. For standalone code (library or executable program), by
default, the code generator does not produce LAPACK calls. If you specify that you want to generate
LAPACK calls, and the input arrays for the linear algebra functions meet the criteria, the code
generator produces LAPACK calls. See “Speed Up Linear Algebra in Generated Standalone Code by
Using LAPACK Calls” on page 35-55.

For MEX functions, the code generator uses the LAPACK library that is included with MATLAB.
MATLAB uses LAPACK in some linear algebra functions such as eig and svd. For standalone code,
the code generator uses the LAPACK library that you specify. See “Specify LAPACK Library” on page
35-55.

See Also

More About
• “Optimization Strategies” on page 35-3

External Websites
• www.netlib.org/lapack

35 Generate Efficient and Reusable Code

35-54

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lapacke.html
https://www.netlib.org/lapack/

Speed Up Linear Algebra in Generated Standalone Code by
Using LAPACK Calls

To improve the execution speed of code generated for certain linear algebra functions in standalone
(library or executable program) code, specify that you want MATLAB Coder to generate LAPACK
calls. LAPACK is a software library for numerical linear algebra. MATLAB Coder uses the LAPACKE C
interface to LAPACK. If you specify that you want to generate LAPACK calls, and the input arrays for
the linear algebra functions meet certain criteria, the code generator produces the LAPACK calls.
Otherwise, the code generator produces code for the linear algebra functions.

For LAPACK calls in standalone code, MATLAB Coder uses the LAPACK library that you specify.
Specify a LAPACK library that is optimized for your execution environment. See www.netlib.org/
lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations.

Specify LAPACK Library
To generate LAPACK calls in standalone code, you must have access to a LAPACK callback class. A
LAPACK callback class specifies the LAPACK library and LAPACKE header file for the LAPACK calls.
To indicate that you want to generate LAPACK calls and that you want to use a specific LAPACK
library, specify the name of the LAPACK callback class.

• At the command line, set the code configuration object property CustomLAPACKCallback to the
name of the callback class.

• In the MATLAB Coder app, set Custom LAPACK library callback to the name of the callback
class.

Write LAPACK Callback Class
To specify the locations of a particular LAPACK library and LAPACKE header file, write a LAPACK
callback class. Share the callback class with others who want to use this LAPACK library for LAPACK
calls in standalone code.

The callback class must derive from the abstract class coder.LAPACKCallback. Use the following
example callback class as a template.

classdef useMyLAPACK < coder.LAPACKCallback
 methods (Static)
 function hn = getHeaderFilename()
 hn = 'mylapacke_custom.h';
 end
 function updateBuildInfo(buildInfo, buildctx)
 buildInfo.addIncludePaths(fullfile(pwd,'include'));
 libName = 'mylapack';
 libPath = fullfile(pwd,'lib');
 [~,linkLibExt] = buildctx.getStdLibInfo();
 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
 '', true, true);
 buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
 buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');
 buildInfo.addDefines('LAPACK_ILP64');
 end
 end
end

 Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls

35-55

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/lapacke.html
https://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
https://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

You must provide the getHeaderFilename and updateBuildInfo methods. The
getHeaderFilename method returns the LAPACKE header file name. In the example callback class,
replace mylapacke_custom.h with the name of your LAPACKE header file. The updateBuildInfo
method provides the information required for the build process to link to the LAPACK library. Use
code like the code in the template to specify the location of header files and the full path name of the
LAPACK library. In the example callback class, replace mylapack with the name of your LAPACK
library.

If your compiler supports only complex data types that are represented as structures, include these
lines in the updateBuildInfo method.

buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

You must specify the integer type that your LAPACK library uses. Not specifying this integer type can
result in incorrect behaviors or crashes. Do one of the following:

• Include these lines in the updateBuildInfo method.

buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
buildInfo.addDefines('LAPACK_ILP64');

• Alternatively, you can directly specify the integer type that your LAPACK library uses. For
example, if the integer type is long long, include this line in the updateBuildInfo method.

buildInfo.addDefines('lapack_int=long long');

Generate LAPACK Calls by Specifying a LAPACK Callback Class
This example shows how to generate code that calls LAPACK functions in a specific LAPACK library.
For this example, assume that the LAPACK callback class useMyLAPACK specifies the LAPACK library
that you want to use.

1 Write a MATLAB function that calls a linear algebra function. For example, write a function
mysvd that calls the MATLAB function svd.

function s = mysvd(A)
 %#codegen
 s = svd(A);
end

2 Define a code configuration object for a static library, dynamically linked library, or executable
program. For example, define a configuration object for a dynamically linked library on a
Windows platform.

cfg = coder.config('dll');
3 Specify the LAPACK callback class useMyLAPACK.

cfg.CustomLAPACKCallback = 'useMyLAPACK';

The callback class must be on the MATLAB path.
4 Generate code. Specify that the input A is a 500-by-500 array of doubles.

codegen mysvd -args {zeros(500)} -config cfg -report

If A is large enough, the code generator produces a LAPACK call for svd. Here is an example of a call
to the LAPACK library function for svd.

35 Generate Efficient and Reusable Code

35-56

info_t = LAPACKE_dgesvd(LAPACK_COL_MAJOR, 'N', 'N', (lapack_int)500,
 (lapack_int)500, &A[0], (lapack_int)500, &S[0], NULL, (lapack_int)1, NULL,
 (lapack_int)1, &superb[0]);

Locate LAPACK Library in Execution Environment
The LAPACK library must be available in your execution environment. If your LAPACK library is
shared, use environment variables or linker options to specify the location of the LAPACK library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the rpath linker

option.
• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use the rpath

linker option.

To specify the rpath linker option, you can use the build information addLinkFlags method in the
updateBuildInfo method of your coder.LAPACKCallback class. For example, for a GCC
compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

See Also
coder.LAPACKCallback

More About
• “LAPACK Calls in Generated Code” on page 35-54
• “Optimization Strategies” on page 35-3

External Websites
• www.netlib.org/lapack
• www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

 Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls

35-57

https://www.netlib.org/lapack/
https://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

BLAS Calls in Generated Code
To improve the execution speed of code generated for certain low-level vector and matrix operations
(such as matrix multiplication), MATLAB Coder can generate calls to BLAS functions instead of
generating code for these operations. BLAS is a software library for low-level vector and matrix
computations that has several highly optimized machine-specific implementations. MATLAB Coder
uses the CBLAS C interface to BLAS.

For MEX generation, if the input arrays for the matrix functions meet certain criteria, the code
generator produces BLAS calls. For standalone code (library or executable program), by default, the
code generator does not produce BLAS calls. If you specify that you want to generate BLAS calls, and
the input arrays for the matrix functions meet the criteria, the code generator produces BLAS calls.

For MEX functions, the code generator uses the BLAS library that is included with MATLAB. For
standalone code, the code generator uses the BLAS library that you specify. See “Speed Up Matrix
Operations in Generated Standalone Code by Using BLAS Calls” on page 35-59.

See Also

More About
• “Optimization Strategies” on page 35-3

External Websites
• https://www.netlib.org/blas/

35 Generate Efficient and Reusable Code

35-58

https://www.netlib.org/blas/
https://www.netlib.org/blas/#_cblas
https://www.netlib.org/blas/

Speed Up Matrix Operations in Generated Standalone Code by
Using BLAS Calls

To improve the execution speed of code generated for certain low-level vector and matrix operations
(such as matrix multiplication) in standalone code, specify that you want MATLAB Coder to generate
BLAS calls. BLAS is a software library for low-level vector and matrix computations that has several
highly optimized machine-specific implementations. The code generator uses the CBLAS C interface
to BLAS. If you specify that you want to generate BLAS calls, and the input arrays for the matrix
functions meet certain criteria, the code generator produces the BLAS calls. Otherwise, the code
generator produces code for the matrix functions.

For BLAS calls in standalone code, MATLAB Coder uses the BLAS library that you specify. Specify a
BLAS library that is optimized for your execution environment.

Specify BLAS Library
To generate BLAS calls in standalone code, you must have access to a BLAS callback class. A BLAS
callback class specifies the BLAS library, the CBLAS header file, certain C data types that the
particular CBLAS interface uses, and the compiler and linker options for the build process. Do one of
the following:

• At the command line, set the code configuration object property CustomBLASCallback to the
name of the callback class.

• In the MATLAB Coder app, set Custom BLAS library callback to the name of the callback class.

Write BLAS Callback Class
To generate calls to a specific BLAS library in the generated code, write a BLAS callback class. Share
the callback class with others who want to use this BLAS library for BLAS calls in standalone code.

The callback class must derive from the abstract class coder.BLASCallback. This example is an
implementation of the callback class mklcallback for integration with the Intel MKL BLAS library
on a Windows platform.

classdef mklcallback < coder.BLASCallback
 methods (Static)
 function updateBuildInfo(buildInfo, ~)
 libPath = fullfile(pwd,'mkl','WIN','lib','intel64');
 libPriority = '';
 libPreCompiled = true;
 libLinkOnly = true;
 libs = {'mkl_intel_ilp64.lib' 'mkl_intel_thread.lib' 'mkl_core.lib'};
 buildInfo.addLinkObjects(libs, libPath, libPriority, libPreCompiled, ...
 libLinkOnly);
 buildInfo.addLinkObjects('libiomp5md.lib',fullfile(matlabroot,'bin', ...
 'win64'), libPriority, libPreCompiled, libLinkOnly);
 buildInfo.addIncludePaths(fullfile(pwd,'mkl','WIN','include'));
 buildInfo.addDefines('-DMKL_ILP64');
 end
 function headerName = getHeaderFilename()
 headerName = 'mkl_cblas.h';
 end
 function intTypeName = getBLASIntTypeName()

 Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls

35-59

https://www.netlib.org/blas/
https://www.netlib.org/blas/#_cblas
https://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html

 intTypeName = 'MKL_INT';
 end
 end
end

You must provide the getHeaderFilename, getBLASIntTypeName, and updateBuildInfo
methods. The getHeaderFilename method returns the CBLAS header file name. If you are using a
different BLAS library, replace mkl_cblas.h with the name of your CBLAS header file. The
getBLASIntTypeName method returns the name of the integer data type that your CBLAS interface
uses. If you are using a different BLAS library, replace MKL_INT with the name of the integer data
type specific to your CBLAS interface. The updateBuildInfo method provides the information
required for the build process to link to the BLAS library. Use code that is like the code in the
example callback class to specify the location of header file, the full path name of the BLAS library,
and the compiler and linker options. If you use the Intel MKL BLAS library, use the link line advisor to
see which libraries and compiler options are recommended for your use case.

There are three other methods that are already implemented in coder.BLASCallback. These
methods are getBLASDoubleComplexTypeName, getBLASSingleComplexTypeName, and
useEnumNameRatherThanTypedef. By default, your callback class inherits these implementations
from coder.BLASCallback. In certain situations, you must override these methods with your own
definitions when you define your callback class.

The getBLASDoubleComplexTypeName method returns the type used for double-precision complex
variables in the generated code. If your BLAS library takes a type other than double* and void* for
double-precision complex array arguments, include this method in your callback class definition.

function doubleComplexTypeName = getBLASDoubleComplexTypeName()
doubleComplexTypeName = 'my_double_complex_type';
end

Replace my_double_complex_type with the type that your BLAS library takes for double-precision
complex array arguments.

The getBLASSingleComplexTypeName method returns the type used for single-precision complex
variables in the generated code. If your BLAS library takes a type other than float* and void* for
single-precision complex array arguments, include this method in your callback class definition.

function singleComplexTypeName = getBLASSingleComplexTypeName()
doubleComplexTypeName = 'my_single_complex_type';
end

Replace my_single_complex_type with the type that your BLAS library takes for single-precision
complex array arguments.

The useEnumNameRatherThanTypedef method returns false by default. If types for enumerations
in your BLAS library include the enum keyword, redefine this method to return true in your callback
class definition.

function p = useEnumNameRatherThanTypedef()
p = true;
end

An excerpt from generated C source code that includes the enum keyword is:

enum CBLAS_SIDE t;
enum CBLAS_UPLO b_t;

35 Generate Efficient and Reusable Code

35-60

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html

double temp;
enum CBLAS_TRANSPOSE c_t;
enum CBLAS_DIAG d_t;

Generate BLAS Calls by Specifying a BLAS Callback Class
This example shows how to generate code that calls BLAS functions in a specific BLAS library. The
BLAS callback class useMyBLAS specifies the BLAS library that you want to use in this example.

1 Write a MATLAB function that calls a function for a basic matrix operation. For example, write a
function myMultiply that multiplies two matrices A and B.

function C = myMultiply(A,B) %#codegen
C = A*B;
end

2 Define a code configuration object for a static library, dynamically linked library, or executable
program. For example, define a configuration object for a dynamically linked library on a
Windows platform.

cfg = coder.config('dll');
3 Specify the BLAS callback class useMyBLAS.

cfg.CustomBLASCallback = 'useMyBLAS';

The callback class must be on the MATLAB path.
4 Generate code. Specify that the inputs A and B are 1000-by-1000 arrays of doubles.

codegen myMultiply -args {zeros(1000),zeros(1000)} -config cfg -report

If A and B are large enough, the code generator produces a BLAS call for the matrix
multiplication function.

Locate BLAS Library in Execution Environment
The BLAS library must be available in your execution environment. If your BLAS library is shared, use
environment variables or linker options to specify the location of the BLAS library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the rpath linker

option.
• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use the rpath

linker option.

To specify the rpath linker option, use the build information addLinkFlags method in the
updateBuildInfo method of your BLAS callback class. For example, for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

Usage Notes and Limitations for OpenBLAS Library
If you generate code that includes calls to the OpenBLAS library functions, follow these guidelines
and restrictions:

 Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls

35-61

https://www.openblas.net/

• If you generate C++ code that includes calls to OpenBLAS library functions, compiling it with the
-pedantic option produces warnings. To disable the -pedantic compiler option, include these
lines in the updateBuildInfo method:

if ctx.getTargetLang() == 'C++'
 buildInfo.addCompileFlags('-Wno-pedantic');
end

• OpenBLAS does not support the C89/C90 standard.

See Also
coder.BLASCallback

More About
• “BLAS Calls in Generated Code” on page 35-58
• “Optimization Strategies” on page 35-3

External Websites
• https://www.netlib.org/blas/
• https://www.netlib.org/blas/

faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_bla
s_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries

• https://www.intel.com/content/www/us/en/documentation-resources/developer.html
• https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-

advisor.html

35 Generate Efficient and Reusable Code

35-62

https://www.netlib.org/blas/
https://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://www.intel.com/content/www/us/en/documentation-resources/developer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html

Speed Up Fast Fourier Transforms in Generated Standalone
Code by Using FFTW Library Calls

This example shows how to produce calls to a specific installed FFTW library when you generate
standalone code (static library, dynamically linked library, or executable program). For more
information about FFTW, see www.fftw.org.

When you generate a MEX function from MATLAB code that includes fast Fourier transform (FFT)
functions, the code generator uses the library that MATLAB uses for FFT algorithms. If you generate
standalone C/C++ code, by default, the code generator produces code for the FFT algorithms instead
of producing FFT library calls. To increase the speed of fast Fourier transforms in generated
standalone code, specify that the code generator produce calls to a specific installed FFTW library.

The code generator produces FFTW library calls when all of these conditions are true:

• Your MATLAB code calls one of these functions:fft, fft2, fftn, ifft, ifft2, or ifftn.
• You generate standalone C/C++ code.
• You have access to an FFTW library installation, version 3.2 or later.
• You specify the FFTW library installation in an FFT library callback class that derives from

coder.fftw.StandaloneFFTW3Interface.
• You set the CustomFFTCallback configuration parameter to the name of the callback class. In

the MATLAB Coder app, use the Custom FFT library callback setting.

FFTW Planning Considerations
The planning method, coder.fftw.StandaloneFFTW3Interface.getPlanMethod, must be set
according to your workflow to optimize the performance of the FFTW library. Set the method to one
of the following values as required by your workflow:

• FFTW_ESTIMATE: This is the default setting and allows the FFTW library to deliberate less during
the planning phase. This setting is advisable when you have multiple FFTs of varying size and
type. This is also advisable when your workflow contains one FFT with multiple inputs of the
different type and size. This can reduce the time required for the planning phase.

• FFTW_MEASURE: This setting allows the FFTW library to aggressively plan for the use of the FFT
algorithms in your workflow. This setting is advisable when your workflow runs one FFT on inputs
of the same size and type. This might increase the planning time but can reduce the execution
time for the FFT.

For more information about other planning method types, see https://www.fftw.org/fftw3_doc/Planner-
Flags.html.

Consider using a previously called FFT for inputs of the same size and type. Reusing the same FFT
operation on inputs of identical size and type prompts the planner to use a cached version of the FFT
which has previously been called. The execution time of the FFT call also depends on the size of
inputs. FFT algorithms whose inputs size is a power of two executes faster than an FFT call whose
inputs sizes are non power of two. See https://www.fftw.org/fftw2_doc/fftw_3.html.

Install FFTW Library
If you do not have access to an installed FFTW library, version 3.2 or later, then you must install one.
For a Linux platform or a Mac platform, consider using a package manager to install the FFTW

 Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls

35-63

https://www.fftw.org
https://www.fftw.org/fftw3_doc/Planner-Flags.html
https://www.fftw.org/fftw3_doc/Planner-Flags.html
https://www.fftw.org/fftw2_doc/fftw_3.html

library. For a Windows platform, in addition to .dll files, you must have .lib import libraries, as
described in the Windows installation notes on the FFTW website.

See the installation instructions for your platform on the FFTW website.

Write an FFT Callback Class
To specify your installation of the FFTW library, write an FFT callback class. Share the callback class
with others who want to use this FFTW library for FFTW calls in standalone code.

The callback class must derive from the abstract class coder.fftw.StandaloneFFTW3Interface.
Use this example callback class as a template.

% copyright 2017 The MathWorks, Inc.

classdef useMyFFTW < coder.fftw.StandaloneFFTW3Interface

 methods (Static)
 function th = getNumThreads
 coder.inline('always');
 th = int32(coder.const(1));
 end

 function updateBuildInfo(buildInfo, ctx)
 fftwLocation = '/usr/lib/fftw';
 includePath = fullfile(fftwLocation, 'include');
 buildInfo.addIncludePaths(includePath);
 libPath = fullfile(fftwLocation, 'lib');

 %Double
 libName1 = 'libfftw3-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName1 = [libName1 libExt];
 addLinkObjects(buildInfo, libName1, libPath, 1000, true, true);

 %Single
 libName2 = 'libfftw3f-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName2 = [libName2 libExt];
 addLinkObjects(buildInfo, libName2, libPath, 1000, true, true);
 end
 end
end

Implement the updateBuildInfo and getNumThreads methods. In the updateBuildInfo
method, set fftwLocation to the full path for your installation of the library. Set includePath to
the full path of the folder that contains fftw3.h. Set libPath to the full path of the folder that
contains the library files. If your FFTW installation uses multiple threads, modify the
getNumThreads method to return the number of threads that you want to use.

Optionally, you can implement these methods:

• getPlanMethod to specify the FFTW planning method. See
coder.fftw.StandaloneFFTW3Interface.

• lock and unlock to synchronize multithreaded access to the FFTW planning process. See
“Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code” on page 35-
67.

35 Generate Efficient and Reusable Code

35-64

https://www.fftw.org

Generate FFTW Library Calls by Specifying an FFT Library Callback
Class
To generate FFTW library calls in standalone C code:

1 Write a MATLAB function that calls a MATLAB fast Fourier transform function. For example,
write a function myfft that calls the MATLAB function fft.

function y = myfft()
%#codegen
t = 0:1/50:10-1/50;
x = sin(2*pi*15*t) + sin(2*pi*20*t);
y = fft(x);
end

2 Define a code generation configuration object for a static library, dynamically linked library, or
executable program. For example, define a configuration object for a dynamically linked library.

cfg = coder.config('dll');
3 Specify the FFTW callback class useMyFFTW.

cfg.CustomFFTCallback = 'useMyFFTW';

The callback class must be on the MATLAB path.
4 Generate code.

codegen myfft -config cfg -report

Locate FFTW Library in Execution Environment

The FFTW library must be available in your execution environment. If the FFTW library is shared, use
environment variables or linker options to specify the location of the library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the rpath linker

option.
• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use the rpath

linker option.

To specify the rpath linker option, you can use the build information addLinkFlags method in the
updateBuildInfo method of your coder.fftw.StandaloneFFTW3Interface class. For example,
for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

See Also
coder.fftw.StandaloneFFTW3Interface

More About
• “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code” on page

35-67

 Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls

35-65

External Websites
• www.fftw.org

35 Generate Efficient and Reusable Code

35-66

https://www.fftw.org/

Synchronize Multithreaded Access to FFTW Planning in
Generated Standalone Code

This example shows how to generate standalone code (static library, dynamically linked library, or
executable program) that synchronizes multithreaded access to the FFTW planning process.

The code generator produces FFTW library calls when all of these conditions are true:

• Your MATLAB code calls one of these functions:fft, fft2, fftn, ifft, ifft2, or ifftn.
• You generate standalone C/C++ code.
• You have access to an FFTW library installation, version 3.2 or later.
• You specify the FFTW library installation in an FFT library callback class that derives from

coder.fftw.StandaloneFFTW3Interface.
• You set the CustomFFTCallback configuration parameter to the name of the callback class. In

the MATLAB Coder app, use the Custom FFT library callback setting.

If multiple threads call the FFTW library, then the generated code must prevent concurrent access to
the FFTW planning process. To synchronize access to FFTW planning, in your FFT library callback
class, implement the lock and unlock methods. You must also provide C code that manages a lock
or mutex. Many libraries, such as OpenMP, pthreads, and the C++ standard library (C++ 11 and
later) provide locks. This example shows how to implement the lock and unlock methods and
provide supporting C code. To manage a lock, this example uses the OpenMP library.

Prerequisites
Before you start, for the basic workflow for generating FFTW library calls in standalone code, see
“Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls” on
page 35-63.

You must have:

• Access to an installed FFTW library.
• A compiler that supports the OpenMP library. To use a different library, such as pthreads, modify

the supporting C code accordingly.

Create a MATLAB Function
Write a MATLAB function mycustomfft that calls a fast Fourier transform function inside a parfor
loop:

function y = mycustomfft()
%#codegen

t = 0:1/50:10-1/50;
x = sin(2*pi*15*t) + sin(2*pi*20*t);
y = fft(x);
parfor k = 1:100
 y = y + ifft(x+k);
end

 Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code

35-67

Write Supporting C Code
Write C functions that initialize, set, and unset a lock. This example uses the OpenMP library to
manage the lock. For a different library, modify the code accordingly.

• Create a file mylock.c that contains this C code:

#include "mylock.h"
#include "omp.h"

static omp_nest_lock_t lockVar;

void mylock_initialize(void)
{
 omp_init_nest_lock(&lockVar);
}

void mylock(void)
{
 omp_set_nest_lock(&lockVar);
}

void myunlock(void)
{
 omp_unset_nest_lock(&lockVar);
}

• Create a header file mylock.h that contains:

#ifndef MYLOCK_H
#define MYLOCK_H

 void mylock_initialize(void);
 void mylock(void);
 void myunlock(void);

#endif

Write an FFT Library Callback Class
Write an FFT callback class myfftcb that:

• Specifies the FFTW library.
• Implements lock and unlock methods that call the supporting C code to control access to the

FFTW planning.

Use this class as a template. Replace fftwLocation with the location of your FFTW library
installation.

classdef myfftcb < coder.fftw.StandaloneFFTW3Interface

 methods (Static)
 function th = getNumThreads
 coder.inline('always');
 th = int32(coder.const(1));
 end

35 Generate Efficient and Reusable Code

35-68

 function lock()
 coder.cinclude('mylock.h', 'InAllSourceFiles', true);
 coder.inline('always');
 coder.ceval('mylock');
 end

 function unlock()
 coder.cinclude('mylock.h', 'InAllSourceFiles', true);
 coder.inline('always');
 coder.ceval('myunlock');
 end

 function updateBuildInfo(buildInfo, ctx)
 fftwLocation = '\usr\lib\fftw';
 includePath = fullfile(fftwLocation, 'include');
 buildInfo.addIncludePaths(includePath);
 libPath = fullfile(fftwLocation, 'lib');

 %Double
 libName1 = 'libfftw3-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName1 = [libName1 libExt];
 addLinkObjects(buildInfo, libName1, libPath, 1000, true, true);

 %Single
 libName2 = 'libfftw3f-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName2 = [libName2 libExt];
 addLinkObjects(buildInfo, libName2, libPath, 1000, true, true);

 end
 end
end

Generate a Dynamically Linked Library
1 Create a code generation configuration object for generation of a dynamically linked library.

cfg = coder.config('dll');

2 Configure code generation to use the FFT callback class myfftcb.

cfg.CustomFFTCallback = 'myfftcb';

3 Include the supporting C code in the build.

cfg.CustomSource = 'mylock.c';

4 Generate a call to the lock initialization function in the initialization code.

cfg.CustomInitializer = 'mylock_initialize();';

5 Generate the library.

codegen -config cfg mycustomfft -report

 Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code

35-69

This example uses the OpenMP library. Therefore, the EnableOpenMP configuration parameter
must be true or you must manually pass the OpenMP flags to your compiler. By default, the
EnableOpenMP parameter is true.

Specify Configuration Parameters in the MATLAB Coder App
For the preceding example in the MATLAB Coder app, use these project settings:

• To specify the FFT library callback class, set Custom FFT library callback to myfftcb.
• To specify the C code to include, set Additional source files to mylock.c.
• To specify generation of a call to mylock_initialize in the initialization code, set Initialize

function to mylock_initialize();.

See Also
coder.ceval | coder.fftw.StandaloneFFTW3Interface

More About
• “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library

Calls” on page 35-63

External Websites
• www.fftw.org

35 Generate Efficient and Reusable Code

35-70

https://www.fftw.org

Speed Up MEX Generation by Using JIT Compilation
In this section...
“Specify Use of JIT Compilation in the MATLAB Coder App” on page 35-71
“Specify Use of JIT Compilation at the Command Line” on page 35-71
“JIT Compilation Incompatibilities” on page 35-71

To speed up generation of a MEX function, specify use of just-in-time (JIT) compilation technology.
When you iterate between modifying MATLAB code and testing the MEX code, using this option can
save time.

By default, MATLAB Coder creates a C/C++ MEX function by generating and compiling C/C++ code.
When you specify JIT compilation, MATLAB Coder creates a JIT MEX function that contains an
abstract representation of the MATLAB code. When you run the JIT MEX function, MATLAB generates
the executable code in memory.

JIT compilation is incompatible with certain code generation features or options. See “JIT Compilation
Incompatibilities” on page 35-71. If JIT compilation is enabled, the absence of warning or error
messages during code generation indicates successful JIT compilation. In a code generation report,
the Summary tab indicates that the Build Type is JIT MEX Function.

Note JIT MEX functions are not compatible across different releases of MATLAB Coder software.
Run the JIT MEX function by using MATLAB Coder software of the same release that you used to
generate the function.

Specify Use of JIT Compilation in the MATLAB Coder App
1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Select the Use JIT compilation check box.

Specify Use of JIT Compilation at the Command Line
Use the -jit option of the codegen command. For example, specify JIT compilation for
myfunction:

codegen -config:mex myfunction -jit -report

Alternatively, use the EnableJIT code configuration parameter.

cfg = coder.config('mex');
cfg.EnableJIT = true;
codegen -config cfg myfunction -report

JIT Compilation Incompatibilities
The following table summarizes code generation features or options that are incompatible with JIT
compilation.

 Speed Up MEX Generation by Using JIT Compilation

35-71

Incompatibility Message Type Generated MEX Action
Custom Code Warning C/C++ MEX To avoid the

warning, disable JIT
compilation.

Updating build information
(coder.updateBuildInfo)

Warning C/C++ MEX To avoid the
warning, disable JIT
compilation.

Use of OpenMP application
interface for parallelization of for-
loops (parfor)

Warning • JIT MEX
• No

parallelization

If you want
parallelization of
for-loops, disable
JIT compilation.

Generation of C/C++ source code
only

Error None Specify either JIT
compilation or
generation of C/C+
+ code only.

See Also
Functions
codegen | parfor | coder.updateBuildInfo

Objects
coder.MexCodeConfig

More About
• “JIT MEX Incompatibility Warning” on page 37-2
• “JIT Compilation Does Not Support OpenMP” on page 37-3
• “Speed Up Compilation by Generating Only Code” on page 27-74
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 33-14

35 Generate Efficient and Reusable Code

35-72

Automatically Parallelize for Loops in Generated Code
Iterations of parallel for loops can run simultaneously on multiple cores on the target hardware.
Parallelization of a section of code might significantly improve the execution speed of the generated
code. See “How parfor-Loops Improve Execution Speed” on page 33-14.

While generating C/C++ code from your MATLAB code, you can generate parallel for loops
automatically. Automatic parallelization is a compiler transformation that converts sequential code to
multithreaded code without manual intervention.

Automatic parallelization of for loop supports these build types for C/C++ targets:

• MEX
• Static library
• Dynamically linked library
• Executable

Parallelize for Loops by Using MATLAB Coder App
To enable automatic parallelization of for loops, in the MATLAB Coder app, in the Generate Code
step, select More Settings > Speed > Enable automatic parallelization.

Parallelize for Loops at Command Line
You can enable parallelization of the for loops by using the command-line interface. Consider the
function autoparExample:

function x = autoparExample(x)
%#codegen
for i = 10:numel(x)
 x(i) = sqrt(x(i));
end
end

To automatically generate parallel for loops, run these commands:

cfg = coder.config('lib');
cfg.EnableAutoParallelization = 1;

 Automatically Parallelize for Loops in Generated Code

35-73

x = rand(1,2000);
codegen -config cfg autoparExample -args {x} -report

Code generation successful: View report

Inspect Generated Code and Code Insights
Open and inspect the code generation report.

Generated Code

Observe the Open Multiprocessing (OpenMP) pragmas generated above the for loops.

void autoparExample(double x[2000])
{
 int i;
 if (!isInitialized_autoparExample) {
 autoparExample_initialize();
 }
#pragma omp parallel for num_threads(omp_get_max_threads()) private(i)

 for (i = 0; i < 1991; i++) {
 x[i + 9] = sqrt(x[i + 9]);
 }
}

The gutter highlighted in green next to the loops shows the part of the code that is parallelized.

Code Insights

In the Code Insights tab, under Automatic parallelization issues, you can see detailed
information about the for loops that were not parallelized in the generated code.

For example, to view a particular code insight, regenerate code for the autoparExample function
that you defined in the previous section. Specify a smaller size for the input arguments.

cfg = coder.config('lib');
cfg.EnableAutoParallelization = 1;
x = rand(1,1000);
codegen -config cfg autoparExample -args {x} -report

The generated code does not contain parallel for loops because the size of the input argument is
smaller than the threshold value for automatic parallelization. To view detailed information about the
nonparallelized part of the code, open the report and click Code Insights > Automatic
parallelization issues.

35 Generate Efficient and Reusable Code

35-74

Disable Automatic Parallelization of a for Loop
You might want to disable automatic parallelization of a particular loop if that loop performs better in
serial execution. To prevent parallelization of a specific for loop, place the
coder.loop.parallelize('never') pragma immediately before the loop in your MATLAB code.
This pragma overrides the EnableAutoParallelization setting. Also, this pragma supports only
those for loops that are explicitly defined in your MATLAB code. For more information on explicit
and implicit loops, see the next section.

For example, the code generator does not parallelize this loop:

% Pragma to disable automatic parallelization of for-loops
coder.loop.parallelize('never');
for i = 1:n
 y(i) = y(i)*sin(i);
end

See coder.loop.parallelize.

Parallelize Implicit for Loops
The example function autoparExample used in the previous sections contains an explicit for loop.
But your MATLAB code can also contain implicit for loops that do not appear explicitly in the code
that you author. For example, the MATLAB function mtimes multiplies two matrices and must
perform loop iterations implicitly over the matrix elements.

Automatic parallelization supports loops that are implicit in your MATLAB code. For example,
consider this function autoparExample_implicit.

function y = autoparExample_implicit(y)
%#codegen
y = y * 17; % Generates implicit for loop
end

Generate code by running these commands:

cfg = coder.config('lib');
cfg.EnableAutoParallelization = 1;
y = rand(1,2000);
codegen -config cfg autoparExample_implicit -args {y} -report

Open the report and inspect the generated code. The generated code contains a parallel for loop for
the multiplication operation.

void autoparExample_implicit(double y[2000])
{

 Automatically Parallelize for Loops in Generated Code

35-75

 int i;
 if (!isInitialized_autoparExample_implicit) {
 autoparExample_implicit_initialize();
 }
#pragma omp parallel for num_threads(omp_get_max_threads()) private(i)

 for (i = 0; i < 2000; i++) {
 y[i] *= 17.0;
 }

Parallelize for Loops Performing Reduction Operations
You can parallelize for-loops performing reduction operations by using the configuration option
Optimize reductions.

To enable automatic parallelization of these for-loops:

1 Open the MATLAB Coder app.
2 On the Generate Code page, click More Settings.
3 On the Speed tab, select the Enable automatic parallelization and Optimize reductions

check boxes.

Optimize reductions also gets enabled, if you set the Leverage target hardware instruction set
extensions parameter to an instruction set that your processor supports.

To enable the configuration option OptimizeReductions by using the command-line interface,run
these commands.

35 Generate Efficient and Reusable Code

35-76

cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.OptimizeReductions = true;

For example, write a MATLAB function arraySum which calculates and stores the sum of the
elements of the array in the reduction variable out.

function out = arraySum(n)
 %#codegen
 in = ones(n,n)
 out = 0;
 for i = 1:
 out = out + in(i) + i; % reduction operation
 end
end

At the MATLAB command line, run this codegen command.

codegen arraySum -config cfg -args {5} -report

Code generation successful: View report

Open the code generation report by clicking View report, to see the parallelized for-loop for the
addition operation.

#pragma omp parallel num_threads(omp_get_max_threads())

private(outPrime)
{
 outPrime = 0.0;
 #pragma omp for nowait
 for (b_i = 0; b_i < i1; b_i++) {
 outPrime = (outPrime + 1.0) + ((double)b_i + 1.0);
 }
 omp_set_nest_lock(&xAddition_nestLockGlobal);
 {
 out += outPrime;
 }
 omp_unset_nest_lock(&xAddition_nestLockGlobal);
}

Usage Notes and Limitations
• Only outermost loops are parallelized

Automatic parallelization applies to the outermost loops in your MATLAB code only. This makes
inner loops available for vectorization by the system compiler.

• parfor loops remain as parallel loops

• Automatic parallelization honors parfor loops that you define and does not convert them into
sequential for loops.

• for loops that contain parfor loops are not parallelized.
• Loops containing persistent variables are not parallelized automatically

Automatic parallelization does not support for loops whose bodies contain either persistent
variables or functions that access persistent variables.

 Automatically Parallelize for Loops in Generated Code

35-77

• Loops containing external calls are not parallelized automatically

Automatic parallelization does not support for loops in your code that contain external calls.
• Function not inlined after automatic parallelization

If a for loop inside a function is automatically parallelized, the code generator does not inline that
function.

• Empty loops and while loops are not parallelized automatically
• Only the arithmetic reduction operations addition (+), subtraction (-), and product (*) support

automatic parallelization in code generation.

See Also
parfor | coder.loop.parallelize | coder.config | coder.MexCodeConfig |
coder.CodeConfig | coder.EmbeddedCodeConfig

More About
• “How parfor-Loops Improve Execution Speed” on page 33-14
• “Generate SIMD Code for MATLAB Functions” on page 30-10

35 Generate Efficient and Reusable Code

35-78

Specify Maximum Number of Threads to Run Parallel for-Loops
in the Generated Code

Using MATLAB Coder, you can specify the maximum number of threads to run parallel for-loops in
the generated C/C++ code. You can also cross-compile the code, that is, generate the code on the
host hardware processor and execute it on the target hardware processor. Depending on the target
hardware platform, you can specify the number of threads.

You can set the number of threads in the generated code in different ways. The table lists these
options with their precedence order. The precedence determines the order of execution of these
options in which the MATLAB Coder sets the number of threads. If the value of these options equals
their default value, the precedence order is moved to the next option listed in the table.

If you do not set any of these options, then, by default, the generated parallel code uses the maximum
number of threads available on the target hardware during run time. This use of the maximum
number of threads is enabled by Open Multiprocessing (OpenMP) pragma omp_get_max_threads in
the generated code.

Precedenc
e

Options to Set Number of
Threads

Commands to Set Number of Threads

1 Parfor-loop with number of
threads specified

% u specifies the maximum number of threads
parfor (i = 1:10, u)

2 Configuration property (default
value = 0):

NumberOfCpuThreads

cfg.NumberOfCpuThreads = 8;

3 Target processor properties
(default value = 1):

NumberOfCores,

NumberofThreadsPerCore

processor.NumberOfCores = 4;
processor.NumberOfThreadsPerCore = 2;

Note If NumberOfCpuThreads equals 1, then Automatic parallelization of for-loop is disabled.
See “Automatically Parallelize for Loops in Generated Code” on page 35-73.

Specify Number of Threads by Using MATLAB Coder App
To set the Maximum number of CPU threads:

1 Open the MATLAB Coder app.
2 In the Generate Code window, click More Settings.
3 In the Speed tab, enter Maximum number of CPU threads.

The value of Maximum number of CPU threads applies to parfor-loops and automatically
parallelized for-loops enabled by the setting Enable automatic parallelization.

 Specify Maximum Number of Threads to Run Parallel for-Loops in the Generated Code

35-79

Specify Number of Threads at the Command Line
Consider these MATLAB functions parforExample and autoparExample.

The parforExample function uses parfor-loop with the maximum number of threads set to 6.

function y = parforExample(n) %#codegen
 y = ones (1,n);
 parfor (i = 1:n, 6)
 y(i) = 1;
 end
end

The autoparExample function uses a for-loop.

function y = autoparExample(n) %#codegen
 y = ones (1,n);
 for i = 1:n
 y(i) = 1;
 end
end

Using the MATLAB functions previously specified, this table lists different examples for setting the
number of threads in the parallel generated code.

Commands to Generate Code Description Generated Code
n = 1000;
cfg = coder.config('lib');
cfg.NumberOfCpuThreads = 8;

codegen –config cfg parforExample –args {n} -report

Parfor-loop sets the maximum
number of threads to 6.

#pragma omp parallel for num_threads(
 6 > omp_get_max_threads() ? omp_get_max_threads() : 6)

for (i = 0; i <= ub_loop; i++) {
 y_data[i] = 1.0;
}

n = 1000;
cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.NumberOfCpuThreads = 8;

codegen –config cfg autoparExample –args {n} -report

Configuration property sets the
maximum number of threads to 8.

#pragma omp parallel for num_threads(
 8 > omp_get_max_threads() ? omp_get_max_threads() : 8)

for (b_i = 0; b_i < i; b_i++) {
 y_data[b_i] = 1.0;
}

35 Generate Efficient and Reusable Code

35-80

Commands to Generate Code Description Generated Code
n = 1000;
cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;

codegen –config cfg autoparExample –args {n} -report

The maximum number of threads is
set to omp_get_max_threads().

#pragma omp parallel for num_threads(omp_get_max_threads())

for (b_i = 0; b_i < i; b_i++) {
 y_data[b_i] = 1.0;
}

Create Custom Hardware Processor
To add a target processor:

1 Create a copy of an existing target processor.

processor = target.get('Processor', 'ARM Compatible-ARM Cortex-A');
2 Update the number of cores, number of threads per core, and the name of the new processor.

processor.NumberOfCores = 4;
processor.NumberOfThreadsPerCore = 2;
processor.Name = '4coreprocessor';

3 Add the target.Processor object to an internal database.

target.add(processor);
4 Select the new processor as the target processor.

cfg = coder.config('lib');
cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->4coreprocessor';

In the MATLAB Coder app, you can choose the custom hardware processor that you have created at
command line by using target.get and target.add classes.

Alternatively, you can create a target processor by using target.Processor and
target.LanguageImplementation classes. For more information, see “Register New Hardware
Devices” on page 32-56.

Commands to
Generate Code

Description Generated Code

n = 1000;
cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.HardwareImplementation.ProdHWDeviceType ...
 ... = "ARM Compatible->4coreprocessor";

codegen –config cfg autoparExample –args {n} -report

Target processor sets the
maximum number of
threads to 4.

#pragma omp parallel for num_threads(
 4 > omp_get_max_threads() ? omp_get_max_threads() : 4)
for (b_i = 0; b_i < i; b_i++) {
 y_data[b_i] = 1.0;
}

n = 1000;
cfg = coder.config('lib');
cfg.EnableAutoParallelization = true;
cfg.NumberOfCpuThreads = 2;
cfg.HardwareImplementation.ProdHWDeviceType ...
 ... = "ARM Compatible->4coreprocessor";

codegen –config cfg autoparExample –args {n} -report

Configuration property
sets the maximum
number of threads to 2.

#pragma omp parallel for num_threads(
 2 > omp_get_max_threads() ? omp_get_max_threads() : 2)
for (b_i = 0; b_i < i; b_i++) {
 y_data[b_i] = 1.0;
}

See Also
parfor | coder.config | coder.MexCodeConfig | coder.CodeConfig |
coder.EmbeddedCodeConfig | target

 Specify Maximum Number of Threads to Run Parallel for-Loops in the Generated Code

35-81

More About
• “Generate Code with Parallel for-Loops (parfor)” on page 35-33
• “Specify Maximum Number of Threads in parfor-Loops” on page 33-30

35 Generate Efficient and Reusable Code

35-82

Optimize Generated Code for Fast Fourier Transform Functions
Code generated for Fast Fourier Transform (FFT) functions is deployable to multiple target CPUs. To
generate deployable code for your FFT functions, certain modifications are required. Generate
optimized code by using the FFT implementation and library required by your target hardware. The
code generator enables you to generate code for MATLAB FFT functions (fft, fft2, fftn, ifft,
ifft2, ifftn) or optimize the generated code by using custom FFTW libraries with MATLAB FFT
functions. You can also generate code for DSP System Toolbox implementations, (dsp.FFT and
dsp.IFFT (DSP System Toolbox)).

To generate fixed-point code for your FFT workflow, use the DSP System Toolbox implementations.
These implementations have fixed-point properties that are set according to your required FFT
workflow. See dsp.FFT (DSP System Toolbox).

Intel Target Support
You can deploy code generated for MATLAB FFT implementations and DSP System Toolbox
implementations to Intel target CPUs. The supported implementations provide input support as listed
in this table.

FFT Implementation Input Support Reference
MATLAB FFT functions in
standalone code

• Power of two, nonpower of
Two

• Variable-size double and
single inputs

By default, the code generator
produces standalone code for
the FFT algorithms instead of
producing FFT library calls.

MATLAB FFT functions with
custom FFTW libraries in
standalone code

• Power of two, nonpower of
two

• Variable-size double and
single inputs

All optimizations are dependent
on target CPU data type
support.

To use FFTW libraries for your
target CPUs:

• Obtain FFTW libraries that
are compiled for your target
CPU.

• Obtain these libraries from a
third-party or compiled on
your own.

See “Speed Up Fast Fourier
Transforms in Generated
Standalone Code by Using
FFTW Library Calls” on page
35-63.

dsp.FFT functions in
standalone C code

• Power of two
• Fixed-size double and

single inputs

Does not support variable-size
inputs without FFTW libraries.
See dsp.FFT.

 Optimize Generated Code for Fast Fourier Transform Functions

35-83

FFT Implementation Input Support Reference
dsp.FFT functions with FFTW
libraries in standalone C code

• Power of two, nonpower of
two

• Variable-size double and
single inputs

Set the 'FFTImplementation'
property to 'FFTW'.

• This setting uses a platform-
specific precompiled library.
For example, you can use
only code generated on a
Linux machine on another
Linux machine.

• Generated code runs
independently of a MATLAB
installation.

ARM Target Support
You can deploy code generated for MATLAB FFT implementations and DSP System Toolbox
implementations to ARM target CPUs. The supported implementations provide input support as listed
in this table.

FFT Implementation Input Support Reference
MATLAB FFT functions in
standalone code

• Power of two, nonpower of
two

• Variable-size double and
single inputs

By default, the code generator
produces standalone code for
the FFT algorithms instead of
producing FFT library calls.
See:

• “Ne10 Conditions for
MATLAB Functions to
Support ARM Cortex-A
Processors” (Embedded
Coder Support Package for
ARM Cortex-A Processors)

• “CMSIS Conditions for
MATLAB Functions to
Support ARM Cortex-M
Processors” (Embedded
Coder Support Package for
ARM Cortex-M Processors)

MATLAB FFT functions with
custom FFTW libraries in
standalone code

• Power of two, nonpower of
two

• Variable-size double and
single inputs

All optimizations are dependent
on target CPU data type
support.

To use FFTW libraries for your
target CPUs:

• Obtain FFTW libraries that
are compiled for your target
CPU.

• Obtain these libraries from a
third-party or compiled on
your own.

35 Generate Efficient and Reusable Code

35-84

FFT Implementation Input Support Reference
dsp.FFT functions in
standalone C code

• Power of two
• Fixed-size double and

single inputs

Does not support variable-size
inputs without FFTW libraries.

dsp.FFT functions with CRL/
support packages in standalone
C code

• Power of two
• Variable-size single inputs

• To generate code for ARM
Cortex A targets, use the
ne10 library. See “Ne10
Conditions for DSP System
Objects to Support ARM
Cortex-A Processors”
(Embedded Coder Support
Package for ARM Cortex-A
Processors).

• To generate code for ARM
Cortex M targets, use the
CMSIS library. See “CMSIS
Conditions for DSP System
Objects to Support ARM
Cortex-M Processors”
(Embedded Coder Support
Package for ARM Cortex-M
Processors).

• This option requires
Embedded Coder.

MEX Target Support
When generating MEX code for your Fast Fourier Transform functions, the supported
implementations provide support as listed in this table.

FFT Implementation Input Support Reference
MATLAB FFT functions in MEX
code

• Power of two, nonpower of
two

• Variable-size double and
single inputs

When you generated MEX code
for FFT functions, the code
generator uses MATLAB FFT
algorithms.

dsp.FFT functions in MEX code • Power of two
• Fixed-size double and

single inputs

Does not support variable-size
inputs without FFTW libraries.

 Optimize Generated Code for Fast Fourier Transform Functions

35-85

FFT Implementation Input Support Reference
dsp.FFT functions with FFTW
libraries in MEX code

• Power of Two, nonpower of
two

• Variable-size double and
single inputs

Set the 'FFTImplementation'
property to 'FFTW'.

• This setting uses a platform-
specific precompiled library.
For example, you can use
only code generated on a
Linux machine on another
Linux machine.

• Generated code runs
independently of a MATLAB
installation.

See Also
fft | fft2 | fftn | ifft | ifft2 | ifftn | dsp.FFT (DSP System Toolbox) | dsp.IFFT (DSP System
Toolbox)

Related Examples
• “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library

Calls” on page 35-63
• “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code” on page

35-67

External Websites
• FFTW

35 Generate Efficient and Reusable Code

35-86

https://www.fftw.org

Generating Reentrant C Code from
MATLAB Code

• “Generate Reentrant C Code from MATLAB Code” on page 36-2
• “Reentrant Code” on page 36-9
• “Specify Generation of Reentrant Code” on page 36-11
• “API for Generated Reusable Code” on page 36-12
• “Call Reentrant Code in a Single-Threaded Environment” on page 36-13
• “Call Reentrant Code in a Multithreaded Environment” on page 36-14
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 36-15
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on page 36-19
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page 36-24

36

Generate Reentrant C Code from MATLAB Code

In this section...
“About This Tutorial” on page 36-2
“Copying Files Locally” on page 36-3
“About the Example” on page 36-3
“Providing a C main Function” on page 36-4
“Configuring Build Parameters” on page 36-6
“Generating the C Code” on page 36-6
“Viewing the Generated C Code” on page 36-6
“Running the Code” on page 36-7
“Key Points to Remember” on page 36-7
“Learn More” on page 36-8

About This Tutorial
Learning Objectives

This tutorial shows you how to:

• Generate reentrant code from MATLAB code that does not use persistent or global data.
• Automatically generate C code from your MATLAB code.
• Define function input properties at the command line.
• Specify code generation properties.
• Generate a code generation report that you can use to view and debug your MATLAB code.

Note This example runs on Windows only.

Prerequisites

To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• C compiler

MATLAB Coder locates and uses a supported installed compiler. For the current list of supported
compilers, see https://www.mathworks.com/support/compilers/current_release/ on
the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default Compiler”.

36 Generating Reentrant C Code from MATLAB Code

36-2

Required Files

Type Name Description
Function code matrix_exp.m MATLAB function that computes

matrix exponential of the input
matrix using Taylor series and
returns the computed output.

C main function main.c Calls the reentrant code.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\coder\work.
2 Change to the matlabroot\help\toolbox\coder\examples folder. At the MATLAB

command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))
3 Copy the reentrant_win folder to your local working folder.

Your work folder now contains the files for the tutorial.
4 Set your MATLAB current folder to the work folder that contains your files for this tutorial. At the

MATLAB command prompt, enter:

cd work

work is the full path of the work folder containing your files.

About the Example
This example requires libraries that are specific to the Microsoft Windows operating system and,
therefore, runs only on Windows platforms. It is a simple, multithreaded example that does not use
persistent or global data. Two threads call the MATLAB function matrix_exp with different sets of
input data.

Contents of matrix_exp.m
function Y = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential of
 % the input matrix using Taylor series and returns the
 % computed output.
 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E;

When you generate reusable, reentrant code, MATLAB Coder supports dynamic allocation of:

• Function variables that are too large for the stack

 Generate Reentrant C Code from MATLAB Code

36-3

• Persistent variables
• Global variables

MATLAB Coder generates a header file, primary_function_name_types.h, that you must include
when using the generated code. This header file contains the following structures:

• primary_function_nameStackData

Contains the user allocated memory. Pass a pointer to this structure as the first parameter to
functions that use it:

• Directly (the function uses a field in the structure)
• Indirectly (the function passes the structure to a called function)

If the algorithm uses persistent or global data, the primary_function_nameStackData
structure also contains a pointer to the primary_function_namePersistentData structure. If
you include this pointer, you have to pass only one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a separate structure
for them. The memory allocation structure contains a pointer to this persistent data structure.
Because you have a separate structure for persistent and global variables, you can allocate
memory for these variables once and share them with all threads. However, if the threads do not
communicate, you can allocate memory for these variables per thread.

Providing a C main Function
To call the reentrant code, provide a main function that:

• Includes the generated header file matrix_exp.h. This file includes the generated header file,
matrix_exp_types.h.

• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information, see “Deploy

Generated Code” on page 32-69.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees up the for stack data memory.

36 Generating Reentrant C Code from MATLAB Code

36-4

Contents of main.c

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 matrix_expStackData* spillData;
} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */
DWORD WINAPI thread_function(PVOID dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize();
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);
 matrix_exp_terminate();
 return 0;
}

void main() {
 HANDLE thread1, thread2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 /*Initializing the 2 threads and passing data to the thread functions*/
 printf("Starting thread 1...\n");
 thread1 = CreateThread(NULL , 0, thread_function, (PVOID) &data1, 0, NULL);
 if (thread1 == NULL){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);
 if (thread2 == NULL){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);
 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);
 }

 Generate Reentrant C Code from MATLAB Code

36-5

Configuring Build Parameters
You can enable generation of reentrant code using a code generation configuration object.

1 Create a configuration object.

cfg = coder.config('exe');
2 Enable reentrant code generation.

cfg.MultiInstanceCode = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify the class, size, and complexity of input arguments using example data.

codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

codegen generates a C executable, matrix_exp.exe, in the current folder and C code in the /
codegen/exe/matrix_exp subfolder. Because you selected report generation, codegen provides a
link to the report.

Viewing the Generated C Code
codegen generates a header file matrix_exp_types.h, which defines the matrix_expStackData
global structure. This structure contains local variables that are too large to fit on the stack.

To view this header file:

1 Click the View report link to open the code generation report.
2 In the list of generated files, click matrix_exp_types.h.

36 Generating Reentrant C Code from MATLAB Code

36-6

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Verify that the example is running on Windows platforms and call the code.

% This example can only be run on Windows platforms
if ~ispc
 error('This example requires Windows-specific libraries and can only be run on Windows.');
end
system('matrix_exp.exe')

The executable runs and reports completion.

Key Points to Remember
• Create a main function that:

• Includes the generated header file, primary_function_name_types.h. This file defines the
primary_function_nameStackData global structure. This structure contains local variables
that are too large to fit on the stack.

• For each thread, allocates memory for stack data.
• Calls primary_function_name_initialize.
• Calls primary_function_name.
• Calls primary_function_name_terminate.
• Frees the stack data memory.

• Use the -config option to pass the code generation configuration object to the codegen
function.

• Use the -args option to specify input parameters at the command line.
• Use the -report option to create a code generation report.

 Generate Reentrant C Code from MATLAB Code

36-7

Learn More
To See
Learn more about the generated code API “API for Generated Reusable Code” on page 36-12
Call reentrant code without persistent or global data
on UNIX®

“Call Reentrant Code with No Persistent or Global
Data (UNIX Only)” on page 36-15

Call reentrant code with persistent data on Windows “Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)” on page 36-19

Call reentrant code with persistent data on UNIX “Call Reentrant Code — Multithreaded with Persistent
Data (UNIX Only)” on page 36-24

36 Generating Reentrant C Code from MATLAB Code

36-8

Reentrant Code
Reentrant code is a reusable programming routine that multiple programs can use simultaneously.
Operating systems and other system software that use multithreading to handle concurrent events
use reentrant code. In a concurrent environment, multiple threads or processes can attempt to read
and write static data simultaneously. Therefore, sharing code that uses persistent or static data is
difficult. Reentrant code does not contain static data. Calling programs maintain their state variables
and pass them into the function. Therefore, any number of threads or processes can share one copy
of a reentrant routine.

Generate reentrant code when you want to:

• Deploy your code in multithreaded environments.
• Use an algorithm with persistent data belonging to different processes or threads.
• Compile code that uses function variables that are too large to fit on the stack.

If you do not specify reentrant code, MATLAB Coder generates code that uses statically allocated
memory for:

• Function variables that are too large to fit on the stack
• Global variables
• Persistent variables

If the generated code uses static memory allocation for these variables, you cannot deploy the
generated code in environments that require reentrant code. If you cannot adjust the static memory
allocation size, the generated code can result in static memory size overflow.

When you generate reentrant code, MATLAB Coder creates input data structures for:

• Function variables that are too large to fit on the stack
• Persistent variables
• Global variables

You can then dynamically allocate memory for these input structures. The use of dynamic memory
allocation means that you can deploy the code in reentrant environments.

To deploy the generated code, you must create a main function that:

• Includes the header file primary_function_name.h.
• Allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global structure

primary_function_namePersistentData.
• Calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

 Reentrant Code

36-9

When you convert a MATLAB function to a C/C++ library function or a C/C++ executable, MATLAB
Coder generates two housekeeping functions. Call these housekeeping functions in the code that calls
the generated C/C++ function. For more information, see “Deploy Generated Code” on page 32-69.

See Also

Related Examples
• “Specify Generation of Reentrant Code” on page 36-11
• “Generate Reentrant C Code from MATLAB Code” on page 36-2
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 36-15
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on page 36-19
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page 36-24

36 Generating Reentrant C Code from MATLAB Code

36-10

Specify Generation of Reentrant Code
In this section...
“Specify Generation of Reentrant Code Using the MATLAB Coder App” on page 36-11
“Specify Generation of Reentrant Code Using the Command-Line Interface” on page 36-11

Specify Generation of Reentrant Code Using the MATLAB Coder App
1 On the Generate Code page, click the Generate arrow .
2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Memory tab, select the Generate re-entrant code check box.

Specify Generation of Reentrant Code Using the Command-Line
Interface
1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe
2 Set the MultiInstanceCode property to true. For example:

cfg.MultiInstanceCode = true;

See Also

Related Examples
• “Generate Reentrant C Code from MATLAB Code” on page 36-2
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 36-15
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on page 36-19
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page 36-24

More About
• “Reentrant Code” on page 36-9

 Specify Generation of Reentrant Code

36-11

API for Generated Reusable Code
When you generate reusable code, MATLAB Coder supports dynamic allocation of:

• Function variables that are too large for the stack
• Persistent variables
• Global variables

It generates a header file, primary_function_name_types.h, that you must include when using
the generated code. This header file contains the following structures:

• primary_function_nameStackData

This structure contains the user-allocated memory. You must pass a pointer to this structure as the
first parameter to all functions that use it:

• Directly, because the function uses a field in the structure.
• Indirectly, because the function passes the structure to a called function.

If the algorithm uses persistent or global data, the primary_function_nameStackData
structure also contains a pointer to the primary_function_namePersistentData structure. If
you include this pointer, you only have to pass one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a separate structure
for them. The memory allocation structure contains a pointer to this structure. Because you have a
separate structure for persistent and global variables, you can allocate memory for these variables
once and share them with all threads. However, if there is no communication between threads,
you can allocate memory for these variables per thread.

For more information on using these global structures, see “Multithreaded Examples” on page 36-
14.

36 Generating Reentrant C Code from MATLAB Code

36-12

Call Reentrant Code in a Single-Threaded Environment
To call reentrant code in a single-threaded environment, create a main function that:

• Includes the header file primary_function_name.h.
• Allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global structure

primary_function_namePersistentData.
• Calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++ executable,
MATLAB Coder generates two housekeeping functions. Call these housekeeping functions in the
code that calls the generated C/C++ function. For more information, see “Deploy Generated
Code” on page 32-69.

• Frees the memory used for global structures.

 Call Reentrant Code in a Single-Threaded Environment

36-13

Call Reentrant Code in a Multithreaded Environment
To call reentrant code, create a main function that:

• Includes the header file primary_function_name.h.
• For each thread, allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global structure

primary_function_namePersistentData. If the threads communicate, allocate this memory
once for the root process. Otherwise, you can allocate memory per thread.

• Contains a thread function that calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++ executable,
MATLAB Coder generates two housekeeping functions. Call these functions in the code that calls
the generated C/C++ function. For more information, see “Deploy Generated Code” on page 32-
69.

• Initializes each thread and passes in a pointer to the memory allocation structure as the first
parameter to the thread function.

• Frees up the memory used for global structures.

Multithreaded Examples
Type of Reentrant Code Platform Reference
Multithreaded without
persistent or global data

Windows “Generate Reentrant C Code from MATLAB Code” on page 36-2
UNIX “Call Reentrant Code with No Persistent or Global Data (UNIX

Only)” on page 36-15
Multithreaded with
persistent or global data

Windows “Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only)” on page 36-19

UNIX “Call Reentrant Code — Multithreaded with Persistent Data
(UNIX Only)” on page 36-24

36 Generating Reentrant C Code from MATLAB Code

36-14

Call Reentrant Code with No Persistent or Global Data (UNIX
Only)

In this section...
“Provide a Main Function” on page 36-15
“Generate Reentrant C Code” on page 36-17
“Examine the Generated Code” on page 36-17
“Run the Code” on page 36-18

This example requires POSIX thread (pthread) libraries and, therefore, runs only on UNIX platforms.
It is a simple multithreaded example that uses no persistent or global data. Two threads call the
MATLAB function matrix_exp with different sets of input data.

Provide a Main Function
To call the reentrant code, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information, see “Deploy

Generated Code” on page 32-69.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack data.

For this example, main.c contains:

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

36-15

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 matrix_expStackData* spillData;
} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */
void *thread_function(void *dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize();
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);
 matrix_exp_terminate();
}

int main() {
 pthread_t thread1, thread2;
 int iret1, iret2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expStackData* sd1=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");
 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);
 if (iret1 != 0){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);
 if (iret2 != 0){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 iret1 = pthread_join(thread1, NULL);
 if (iret1 != 0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);
 }

 iret2 = pthread_join(thread2, NULL);
 if (iret2 != 0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

36 Generating Reentrant C Code from MATLAB Code

36-16

 free(sd1);
 free(sd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
To generate code, run the following script at the MATLAB command prompt.

% This example can only be run on Unix platforms
if ~isunix
 error('This example requires pthread libraries and can only be run on Unix.');
end

% Setting the options for the Config object

% Create a code gen configuration object
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling
codegen -config cfg main.c matrix_exp.m -report -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.
• Creates a code configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post code generation command to be the

setbuildargs function. This function sets the -lpthread flag to specify that the build include
the pthread library.
function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library
% be included in the build
 linkFlags = {'-lpthread'};
 addLinkFlags(buildInfo, linkFlags);

For more information, see “Build Process Customization” on page 27-116.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines the matrix_expStackData
global structure. This structure contains local variables that are too large to fit on the stack.

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

36-17

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:
system('./matrix_exp')

The executable runs and reports completion.

See Also
“Control Stack Space Usage” on page 35-15 | “Stack Allocation and Performance” on page 35-18

36 Generating Reentrant C Code from MATLAB Code

36-18

Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only)

In this section...
“MATLAB Code for This Example” on page 36-19
“Provide a Main Function” on page 36-19
“Generate Reentrant C Code” on page 36-22
“Examine the Generated Code” on page 36-22
“Run the Code” on page 36-23

This example requires libraries that are specific to the Microsoft Windows operating system and,
therefore, runs only on Windows platforms. It is a multithreaded example that uses persistent data.
Two threads call the MATLAB function matrix_exp with different sets of input data.

MATLAB Code for This Example
function [Y,numTimes] = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential
 % of the input matrix using Taylor series and returns
 % the computed output. It also returns the number of
 % times this function has been called.
 %
 persistent count;
 if isempty(count)
 count = 0;
 end
 count = count+1;

 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E ;

 numTimes = count;

Provide a Main Function
To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per root process if threads share data, and once per

thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information, see “Deploy

Generated Code” on page 32-69.
• Calls matrix_exp.
• Calls matrix_exp_terminate.

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

36-19

• Frees the memory used for stack and persistent data.

For this example, main.c contains:

36 Generating Reentrant C Code from MATLAB Code

36-20

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 real_T numTimes;
 matrix_expStackData* spillData;
} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/
DWORD WINAPI thread_function(PVOID dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize(myIOData->spillData);
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData->numTimes);
 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);
 matrix_exp_terminate();
 return 0;
}

void main() {
 HANDLE thread1, thread2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expPersistentData* pd1 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expPersistentData* pd2 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;
 sd2->pd = pd2;
 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 data1.numTimes = 0;
 data2.numTimes = 0;

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");
 thread1 = CreateThread(NULL, 0, thread_function, (PVOID) &data1, 0, NULL);
 if (thread1 == NULL){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);
 if (thread2 == NULL){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

36-21

 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);
 free(pd1);
 free(pd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
Run the following script at the MATLAB command prompt to generate code.

% This example can only be run on Windows platforms
if ~ispc
 error...
 ('This example requires Windows-specific libraries and can only be run on Windows.');
end

% Setting the options for the Config object
% Create a code gen configuration object
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Compiling
codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a Windows platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, that defines:

• The matrix_expStackData global structure that contains local variables that are too large to fit
on the stack and a pointer to the matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent data.

36 Generating Reentrant C Code from MATLAB Code

36-22

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expPersistentData
#define typedef_matrix_expPersistentData

typedef struct {
 double count;
} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;

 matrix_expPersistentData *pd;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:
system('matrix_exp.exe')

The executable runs and reports completion.

See Also
“Control Stack Space Usage” on page 35-15 | “Stack Allocation and Performance” on page 35-18

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

36-23

Call Reentrant Code — Multithreaded with Persistent Data
(UNIX Only)

In this section...
“MATLAB Code for This Example” on page 36-24
“Provide a Main Function” on page 36-24
“Generate Reentrant C Code” on page 36-27
“Examine the Generated Code” on page 36-28
“Run the Code” on page 36-28

This example requires POSIX thread (pthread) libraries and, therefore, runs only on UNIX platforms.
It is a multithreaded example that uses persistent data. Two threads call the MATLAB function
matrix_exp with different sets of input data.

MATLAB Code for This Example
function [Y,numTimes] = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential
 % of the input matrix using Taylor series and returns
 % the computed output. It also returns the number of
 % times this function has been called.
 %

 persistent count;
 if isempty(count)
 count = 0;
 end
 count = count+1;

 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E ;

 numTimes = count;

Provide a Main Function
To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per root process if threads share data, and once per

thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information, see “Deploy

Generated Code” on page 32-69.
• Calls matrix_exp.

36 Generating Reentrant C Code from MATLAB Code

36-24

• Calls matrix_exp_terminate.
• Frees the memory used for stack and persistent data.

For this example, main.c contains:

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

36-25

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 real_T numTimes;
 matrix_expStackData* spillData;
} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/
void *thread_function(void *dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize(myIOData->spillData);
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData>numTimes);
 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);
 matrix_exp_terminate();
}

int main() {
 pthread_t thread1, thread2;
 int iret1, iret2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expPersistentData* pd1 =
 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expPersistentData* pd2 =
 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;
 sd2->pd = pd2;
 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 data1.numTimes = 0;
 data2.numTimes = 0;

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");
 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);
 if (iret1 != 0){
 perror("Thread 1 creation failed.");
exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);
 if (iret2 != 0){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 iret1 = pthread_join(thread1, NULL);

36 Generating Reentrant C Code from MATLAB Code

36-26

 if (iret1 != 0){
 perror("Thread 1 join failed.");
exit(EXIT_FAILURE);
 }

 iret2 = pthread_join(thread2, NULL);
 if (iret2 != 0){
 perror("Thread 2 join failed.");
exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);
 free(pd1);
 free(pd2);

 printf("Finished Execution!\n");
 return(0);

}

Generate Reentrant C Code
To generate code, run the following script at the MATLAB command prompt.

% This example can only be run on Unix platforms
if ~isunix
 error('This example requires pthread libraries and can only be run on Unix.');
end

% Setting the options for the Config object

% Specify an ERT target
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling
codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post-code-generation command to be the

setbuildargs function. This function sets the -lpthread flag to specify that the build include
the pthread library.

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library
% be included in the build
 linkFlags = {'-lpthread'};
 addLinkFlags(buildInfo, linkFlags);

For more information, see “Build Process Customization” on page 27-116.
• Invokes codegen with the following options:

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

36-27

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

• The matrix_expStackData global structure that contains local variables that are too large to fit
on the stack and a pointer to the matrix_expPersistentData global structure.

• The matrix_expPersistentData global structure that contains persistent data.

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expPersistentData
#define typedef_matrix_expPersistentData

typedef struct {
 double count;
} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;

 matrix_expPersistentData *pd;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:

system('./matrix_exp')

36 Generating Reentrant C Code from MATLAB Code

36-28

See Also
“Control Stack Space Usage” on page 35-15 | “Stack Allocation and Performance” on page 35-18

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

36-29

Troubleshooting Code Generation
Problems

• “JIT MEX Incompatibility Warning” on page 37-2
• “JIT Compilation Does Not Support OpenMP” on page 37-3
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 37-4
• “Compile-Time Recursion Limit Reached” on page 37-7
• “Unable to Determine That Every Element of Cell Array Is Assigned” on page 37-10
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 37-14
• “Unknown Output Type for coder.ceval” on page 37-16
• “MEX Generated on macOS Platform Stays Loaded in Memory” on page 37-18
• “Resolve Error: Code Generator Failed to Produce C++ Destructor for MATLAB Class”

on page 37-19

37

JIT MEX Incompatibility Warning

Issue
When you generate a MEX function, you see a warning message that starts with:

JIT compilation is incompatible with

MATLAB Coder generates a C/C++ MEX function instead of a JIT MEX function.

Cause
JIT compilation is incompatible with certain code generation features and options. If you include
custom code or update the build information, you cannot generate a JIT MEX function. In these cases,
MATLAB Coder generates a C/C++ MEX function instead of a JIT MEX function.

Solution
To eliminate the warning, disable JIT compilation.

See Also

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 35-71

37 Troubleshooting Code Generation Problems

37-2

JIT Compilation Does Not Support OpenMP

Issue
When you generate a MEX function for code that contains parfor, you see this warning message:

JIT technology does not support using OpenMP library,
this loop will not be parallelized.

MATLAB Coder generates a JIT MEX function and treats the parfor-loop as a for-loop.

Cause
JIT compilation and use of the OpenMP application interface are enabled. JIT compilation is
incompatible with the OpenMP application interface.

Solution
If you want to parallelize for-loops, disable JIT compilation.

See Also
parfor

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 35-71
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 33-14

 JIT Compilation Does Not Support OpenMP

37-3

Output Variable Must Be Assigned Before Run-Time Recursive
Call

Issue
You see this error message:

All outputs must be assigned before any run-time
recursive call. Output 'y' is not assigned here.

Cause
Run-time recursion produces a recursive function in the generated code. The code generator is
unable to use run-time recursion for a recursive function in your MATLAB code because an output is
not assigned before the first recursive call.

Solution
Rewrite the code so that it assigns the output before the recursive call.

Direct Recursion Example

In the following code, the statement y = A(1) assigns a value to the output y. This statement occurs
after the recursive call y = A(1)+ mysum(A(2:end)).

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) > 1
 y = A(1)+ mysum(A(2:end));

else
 y = A(1);
end
end

Rewrite the code so that assignment y = A(1) occurs in the if block and the recursive call occurs
in the else block.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');

if size(A,2) == 1

37 Troubleshooting Code Generation Problems

37-4

 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Alternatively, before the if block, add an assignment, for example, y = 0.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
y = 0;
if size(A,2) > 1
 y = A(1)+ mysum(A(2:end));

else
 y = A(1);
end
end

Indirect Recursion Example

In the following code, rec1 calls rec2 before the assignment y = 0.

function y = rec1(x)
%#codegen

if x >= 0
 y = rec2(x-1)+1;
else
 y = 0;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end

Rewrite this code so that in rec1, the assignment y = 0 occurs in the if block and the recursive call
occurs in the else block.

function y = rec1(x)
%#codegen

if x < 0
 y = 0;
else
 y = rec2(x-1)+1;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end

 Output Variable Must Be Assigned Before Run-Time Recursive Call

37-5

See Also

More About
• “Code Generation for Recursive Functions” on page 20-14

37 Troubleshooting Code Generation Problems

37-6

Compile-Time Recursion Limit Reached

Issue
You see a message such as:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Cause
With compile-time recursion, the code generator produces multiple versions of the recursive function
instead of producing a recursive function in the generated code. These versions are known as
function specializations. The code generator is unable to use compile-time recursion for a recursive
function in your MATLAB code because the number of function specializations exceeds the limit.

Solutions
To address the issue, try one of these solutions:

• “Force Run-Time Recursion” on page 37-7
• “Increase the Compile-Time Recursion Limit” on page 37-9

Force Run-Time Recursion
• For this message:

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Use this solution:

“Force Run-Time Recursion by Treating the Input Value as Nonconstant” on page 37-7.
• For this message:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

In the code generation report, look at the function specializations. If you can see that the size of
an argument is changing for each function specialization, then try this solution:

“Force Run-Time Recursion by Making the Input Variable-Size” on page 37-8.

Force Run-Time Recursion by Treating the Input Value as Nonconstant

Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 100;

 Compile-Time Recursion Limit Reached

37-7

y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

The second input to recfcn has the constant value 100. The code generator determines that the
number of recursive calls is finite and tries to produce 100 copies of recfcn. This number of
specializations exceeds the compile-time recursion limit. To force run-time recursion, instruct the
code generator to treat the second input as a nonconstant value by using coder.ignoreConst.

function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(100);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

If the code generator cannot determine that the number of recursive calls is finite, it produces a run-
time recursive function.

Force Run-Time Recursion by Making the Input Variable-Size

Consider this function:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. If A is large
enough, the number of function specializations exceeds the compile-time limit. To cause the code
generator to use run-time conversion, make the input to mysum variable-size by using
coder.varsize.

37 Troubleshooting Code Generation Problems

37-8

function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Increase the Compile-Time Recursion Limit
The default compile-time recursion limit of 50 is large enough for most recursive functions that
require compile-time recursion. Usually, increasing the limit does not fix the issue. However, if you
can determine the number of recursive calls and you want compile-time recursion, increase the limit.
For example, consider this function:

function z = call_mysum()
%#codegen
B = 1:125;
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

You can determine that the code generator produces 125 copies of the mysum function. In this case, if
you want compile-time recursion, increase the compile-time recursion limit to 125.

To increase the compile-time recursion limit:

• At the command line, in a code generation configuration object, increase the value of the
CompileTimeRecursionLimit configuration parameter.

• In the MATLAB Coder app, increase the value of the Compile-time recursion limit setting.

See Also

More About
• “Code Generation for Recursive Functions” on page 20-14
• “Configure Build Settings” on page 27-13

 Compile-Time Recursion Limit Reached

37-9

Unable to Determine That Every Element of Cell Array Is
Assigned

Issue
You see one of these messages:

Unable to determine that every element of 'y' is
assigned before this line.

Unable to determine that every element of 'y' is
assigned before exiting the function.

Unable to determine that every element of 'y' is
assigned before exiting the recursively called function.

Cause
For code generation, before you use a cell array element, you must assign a value to it. When you use
cell to create a variable-size cell array, for example, cell(1,n), MATLAB assigns an empty matrix
to each element. However, for code generation, the elements are unassigned. For code generation,
after you use cell to create a variable-size cell array, you must assign all elements of the cell array
before any use of the cell array.

The code generator analyzes your code to determine whether all elements are assigned before the
first use of the cell array. The code generator detects that all elements are assigned when the code
follows this pattern:

function z = CellVarSize1D(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = CellAssign3D(m,n,p)
%#codegen
x = cell(m,n,p);
for i = 1:m
 for j =1:n
 for k = 1:p
 x{i,j,k} = i+j+k;
 end
 end
end
z = x{m,n,p};
end

37 Troubleshooting Code Generation Problems

37-10

If the code generator detects that some elements are not assigned, code generation fails. Sometimes,
even though your code assigns all elements of the cell array, code generation fails because the
analysis does not detect that all elements are assigned.

Here are examples where the code generator is unable to detect that elements are assigned:

• Elements are assigned in different loops

...
x = cell(1,n)
for i = 1:5
 x{i} = 5;
end
for i = 6:n
 x{i} = 7;
end
...

• The variable that defines the loop end value is not the same as the variable that defines the cell
dimension.

...
x = cell(1,n);
m = n;
for i = 1:m
 x{i} = 2;
end
...

For more information, see “Definition of Variable-Size Cell Array by Using cell” on page 9-9.

Solution
Try one of these solutions:

• “Use recognized pattern for assigning elements” on page 37-11
• “Use repmat” on page 37-11
• “Use coder.nullcopy” on page 37-12

Use recognized pattern for assigning elements

If possible, rewrite your code to follow this pattern:

...
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
...

Use repmat

Sometimes, you can use repmat to define the variable-size cell array.

Consider this code that defines a variable-size cell array. It assigns the value 1 to odd elements and
the value 2 to even elements.

 Unable to Determine That Every Element of Cell Array Is Assigned

37-11

function z = repDefine(n, j)
%#codegen
c =cell(1,n);
for i = 1:2:n-1
 c{i} = 1;
end
for i = 2:2:n
 c{i} = 2;
end
z = c{j};

Code generation does not allow this code because:

• More than one loop assigns the elements.
• The loop counter does not increment by 1.

Rewrite the code to first use cell to create a 1-by-2 cell array whose first element is 1 and whose
second element is 2. Then, use repmat to create a variable-size cell array whose element values
alternate between 1 and 2.

function z = repVarSize(n, j)
%#codegen
c = cell(1,2);
c{1} = 1;
c{2} = 2;
c1= repmat(c,1,n);
z = c1{j};
end

You can pass an initially empty, variable-size cell array into or out of a function by using repmat. Use
the following pattern:

function x = emptyVarSizeCellArray
x = repmat({'abc'},0,0);
coder.varsize('x');
end

This code indicates that x is an empty, variable-size cell array of 1x3 characters that can be passed
into or out of functions.

Use coder.nullcopy

As a last resort, you can use coder.nullcopy to indicate that the code generator can allocate the
memory for your cell array without initializing the memory. For example:

function z = nulcpyCell(n, j)
%#codegen
c =cell(1,n);
c1 = coder.nullcopy(c);
for i = 1:4
 c1{i} = 1;
end
for i = 5:n
 c1{i} = 2;
end
z = c1{j};
end

37 Troubleshooting Code Generation Problems

37-12

Use coder.nullcopy with caution. If you access uninitialized memory, results are unpredictable.

See Also
cell | repmat | coder.nullcopy

More About
• “Cell Array Limitations for Code Generation” on page 9-8

 Unable to Determine That Every Element of Cell Array Is Assigned

37-13

Nonconstant Index into varargin or varargout in a for-Loop

Issue
Your MATLAB code contains a for-loop that indexes into varargin or varargout. When you
generate code, you see this error message:

Non-constant expression or empty matrix. This expression
must be constant because its value determines the size
or class of some expression.

Cause
At code generation time, the code generator must be able to determine the value of an index into
varargin or varagout. When varargin or varagout are indexed in a for-loop, the code
generator determines the index value for each loop iteration by unrolling the loop. Loop unrolling
makes a copy of the loop body for each loop iteration. In each iteration, the code generator
determines the value of the index from the loop counter.

The code generator is unable to determine the value of an index into varargin or varagout when:

• The number of copies of the loop body exceeds the limit for loop unrolling.
• Heuristics fail to identify that loop unrolling is warranted for a particular for-loop. For example,

consider the following function:

function [x,y,z] = fcn(a,b,c)
%#codegen

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:nargin
 j = j+1;
 varargout{j} = varargin{j};
end

The heuristics do not detect the relationship between the index j and the loop counter i.
Therefore, the code generator does not unroll the for-loop.

Solution
Use one of these solutions:

• “Force Loop Unrolling” on page 37-14
• “Rewrite the Code” on page 37-15

Force Loop Unrolling

Force loop unrolling by using coder.unroll. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen

37 Troubleshooting Code Generation Problems

37-14

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;

coder.unroll();
for i = 1:nargin
 j = j + 1;
 varargout{j} = varargin{j};
end

Rewrite the Code

Rewrite the code so that the code generator can detect the relationship between the index and the
loop counter. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:nargin
 varargout{i} = varargin{i};
end

See Also
coder.unroll

More About
• “Code Generation for Variable Length Argument Lists” on page 19-2
• “Unroll for-Loops and parfor-Loops” on page 35-35
• “Optimization Strategies” on page 35-3

 Nonconstant Index into varargin or varargout in a for-Loop

37-15

Unknown Output Type for coder.ceval

Issue
You see this error message:

Output of 'coder.ceval' has unknown type. The enclosing
expression cannot be evaluated.
Specify the output type by assigning the output of
'coder.ceval' to a variable with a known type.

Cause
This error message occurs when the code generator cannot determine the output type of a
coder.ceval call.

Solution
Initialize a temporary variable with the expected output type. Assign the output of coder.ceval to
this variable.

Example

Assume that you have a C function called cFunctionThatReturnsDouble. You want to generate C
library code for a function foo. The code generator returns the error message because it cannot
determine the return type of coder.ceval.

function foo
%#codegen
callFunction(coder.ceval('cFunctionThatReturnsDouble'));
end

function callFunction(~)
end

To fix the error, define the type of the C function output by using a temporary variable.

function foo
%#codegen
temp = 0;
temp = coder.ceval('cFunctionThatReturnsDouble');
callFunction(temp);
end

function callFunction(~)
end

You can also use coder.opaque to initialize the temporary variable.

Example Using Classes

Assume that you have a class with a custom set method. This class uses the set method to ensure
that the object property value falls within a certain range.

37 Troubleshooting Code Generation Problems

37-16

classdef classWithSetter
 properties
 expectedResult = []
 end
 properties(Constant)
 scalingFactor = 0.001
 end
 methods
 function obj = set.expectedResult(obj,erIn)
 if erIn >= 0 && erIn <= 100
 erIn = erIn.*obj.scalingFactor;
 obj.expectedResult = erIn;
 else
 obj.expectedResult = NaN;
 end
 end
 end
end

When generating C library code for the function foo, the code generator produces the error
message. The input type into the set method cannot be determined.

function foo
%#codegen
obj = classWithSetter;
obj.expectedResult = coder.ceval('cFunctionThatReturnsDouble');
end

To fix the error, initialize a temporary variable with a known type. For this example, use a type of
scalar double.

function foo
%#codegen
obj = classWithSetter;
temp = 0;
temp = coder.ceval('cFunctionThatReturnsDouble');
obj.expectedResult = temp;
end

See Also
coder.ceval | coder.opaque

 Unknown Output Type for coder.ceval

37-17

MEX Generated on macOS Platform Stays Loaded in Memory

Issue
When generating MEX code on the macOS platform, you get one of these messages:

• Warning message:

The generated code contains usage of OpenMP thread private variable.
This can cause the MEX to remain loaded in the memory.

• Error message:

The MEX file 'foo_mex' is still loaded in memory.
To clear the MEX file from memory, close the MATLAB session.

Cause
Your MATLAB code contains global or persistent variables that are reachable from the body of a
parfor-loop. Here is an example MATLAB function that contains this code pattern.

function y = foo(x)
y = coder.nullcopy(x);
parfor i = 1:numel(x)
 y(i) = x(i) + sub;
end

function y = sub
persistent t;
if isempty(t)
 t = 2;
end
y = t;

When you generate a MEX function for foo for the first time, you can receive the warning message.

If you try to overwrite the generated MEX by generating code for foo again, you can receive the
error message.

Solution
If you receive the warning message, you can use the generated MEX function.

If you receive the error message, close the current MATLAB session to clear the MEX function
foo_mex from memory. To overwrite the previously generated MEX function , open a new MATLAB
session and generate MEX code for foo.

See Also
parfor

More About
• “Generate Code with Parallel for-Loops (parfor)” on page 35-33

37 Troubleshooting Code Generation Problems

37-18

Resolve Error: Code Generator Failed to Produce C++
Destructor for MATLAB Class

Issue
Generating reentrant code with C++ classes from MATLAB code increases the chances of stack
overflow during code execution. Code generation might stop and produce this message:

Code generator failed to produce C++ destructor for MATLAB class 'y'.
Generated code is not exception-safe. To enable generation of C++ destructor,
disable 'Generate Re-entrant code (MultiInstanceCode)' configuration
parameter.

This message might appear if both these conditions are true:

• You choose to generate C++ code with classes from MATLAB code by setting TargetLang to 'C+
+' and CppPreserveClasses to true in the configuration object (coder.CodeConfig or
coder.EmbeddedCodeConfig), or in the project build settings, by setting Language to C++and
checking the Generate C++ classes from MATLAB classes check box.

• You choose to generate reentrant code by enabling the MultiInstanceCode parameter in a code
configuration object, or by enabling the Generate re-entrant code parameter in the Memory
tab of the MATLAB Coder app.

• The destructor of a class in your MATLAB code has a persistent variable or calls another function
that declares and uses a persistent variable.

Possible Solutions
Depending on whether the type of code you want to generate, try one of these solutions.

Raise the Stack Limit

You can raise the stack limit to generate reentrant code that has C++ classes for MATLAB classes. Do
one of the following:

• In the project settings dialog box under the Memory tab, set the Stack usage max parameter.
• In the configuration object for standalone code generation (coder.CodeConfig or

coder.EmbeddedCodeConfig), set the StackUsageMax parameter.

Raise the stack limit by doubling the stack value until code generation succeeds. The code generator
then might have sufficient memory to generate C++ classes in reentrant code.

Note The maximum configurable stack limit depends on the linker in your system. The default stack
size varies based on your operating system and system configuration.

The destructor of a class in your MATLAB code must not have a persistent variable or call another
function that declares a persistent variable.

 Resolve Error: Code Generator Failed to Produce C++ Destructor for MATLAB Class

37-19

Disable Reentrant Code

To generate code that contains C++ classes for MATLAB classes, you can disable generation of
reentrant code. Do one of the following:

• In the code configuration object, disable the MultiInstanceCode parameter.
• In the MATLAB Coder app, disable the Generate re-entrant code parameter.

Generate Structures Instead of Classes

You can change the default behavior of the code generator to produce structures for MATLAB classes.
Do one of the following:

• In the configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set TargetLang to 'C++' and CppPreserveClasses to false.

• In the MATLAB Coder app, set Language to C++. In the project build settings, clear the Generate
C++ classes from MATLAB classes check box.

See Also

More About
• “Generate Reentrant C Code from MATLAB Code” on page 36-2
• “Generate C++ Classes for MATLAB Classes” on page 16-2

37 Troubleshooting Code Generation Problems

37-20

Row-Major Array Layout

• “Row-Major and Column-Major Array Layouts” on page 38-2
• “Generate Code That Uses Row-Major Array Layout” on page 38-4

38

Row-Major and Column-Major Array Layouts
The elements of an array can be stored in column-major layout or row-major layout. For an array
stored in column-major layout, the elements of the columns are contiguous in memory. In row-major
layout, the elements of the rows are contiguous. Array layout is also called order, format, and
representation. The order in which elements are stored can be important for integration, usability,
and performance. Certain algorithms perform better on data stored in a particular order.

Programming languages and environments typically assume a single array layout for all data.
MATLAB and Fortran use column-major layout by default, whereas C and C++ use row-major layout.
With MATLAB Coder, you can generate C/C++ code that uses row-major layout or column-major
layout. See “Generate Code That Uses Row-Major Array Layout” on page 38-4.

Array Storage in Computer Memory
Computer memory stores data in terms of one-dimensional arrays. For example, when you declare a
3-by-3 matrix, the software stores this matrix as a one-dimensional array with nine elements. By
default, MATLAB stores these elements with a column-major array layout. The elements of each
column are contiguous in memory.

Consider the matrix A:

A =
 1 2 3
 4 5 6
 7 8 9

The matrix A is represented in memory by default with this arrangement:

 1 4 7 2 5 8 3 6 9

In row-major array layout, the programming language stores row elements contiguously in memory.
In row-major layout, the elements of the array are stored as:

 1 2 3 4 5 6 7 8 9

N-dimensional arrays can also be stored in column-major or row-major layout. In column-major
layout, the elements from the first (leftmost) dimension or index are contiguous in memory. In row-
major, the elements from the last (rightmost) dimension or index are contiguous.

Conversions Between Different Array Layouts
When you mix row-major data and column-major data in the same code, array layout conversions are
necessary. For example, you can generate code that includes row-major and column-major function
specializations. Function specializations use one type of array layout for all input, output, and internal
data. When passing data between functions, the code generator automatically inserts array layout
conversions as needed. Input and output data to generated MEX functions is also converted as
needed.

For two-dimensional data, transpose operations convert data between row-major layout and column-
major layout. Consider the transposed version of A:

A' =
 1 4 7

38 Row-Major Array Layout

38-2

 2 5 8
 3 6 9

The column-major layout of A' matches the row-major layout of A. (For complex numbers, array
layout conversions use a nonconjugate transpose.)

See Also
coder.columnMajor | coder.rowMajor | coder.isRowMajor | coder.isColumnMajor

More About
• “Generate Code That Uses Row-Major Array Layout” on page 38-4
• “MATLAB Data”
• “Generate Code That Uses N-Dimensional Indexing” on page 27-134

 Row-Major and Column-Major Array Layouts

38-3

Generate Code That Uses Row-Major Array Layout
Array layout can be important for integration, usability, and performance. The code generator
produces code that uses column-major layout by default. However, many devices, sensors, and
libraries use row-major array layout for their data. You can apply your code directly to this data by
generating code that uses row-major layout. Array layout can also affect performance. Many
algorithms perform memory access more efficiently for one specific array layout.

You can specify row-major array layout at the command line, with code generation configuration
properties, or by using the MATLAB Coder app. You can also specify row-major layout or column-
major layout for individual functions and classes. The inputs and outputs of your entry-point (top-
level) functions must all use the same array layout.

Specify Row-Major Layout
Consider this function for adding two matrices. The algorithm performs the addition through explicit
row and column traversal.

function [S] = addMatrix(A,B)
%#codegen
S = zeros(size(A));
for row = 1:size(A,1)
 for col = 1:size(A,2)
 S(row,col) = A(row,col) + B(row,col);
 end
end

Generate C code for addMatrix by using the -rowmajor option. Specify the form of the input
parameters by using the -args option and launch the code generation report.

codegen addMatrix -args {ones(20,10),ones(20,10)} -config:lib -launchreport -rowmajor

Alternatively, configure your code for row-major layout by modifying the RowMajor parameter in the
code generation configuration object. You can use this parameter with any type of configuration
object: lib, mex, dll, or exe.

cfg = coder.config('lib');
cfg.RowMajor = true;
codegen addMatrix -args {ones(20,10),ones(20,10)} -config cfg -launchreport

Code generation results in this C code:

...
/* generated code for addMatrix using row-major */
for (row = 0; row < 20; row++) {
 for (col = 0; col < 10; col++) {
 S[col + 10 * row] = A[col + 10 * row] + B[col + 10 * row];
 }
}
...

To specify row-major layout with the MATLAB Coder app:

1 Open the Generate dialog box. On the Generate Code page, click the Generate arrow .

38 Row-Major Array Layout

38-4

2 Click More Settings.
3 On the Memory tab, set Array layout: Row-major.

To verify that your generated code uses row-major layout, compare the array indexing in your
generated code with the array indexing in code that uses column-major layout. You can also generate
code that uses N-dimensional indexing. N-dimensional indexing can make differences in array layout
more apparent. For more information, see “Generate Code That Uses N-Dimensional Indexing” on
page 27-134.

MATLAB stores data in column-major layout by default. When you call a generated MEX function that
uses row-major layout, the software automatically converts input data from column-major layout to
row-major layout. Output data returned from the MEX function is converted back to column-major
layout. For standalone lib, dll, and exe code generation, the code generator assumes that entry-
point function inputs and outputs are stored with the same array layout as the function.

Array Layout and Algorithmic Efficiency
For certain algorithms, row-major layout provides more efficient memory access. Consider the C code
shown for addMatrix that uses row-major layout. The arrays are indexed by the generated code
using the formula:

[col + 10 * row]

Because the arrays are stored in row-major layout, adjacent memory elements are separated by
single column increments. The stride length for the algorithm is equal to one. The stride length is the
distance in memory elements between consecutive memory accesses. A shorter stride length provides
more efficient memory access.

Using column-major layout for the data results in a longer stride length and less efficient memory
access. To see this comparison, generate code that uses column-major layout:

codegen addMatrix -args {ones(20,10),ones(20,10)} -config:lib -launchreport

Code generation produces this C code:

...
/* generated code for addMatrix using column-major */
for (row = 0; row < 20; row++) {
 for (col = 0; col < 10; col++) {
 S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];
 }
}
...

In column-major layout, the column elements are contiguous in memory in the generated code.
Adjacent memory elements are separated by single row increments and indexed by the formula:

[row + 20 * col]

However, the algorithm iterates through the columns in the inner for-loop. Therefore, the column-
major C code must make a stride of 20 elements for each consecutive memory access.

The array layout that provides the most efficient memory access depends on the algorithm. For this
algorithm, row-major layout of the data provides more efficient memory access. The algorithm
traverses over the data row by row. Row-major storage is therefore more efficient.

 Generate Code That Uses Row-Major Array Layout

38-5

Row-Major Layout for N-Dimensional Arrays
You can use row-major layout for N-dimensional arrays. When an array is stored in row-major layout,
the elements from the last (rightmost) dimension or index are contiguous in memory. In column-major
layout, the elements from the first (leftmost) dimension or index are contiguous.

Consider the example function addMatrix3D, which accepts three-dimensional inputs.

function [S] = addMatrix3D(A,B)
%#codegen
S = zeros(size(A));
for i = 1:size(A,1)
 for j = 1:size(A,2)
 for k = 1:size(A,3)
 S(i,j,k) = A(i,j,k) + B(i,j,k);
 end
 end
end
end

Generate code that uses row-major layout:

codegen addMatrix3D -args {ones(20,10,5),ones(20,10,5)} -config:lib -launchreport -rowmajor

The code generator produces this C code:

...
/* row-major layout */
for (i = 0; i < 20; i++) {
 for (j = 0; j < 10; j++) {
 for (k = 0; k < 5; k++) {
 S[(k + 5 * j) + 50 * i] = A[(k + 5 * j) + 50 * i]
 + B[(k + 5 * j) + 50 * i];
 }
 }
}
...

In row-major layout, adjacent memory elements are separated by single increments of the last index,
k. The inner for-loop iterates over adjacent elements separated by only one position in memory.
Compare the differences to generated code that uses column-major layout:

...
/* column-major layout */
for (i = 0; i < 20; i++) {
 for (j = 0; j < 10; j++) {
 for (k = 0; k < 5; k++) {
 S[(i + 20 * j) + 200 * k] = A[(i + 20 * j) + 200 * k]
 + B[(i + 20 * j) + 200 * k];
 }
 }
}
...

In column-major layout, adjacent elements are separated by single increments of the first index, i.
The inner for-loop now iterates over adjacent elements separated by 200 positions in memory. The
long stride length can cause performance degradation due to cache misses.

38 Row-Major Array Layout

38-6

Because the algorithm iterates through the last index, k, in the inner for-loop, the stride length is
much longer for the generated code that uses column-major layout. For this algorithm, row-major
layout of the data provides more efficient memory access.

Specify Array Layout in External Function Calls
To call external C/C++ functions that expect data stored with a specific layout, use coder.ceval
with the layout syntax. If you do not use this syntax, the external function inputs and outputs are
assumed to use column-major layout by default.

Consider an external C function designed to use row-major layout called myCFunctionRM. To
integrate this function into your code, call the function using the '-layout:rowMajor' or '-row'
option. This option ensures that the input and output arrays are stored in row-major order. The code
generator automatically inserts array layout conversions as needed.

coder.ceval('-layout:rowMajor','myCFunctionRM',coder.ref(in),coder.ref(out))

Within a MATLAB function that uses row-major layout, you may seek to call an external function
designed to use column-major layout. In this case, use the '-layout:columnMajor' or '-col'
option.

coder.ceval('-layout:columnMajor','myCFunctionCM',coder.ref(in),coder.ref(out))

You can perform row-major and column-major function calls in the same code. Consider the function
myMixedFn1 as an example:

function [E] = myMixedFn1(x,y)
%#codegen
% specify type of return arguments for ceval calls
D = zeros(size(x));
E = zeros(size(x));

% include external C functions that use row-major & column-major
coder.cinclude('addMatrixRM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixRM.c');
coder.cinclude('addMatrixCM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixCM.c');

% call C function that uses row-major order
coder.ceval('-layout:rowMajor','addMatrixRM', ...
 coder.rref(x),coder.rref(y),coder.wref(D));

% call C function that uses column-major order
coder.ceval('-layout:columnMajor','addMatrixCM', ...
 coder.rref(x),coder.rref(D),coder.wref(E));
end

The external files are:

addMatrixRM.h
extern void addMatrixRM(const double x[200], const double y[200], double z[200]);

addMatrixRM.c
#include "addMatrixRM.h"

 Generate Code That Uses Row-Major Array Layout

38-7

void addMatrixRM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[col + 10 * row] = x[col + 10 * row] + y[col + 10 * row];
 }
 }
}

addMatrixCM.h

extern void addMatrixCM(const double x[200], const double y[200], double z[200]);

addMatrixCM.c

#include "addMatrixCM.h"

void addMatrixCM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[row + 20 * col] = x[row + 20 * col] + y[row + 20 * col];
 }
 }
}

To generate code, enter:

codegen -config:lib myMixedFn1 -args {ones(20,10),ones(20,10)} -rowmajor -launchreport

See Also
coder.columnMajor | coder.rowMajor | coder.ceval | coder.isRowMajor |
coder.isColumnMajor | codegen

More About
• “Row-Major and Column-Major Array Layouts” on page 38-2
• “Specify Array Layout in Functions and Classes” on page 5-22
• “Code Design for Row-Major Array Layout” on page 5-26
• “Generate Code That Uses N-Dimensional Indexing” on page 27-134

38 Row-Major Array Layout

38-8

Deep Learning with MATLAB Coder

• “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7
• “Networks and Layers Supported for Code Generation” on page 39-8
• “Load Pretrained Networks for Code Generation” on page 39-30
• “Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Cross-Compile Deep Learning Code That Uses ARM Compute Library” on page 39-44
• “Code Generation for Quantized Deep Learning Networks” on page 39-47
• “Update Network Parameters After Code Generation” on page 39-50
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Deep Learning Prediction with ARM Compute Using codegen” on page 39-63
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• “Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN” on page 39-73
• “Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi” on page 39-76
• “Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net”

on page 39-80
• “Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net”

on page 39-89
• “Code Generation for LSTM Network on Raspberry Pi” on page 39-98
• “Code Generation for LSTM Network That Uses Intel MKL-DNN” on page 39-105
• “Code Generation for Convolutional LSTM Network That Uses Intel MKL-DNN” on page 39-109
• “Cross Compile Deep Learning Code for ARM Neon Targets” on page 39-113
• “Code Generation for Quantized Deep Learning Network on Raspberry Pi” on page 39-119
• “Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target” on page 39-127
• “Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning”

on page 39-130
• “Generate Digit Images Using Variational Autoencoder on Intel CPUs” on page 39-139
• “Post-Code-Generation Update of Deep Learning Network Parameters” on page 39-145
• “Generate Code for LSTM Network and Deploy on Cortex-M Target ” on page 39-154
• “Prune Filters in a Detection Network Using Taylor Scores” on page 39-161

39

Prerequisites for Deep Learning with MATLAB Coder

MathWorks Products
To use MATLAB Coder to generate code for deep learning networks, you must also install:

• Deep Learning Toolbox
• MATLAB Coder Interface for Deep Learning Libraries

The MATLAB Coder Interface for Deep Learning Libraries is not supported for MATLAB Online.

Third-Party Hardware and Software
You can use MATLAB Coder to generate C++ code for deep learning networks that you deploy to
Intel or ARM processors. The generated code takes advantage of deep learning libraries optimized for
the target CPU. The hardware and software requirements depend on the target platform.

You can also use MATLAB Coder to generate generic C or C++ code for deep learning networks.
Such C or C++ code does not depend on any third-party libraries. For more information, see
“Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33.

Note The paths to the required software libraries must not contain spaces or special characters,
such as parentheses. On Windows operating systems, special characters and spaces are allowed only
if 8.3 file names are enabled. For more information on 8.3 file names, refer to the Windows
documentation.

 Intel CPUs ARM Cortex-A CPUs ARM Cortex-M CPUs
Hardware
Requireme
nts

Intel processor with support
for Intel Advanced Vector
Extensions 2 (Intel AVX2)
instructions.

ARM Cortex-A processors
that support the NEON
extension.

ARM Cortex-M processors.

39 Deep Learning with MATLAB Coder

39-2

 Intel CPUs ARM Cortex-A CPUs ARM Cortex-M CPUs
Software
Libraries

Intel Math Kernel Library
for Deep Neural Networks
(MKL-DNN), v1.4. See
https://01.org/onednn

Do not use a prebuilt library
because some required files
are missing. Instead, build
the library from the source
code. See instructions for
building the library on
GitHub®.

For more information on
build, see this post in
MATLAB Answers™: https://
www.mathworks.com/
matlabcentral/answers/
447387-matlab-coder-how-
do-i-build-the-intel-mkl-dnn-
library-for-deep-learning-c-
code-generation-and-dep

Note When generating
MEX functions that run on
your MATLAB host
computer, it is
recommended that you use
the MKL-DNN target
instead of generating
generic C/C++ code.
Generated code that uses
the MKL-DNN library is
likely to have better
performance than generic
code.

ARM Compute Library for
computer vision and
machine learning, versions
19.05 and 20.02.1. See
https://
developer.arm.com/ip-
products/processors/
machine-learning/compute-
library

Specify the version number
in a
coder.ARMNEONConfig
configuration object. The
default version number is
v20.02.1.

Do not use a prebuilt library
because it might be
incompatible with the
compiler on the ARM
hardware. Instead, build the
library from the source
code. Build the library on
either your host machine or
directly on the target
hardware. See instructions
for building the library on
GitHub.

The folder that contains the
library files such as
libarm_compute.so
should be named lib. If the
folder is named build,
rename the folder to lib.

For more information on
build, see this post in
MATLAB Answers: https://
www.mathworks.com/
matlabcentral/answers/
455590-matlab-coder-how-
do-i-build-the-arm-compute-
library-for-deep-learning-c-
code-generation-and-deplo

To deploy quantized
networks on ARM
processors, you must use

CMSIS-NN library version
5.7.0. See https://
developer.arm.com/tools-
and-software/embedded/
cmsis

Build the library on your
host machine using build
steps provided in MATLAB
Answers: https://
www.mathworks.com/
matlabcentral/answers/
1631260

 Prerequisites for Deep Learning with MATLAB Coder

39-3

https://01.org/onednn
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://www.mathworks.com/matlabcentral/answers/447387-matlab-coder-how-do-i-build-the-intel-mkl-dnn-library-for-deep-learning-c-code-generation-and-dep
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://arm-software.github.io/ComputeLibrary/latest/index.xhtml#S3_how_to_build
https://arm-software.github.io/ComputeLibrary/latest/index.xhtml#S3_how_to_build
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://www.mathworks.com/matlabcentral/answers/455590-matlab-coder-how-do-i-build-the-arm-compute-library-for-deep-learning-c-code-generation-and-deplo
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis
https://www.mathworks.com/matlabcentral/answers/1631260
https://www.mathworks.com/matlabcentral/answers/1631260
https://www.mathworks.com/matlabcentral/answers/1631260
https://www.mathworks.com/matlabcentral/answers/1631260

 Intel CPUs ARM Cortex-A CPUs ARM Cortex-M CPUs
ARM Compute library
version 20.02.1.

Operating
System
Support

Windows, Linux, and
macOS.

Windows and Linux only. Windows and Linux only.

C++
Compiler

MATLAB Coder locates and uses a supported installed compiler. For the list of
supported compilers, see Supported and Compatible Compilers on the MathWorks
website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler”.

The C++ compiler must support C++11.

On Windows, to generate code that uses the Intel MKL-DNN library by using the
codegen command, use Microsoft Visual Studio 2015 or later.

On Windows, to generate generic C or C++ code that does not use any third-party
libraries, use Microsoft Visual Studio or the MinGW compiler. For more information,
see “Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33.

Note For generating MEX function that uses the Intel MKL-DNN library, the MinGW
compiler is not supported.

Other Open Source Computer Vision Library (OpenCV), v3.1.0 is required for the ARM
Cortex-A based deep learning examples.

Note: The examples require separate libraries such as opencv_core.lib and
opencv_video.lib. The OpenCV library that ships with Computer Vision Toolbox
does not have the required libraries and the OpenCV installer does not install them.
Therefore, you must download the OpenCV source and build the libraries.

For more information, refer to the OpenCV documentation.

Environment Variables
MATLAB Coder uses environment variables to locate the libraries required to generate code for deep
learning networks.

Platform Variable Name Description
Windows INTEL_MKLDNN Path to the root folder of the Intel MKL-DNN library

installation.

For example:

C:\Program Files\mkl-dnn

39 Deep Learning with MATLAB Coder

39-4

https://www.mathworks.com/support/requirements/supported-compilers.html
https://opencv.org/
https://opencv.org/

Platform Variable Name Description
ARM_COMPUTELIB Path to the root folder of the ARM Compute Library

installation on the ARM target hardware.

For example:

/usr/local/arm_compute

Set ARM_COMPUTELIB on the ARM target hardware.
CMSISNN_PATH Path to the root folder of the CMSIS-NN library

installation on the ARM target hardware.

For example:

/usr/local/cmsis_nn

Set CMSISNN_PATH on the ARM target hardware.
PATH Path to the Intel MKL-DNN library folder.

For example:

C:\Program Files\mkl-dnn\lib
Linux LD_LIBRARY_PATH Path to the Intel MKL-DNN library folder.

For example:

/usr/local/mkl-dnn/lib/
Path to the ARM Compute Library folder on the target
hardware.

For example:

/usr/local/arm_compute/lib/

Set LD_LIBRARY_PATH on the ARM target hardware.
INTEL_MKLDNN Path to the root folder of the Intel MKL-DNN library

installation.

For example:

/usr/local/mkl-dnn/
ARM_COMPUTELIB Path to the root folder of the ARM Compute Library

installation on the ARM target hardware.

For example:

/usr/local/arm_compute/

Set ARM_COMPUTELIB on the ARM target hardware.

 Prerequisites for Deep Learning with MATLAB Coder

39-5

Platform Variable Name Description
CMSISNN_PATH Path to the root folder of the CMSIS-NN library

installation on the ARM target hardware.

For example:

/usr/local/cmsis_nn

Set CMSISNN_PATH on the ARM target hardware.
macOS INTEL_MKLDNN Path to the root folder of the Intel MKL-DNN library

installation.

For example:

/usr/local/mkl-dnn
UNIX based
OS on ARM
Cortex-A
targets

OPENCV_DIR Path to the build folder of OpenCV. Install OpenCV for
deep learning examples that use OpenCV.

For example:

/usr/local/opencv/build

Note To generate code for Raspberry Pi using the MATLAB Support Package for Raspberry Pi
Hardware, you must set the environment variables non-interactively. For instructions, see https://
www.mathworks.com/matlabcentral/answers/455591-matlab-coder-how-do-i-setup-the-environment-
variables-on-arm-targets-to-point-to-the-arm-compute-li

Note To build and run examples that use OpenCV, you must install the OpenCV libraries on the
target board. For OpenCV installations on Linux, make sure that the path to the library files and the
path to the header files are on the system path. By default, the library and header files are installed in
a standard location such as /usr/local/lib/ and /usr/local/include/opencv, respectively.

For OpenCV installations on the target board, set the OPENCV_DIR and PATH environment variables
as described in the previous table.

Note You might be able to improve the performance of the code generated for Intel CPU-s by setting
environment variables that control the binding of OpenMP threads to physical processing units. For
example, on the Linux platform, set the KMP_AFFINITY environment variable to scatter. For other
platforms using Intel CPU-s, you might be able to set similar environment variables to improve the
performance of the generated code.

See Also

More About
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7

39 Deep Learning with MATLAB Coder

39-6

https://www.mathworks.com/matlabcentral/answers/455591-matlab-coder-how-do-i-setup-the-environment-variables-on-arm-targets-to-point-to-the-arm-compute-li
https://www.mathworks.com/matlabcentral/answers/455591-matlab-coder-how-do-i-setup-the-environment-variables-on-arm-targets-to-point-to-the-arm-compute-li
https://www.mathworks.com/matlabcentral/answers/455591-matlab-coder-how-do-i-setup-the-environment-variables-on-arm-targets-to-point-to-the-arm-compute-li

Workflow for Deep Learning Code Generation with MATLAB
Coder

With MATLAB Coder, you can generate code for prediction from a pretrained convolutional neural
network (CNN), targeting an embedded platform that uses an Intel processor or an ARM processor.
The generated code calls the Intel MKL-DNN or ARM Compute Library to apply high performance.

You can also use MATLAB Coder to generate generic C or C++ code for deep learning networks.
Such C or C++ code does not depend on any third-party libraries.

1 Get a trained network by using Deep Learning Toolbox. Construct and train the network or use a
pretrained network. For more information, see:

• “Deep Learning in MATLAB” (Deep Learning Toolbox).
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox).

The network must be supported for code generation. See “Networks and Layers Supported for
Code Generation” on page 39-8.

2 Load a network object from the trained network.

See “Load Pretrained Networks for Code Generation” on page 39-30.
3 Generate C++ code for the trained network by using codegen or the MATLAB Coder app. See:

• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)
• “Learn About Convolutional Neural Networks” (Deep Learning Toolbox)
• “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• “Deep Learning Prediction with ARM Compute Using codegen” on page 39-63
• “Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33
• “Deep Learning with GPU Coder” (GPU Coder)

 Workflow for Deep Learning Code Generation with MATLAB Coder

39-7

Networks and Layers Supported for Code Generation
MATLAB Coder supports code generation for series, directed acyclic graph (DAG), and recurrent
convolutional neural networks (CNNs or ConvNets). You can generate code for any trained
convolutional neural network whose layers are supported for code generation. See “Supported
Layers” on page 39-9.

Supported Pretrained Networks
The following pretrained networks, available in Deep Learning Toolbox, are supported for code
generation.

Network
Name

Description ARM Compute
Library

Intel MKL-DNN

AlexNet AlexNet convolutional neural network. For the
pretrained AlexNet model, see alexnet.

Yes Yes

DarkNet DarkNet-19 and DarkNet-53 convolutional
neural networks. For the pretrained DarkNet
models, see darknet19 and darknet53.

Yes Yes

DenseNet-201 DenseNet-201 convolutional neural network. For
the pretrained DenseNet-201 model, see
densenet201.

Yes Yes

EfficientNet
-b0

EfficientNet-b0 convolutional neural network.
For the pretrained EfficientNet-b0 model, see
efficientnetb0.

Yes Yes

GoogLeNet GoogLeNet convolutional neural network. For
the pretrained GoogLeNet model, see
googlenet.

Yes Yes

Inception-
ResNet-v2

Inception-ResNet-v2 convolutional neural
network. For the pretrained Inception-ResNet-v2
model, see inceptionresnetv2.

Yes Yes

Inception-v3 Inception-v3 convolutional neural network. For
the pretrained Inception-v3 model, see
inceptionv3.

Yes Yes

MobileNet-v2 MobileNet-v2 convolutional neural network. For
the pretrained MobileNet-v2 model, see
mobilenetv2.

Yes Yes

NASNet-Large NASNet-Large convolutional neural network.
For the pretrained NASNet-Large model, see
nasnetlarge.

Yes Yes

NASNet-
Mobile

NASNet-Mobile convolutional neural network.
For the pretrained NASNet-Mobile model, see
nasnetmobile.

Yes Yes

ResNet ResNet-18, ResNet-50, and ResNet-101
convolutional neural networks. For the
pretrained ResNet models, see resnet18,
resnet50, and resnet101.

Yes Yes

39 Deep Learning with MATLAB Coder

39-8

Network
Name

Description ARM Compute
Library

Intel MKL-DNN

SegNet Multi-class pixelwise segmentation network. For
more information, see segnetLayers.

No Yes

SqueezeNet Small, deep neural network. For the pretrained
SqeezeNet models, see squeezenet.

Yes Yes

VGG-16 VGG-16 convolutional neural network. For the
pretrained VGG-16 model, see vgg16.

Yes Yes

VGG-19 VGG-19 convolutional neural network. For the
pretrained VGG-19 model, see vgg19.

Yes Yes

Xception Xception convolutional neural network. For the
pretrained Xception model, see xception.

Yes Yes

Supported Layers
The following layers are supported for code generation by MATLAB Coder for the target deep
learning libraries specified in the table.

Once you install the support package MATLAB Coder Interface for Deep Learning Libraries, you can
use coder.getDeepLearningLayers to see a list of the layers supported for a specific deep
learning library. For example:

coder.getDeepLearningLayers('mkldnn')

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

additionLayer Addition layer Yes Yes Yes
anchorBoxLayer Anchor box layer Yes Yes No
averagePooling
2dLayer

Average pooling
layer

Yes Yes No

batchNormaliza
tionLayer

Batch
normalization layer

Yes Yes Yes

bilstmLayer Bidirectional LSTM
layer

Yes Yes Yes

classification
Layer

Create
classification
output layer

Yes Yes Yes

clippedReluLay
er

Clipped Rectified
Linear Unit (ReLU)
layer

Yes Yes Yes

concatenationL
ayer

Concatenation
layer

Yes Yes Yes

 Networks and Layers Supported for Code Generation

39-9

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

convolution2dL
ayer

2-D convolution
layer

• For code
generation, the
PaddingValue
parameter must
be equal to 0,
which is the
default value.

Yes Yes Yes

crop2dLayer Layer that applies
2-D cropping to the
input

Yes Yes No

CrossChannelNo
rmalizationLay
er

Channel-wise local
response
normalization layer

Yes Yes No

39 Deep Learning with MATLAB Coder

39-10

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

Custom layers Custom layers,
with or without
learnable
parameters, that
you define for your
problem.

See:

• “Define Custom
Deep Learning
Layers” (Deep
Learning
Toolbox)

• “Define Custom
Deep Learning
Layer for Code
Generation”
(Deep Learning
Toolbox)

• “Networks and
Layers
Supported for
Code
Generation” on
page 39-8

The outputs of the
custom layer must
be fixed-size
arrays.

Custom layers in
sequence networks
are supported for
generic C/C++
code generation
only.

For code
generation, custom
layers must
contain the
%#codegen
pragma.

You can pass
dlarray to
custom layers if:

Yes Yes Yes

Custom layers in
sequence networks
are supported for
generic C/C++
code generation
only.

 Networks and Layers Supported for Code Generation

39-11

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

• The custom
layer is in
dlnetwork.

• Custom layer is
in a DAG or
series network
and either
inherits from
nnet.layer.F
ormattable or
has no
backward
propagation.

For unsupported
dlarray methods,
then you must
extract the
underlying data
from the dlarray,
perform the
computations and
reconstruct the
data back into the
dlarray for code
generation. For
example,

function Z = predict(layer, X)

if coder.target('MATLAB')
 Z = doPredict(X);
else
 if isdlarray(X)
 X1 = extractdata(X);
 Z1 = doPredict(X1);
 Z = dlarray(Z1);
 else
 Z = doPredict(X);
 end
end

end

39 Deep Learning with MATLAB Coder

39-12

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

Custom output
layers

All output layers
including custom
classification or
regression output
layers created by
using
nnet.layer.Cla
ssificationLay
er or
nnet.layer.Reg
ressionLayer.

For an example
showing how to
define a custom
classification
output layer and
specify a loss
function, see
“Define Custom
Classification
Output Layer”
(Deep Learning
Toolbox).

For an example
showing how to
define a custom
regression output
layer and specify a
loss function, see
“Define Custom
Regression Output
Layer” (Deep
Learning Toolbox).

Yes Yes Yes

depthConcatena
tionLayer

Depth
concatenation
layer

Yes Yes No

depthToSpace2d
Layer

2-D depth to space
layer

Yes Yes Yes

dicePixelClass
ificationLayer

A Dice pixel
classification layer
provides a
categorical label
for each image
pixel or voxel using
generalized Dice
loss.

Yes Yes No

 Networks and Layers Supported for Code Generation

39-13

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

dropoutLayer Dropout layer Yes Yes Yes
eluLayer Exponential linear

unit (ELU) layer
Yes Yes Yes

featureInputLa
yer

Feature input layer Yes Yes Yes

flattenLayer Flatten layer Yes Yes No
focalLossLayer A focal loss layer

predicts object
classes using focal
loss.

Yes Yes No

fullyConnected
Layer

Fully connected
layer

Yes Yes Yes

globalAverageP
ooling2dLayer

Global average
pooling layer for
spatial data

Yes Yes No

globalMaxPooli
ng2dLayer

2-D global max
pooling layer

Yes Yes No

groupedConvolu
tion2dLayer

2-D grouped
convolutional layer

• For code
generation, the
PaddingValue
parameter must
be equal to 0,
which is the
default value.

Yes

• If you specify
an integer for
numGroups,
then the value
must be less
than or equal to
2.

Yes No

groupNormaliza
tionLayer

Group
normalization layer

Yes Yes Yes

gruLayer Gated recurrent
unit (GRU) layer

Yes Yes Yes

imageInputLaye
r

Image input layer

• Code
generation does
not support
'Normalizati
on' specified
using a function
handle.

Yes Yes Yes

leakyReluLayer Leaky Rectified
Linear Unit (ReLU)
layer

Yes Yes Yes

39 Deep Learning with MATLAB Coder

39-14

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

lstmLayer Long short-term
memory (LSTM)
layer

Yes Yes Yes

maxPooling2dLa
yer

Max pooling layer

If equal max values
exists along the
off-diagonal in a
kernel window,
implementation
differences for the
maxPooling2dLa
yer might cause
minor numerical
mismatch between
MATLAB and the
generated code.
This issue also
causes mismatch
in the indices of
the maximum
value in each
pooled region. For
more information,
see
maxPooling2dLa
yer.

Yes Yes Yes

 Networks and Layers Supported for Code Generation

39-15

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

maxUnpooling2d
Layer

Max unpooling
layer

If equal max values
exists along the
off-diagonal in a
kernel window,
implementation
differences for the
maxPooling2dLa
yer might cause
minor numerical
mismatch between
MATLAB and the
generated code.
This issue also
causes mismatch
in the indices of
the maximum
value in each
pooled region. For
more information,
see
maxUnpooling2d
Layer.

No Yes No

multiplication
Layer

Multiplication
layer

Yes Yes Yes

pixelClassific
ationLayer

Create pixel
classification layer
for semantic
segmentation

Yes Yes No

rcnnBoxRegress
ionLayer

Box regression
layer for Fast and
Faster R-CNN

Yes Yes No

rpnClassificat
ionLayer

Classification layer
for region proposal
networks (RPNs)

Yes Yes No

regressionLaye
r

Create a
regression output
layer

Yes Yes Yes

reluLayer Rectified Linear
Unit (ReLU) layer

Yes Yes Yes

resize2dLayer 2-D resize layer Yes Yes Yes
scalingLayer Scaling layer for

actor or critic
network

Yes Yes Yes

39 Deep Learning with MATLAB Coder

39-16

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

sigmoidLayer Sigmoid layer Yes Yes Yes
sequenceFoldin
gLayer

Sequence folding
layer

Yes Yes No

sequenceInputL
ayer

Sequence input
layer

• For vector
sequence
inputs, the
number of
features must
be a constant
during code
generation.

• Code
generation does
not support
'Normalizati
on' specified
using a function
handle.

Yes Yes Yes

sequenceUnfold
ingLayer

Sequence
unfolding layer

Yes Yes No

softmaxLayer Softmax layer Yes Yes Yes
softplusLayer Softplus layer for

actor or critic
network

Yes Yes Yes

spaceToDepthLa
yer

Space to depth
layer

Yes Yes No

ssdMergeLayer SSD merge layer
for object
detection

Yes Yes No

swishLayer Swish layer Yes Yes Yes
nnet.keras.lay
er.ClipLayer

Clips the input
between the upper
and lower bounds

Yes Yes Yes

nnet.keras.lay
er.FlattenCSty
leLayer

Flattens
activations into 1-D
assuming C-style
(row-major) order

Yes Yes Yes

nnet.keras.lay
er.GlobalAvera
gePooling2dLay
er

Global average
pooling layer for
spatial data

Yes Yes Yes

 Networks and Layers Supported for Code Generation

39-17

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

nnet.keras.lay
er.PreluLayer

Parametric
rectified linear unit

Yes Yes Yes

nnet.keras.lay
er.SigmoidLaye
r

Sigmoid activation
layer

Yes Yes Yes

nnet.keras.lay
er.TanhLayer

Hyperbolic tangent
activation layer

Yes Yes Yes

nnet.keras.lay
er.TimeDistrib
utedFlattenCSt
yleLayer

Flatten a sequence
of input image into
a sequence of
vector, assuming
C-style (or row-
major) storage
ordering of the
input layer

Yes Yes Yes

nnet.keras.lay
er.ZeroPadding
2dLayer

Zero padding layer
for 2-D input

Yes Yes Yes

nnet.onnx.laye
r.ClipLayer

Clips the input
between the upper
and lower bounds

Yes Yes Yes

nnet.onnx.laye
r.ElementwiseA
ffineLayer

Layer that
performs element-
wise scaling of the
input followed by
an addition

Yes Yes Yes

nnet.onnx.laye
r.FlattenInto2
dLayer

Flattens a MATLAB
2D image batch in
the way ONNX
does, producing a
2D output array
with CB format

Yes Yes Yes

nnet.onnx.laye
r.FlattenLayer

Flatten layer for
ONNX™ network

Yes Yes Yes

nnet.onnx.laye
r.GlobalAverag
ePooling2dLaye
r

Global average
pooling layer for
spatial data

Yes Yes Yes

nnet.onnx.laye
r.IdentityLaye
r

Layer that
implements ONNX
identity operator

Yes Yes Yes

nnet.onnx.laye
r.PreluLayer

Parametric
rectified linear unit

Yes Yes Yes

39 Deep Learning with MATLAB Coder

39-18

Layer Name Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

nnet.onnx.laye
r.SigmoidLayer

Sigmoid activation
layer

Yes Yes Yes

nnet.onnx.laye
r.TanhLayer

Hyperbolic tangent
activation layer

Yes Yes Yes

nnet.onnx.laye
r.VerifyBatchS
izeLayer

Verify fixed batch
size

Yes Yes Yes

tanhLayer Hyperbolic tangent
(tanh) layer

Yes Yes Yes

transposedConv
2dLayer

Transposed 2-D
convolution layer

Code generation
does not support
asymmetric
cropping of the
input. For example,
specifying a vector
[t b l r] for the
'Cropping'
parameter to crop
the top, bottom,
left, and right of
the input is not
supported.

Yes Yes No

wordEmbeddingL
ayer

A word embedding
layer maps word
indices to vectors

Yes Yes No

yolov2OutputLa
yer

Output layer for
YOLO v2 object
detection network

Yes Yes No

yolov2ReorgLay
er

Reorganization
layer for YOLO v2
object detection
network

Yes Yes No

yolov2Transfor
mLayer

Transform layer
for YOLO v2 object
detection network

Yes Yes No

 Networks and Layers Supported for Code Generation

39-19

Supported Classes
Class Description ARM Compute

Library
Intel MKL-DNN Generic C/C++

DAGNetwork Directed acyclic
graph (DAG)
network for deep
learning

• Only the
activations,
predict, and
classify
methods are
supported.

Yes Yes Yes

39 Deep Learning with MATLAB Coder

39-20

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

dlnetwork Deep learning
network for
custom training
loops

• Code
generation
supports only
the
InputNames
and
OutputNames
properties.

• Code
generation does
not support
dlnetwork
objects without
input layers.
The
Initialized
property of the
dlnetwork
object must be
set to true.

• You can
generate code
for dlnetwork
that have
vector or image
sequence
inputs. For
ARM Compute,
the dlnetwork
can have
sequence and
non-sequence
input layers.
For Intel MKL-
DNN, input
layers must be
all sequence
input layers.
Code
generation
support
includes:

Yes Yes Yes

 Networks and Layers Supported for Code Generation

39-21

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

• dlarray
containing
vector
sequences
that have
'CT' or
'CBT' data
formats.

• dlarray
containing
image
sequences
that have
'SSCT' or
'SSCBT'
data
formats.

• Multi-input
dlnetwork
with
heterogeneo
us input
layers. For
RNN
networks,
multiple
input is not
supported.

• Code
generation
supports only
the predict
object function.
The dlarray
input to the
predict
method must be
a single
datatype.

• Code
generation
supports MIMO
dlnetworks.

• To create a
dlnetwork
object for code
generation, see
“Load

39 Deep Learning with MATLAB Coder

39-22

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

Pretrained
Networks for
Code
Generation” on
page 39-30.

SeriesNetwork Series network for
deep learning

• Only the
activations,
classify,
predict,
predictAndUp
dateState,
classifyAndU
pdateState,
and
resetState
object functions
are supported.

Yes Yes Yes

 Networks and Layers Supported for Code Generation

39-23

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

yolov2ObjectDe
tector

Detect objects
using YOLO v2
object detector

• Only the
detect method
of the
yolov2Object
Detector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a code
generation
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
and MaxSize
name-value
pairs for
detect are
supported.

Yes Yes No

39 Deep Learning with MATLAB Coder

39-24

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

yolov3ObjectDe
tector

Detect objects
using YOLO v3
object detector

• Only the
detect method
of the
yolov3Object
Detector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a code
generation
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
and MaxSize
name-value
pairs for
detect are
supported.

Yes Yes No

 Networks and Layers Supported for Code Generation

39-25

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

yolov4ObjectDe
tector

Detect objects
using YOLO v4
object detector

• The roi
argument to the
detect method
must be a code
generation
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e name-value
pairs for
detect are
supported.

Yes Yes No

39 Deep Learning with MATLAB Coder

39-26

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

ssdObjectDetec
tor

Object to detect
objects using the
SSD-based
detector.

• Only the
detect method
of the
ssdObjectDet
ector is
supported for
code
generation.

• The roi
argument to the
detect method
must be a
codegen
constant
(coder.cons
t()) and a 1x4
vector.

• Only the
Threshold,
SelectStrong
est, MinSize,
MaxSize, and
MiniBatchSiz
e Name-Value
pairs are
supported. All
Name-Value
pairs must be
compile-time
constants.

• The channel
and batch size
of the input
image must be
fixed size.

• The labels
output is
returned as a
categorical
array.

• In the
generated code,
the input is

Yes Yes No

 Networks and Layers Supported for Code Generation

39-27

Class Description ARM Compute
Library

Intel MKL-DNN Generic C/C++

rescaled to the
size of the input
layer of the
network. But
the bounding
box that the
detect method
returns is in
reference to the
original input
size.

pointPillarsOb
jectDetector
(Lidar Toolbox)

PointPillars
network to detect
objects in lidar
point clouds

• Only
thedetect
method of the
pointPillars
ObjectDetect
or is supported
for code
generation.

• Only the
Threshold,
SelectStrong
est, and
MiniBatchSiz
e Name-Value
pairs of the
detect method
are supported.

Yes Yes No

Code Generation for Quantized Networks
You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use MATLAB Coder to generate optimized code for the quantized network. See “Quantized Deep
Learning Networks” on page 39-42.

See Also
coder.getDeepLearningLayers

More About
• “Pretrained Deep Neural Networks” (Deep Learning Toolbox)

39 Deep Learning with MATLAB Coder

39-28

• “Learn About Convolutional Neural Networks” (Deep Learning Toolbox)
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7

 Networks and Layers Supported for Code Generation

39-29

Load Pretrained Networks for Code Generation
You can generate code for a pretrained convolutional neural network (CNN). To provide the network
to the code generator, load a SeriesNetwork, DAGNetwork, yolov2ObjectDetector,
ssdObjectDetector, or dlnetwork object from the trained network.

Load a Network by Using coder.loadDeepLearningNetwork
You can load a network object from any network that is supported for code generation by using
coder.loadDeepLearningNetwork. You can specify the network from a MAT-file. The MAT-file
must contain only the network to be loaded.

For example, suppose that you create a trained network object called myNet by using the
trainNetwork function. Then, you save the workspace by entering save. This creates a file called
matlab.mat that contains the network object. To load the network object myNet, enter:

net = coder.loadDeepLearningNetwork('matlab.mat');

You can also specify the network by providing the name of a function that does not accept an input
argument and returns a pretrained SeriesNetwork, DAGNetwork, yolov2ObjectDetector, or
ssdObjectDetector object, such as:

• alexnet
• densenet201
• googlenet
• inceptionv3
• mobilenetv2
• resnet18
• resnet50
• resnet101
• squeezenet
• vgg16
• vgg19
• xception

For example, load a network object by entering:

net = coder.loadDeepLearningNetwork('googlenet');

The Deep Learning Toolbox functions in the previous list require that you install a support package
for the function. See “Pretrained Deep Neural Networks” (Deep Learning Toolbox).

Specify a Network Object for Code Generation
If you generate code by using codegen or the app, load the network object inside of your entry-point
function by using coder.loadDeepLearningNetwork. For example:
function out = myNet_predict(in) %#codegen

persistent mynet;

39 Deep Learning with MATLAB Coder

39-30

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('matlab.mat');
end
out = predict(mynet,in);

For pretrained networks that are available as support package functions such as alexnet,
inceptionv3, googlenet, and resnet, you can directly specify the support package function, for
example, by writing mynet = googlenet.

Next, generate code for the entry-point function. For example:

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -args {ones(224,224,3,'single')} -config cfg myNet_predict

Specify a dlnetwork Object for Code Generation
Suppose you have a pretrained dlnetwork network object in the mynet.mat MAT-file. To predict the
responses for this network, create an entry-point function in MATLAB as shown in this code.

function a = myDLNet_predict(in)
dlIn = dlarray(in, 'SSC');

persistent dlnet;
if isempty(dlnet)
 dlnet = coder.loadDeepLearningNetwork('mynet.mat');
end

dlA = predict(dlnet, dlIn);

a = extractdata(dlA);

end

In this example, the input and output to myDLNet_predict are of simpler datatypes and the
dlarray object is created within the function. The extractdata method of the dlarray object
returns the data in the dlarray dlA as the output of myDLNet_predict. The output a has the same
data type as the underlying data type in dlA. This entry-point design has the following advantages:

• Easier integration with standalone code generation workflows such as static, dynamic libraries, or
executables.

• The data format of the output from the extractdata function has the same order ('SCBTU') in
both the MATLAB environment and the generated code.

• Improves performance for MEX workflows.
• Simplifies Simulink workflows using MATLAB Function blocks as Simulink does not natively

support dlarray objects.

Next, generate code for the entry-point function. For example:

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -args {ones(224,224,3,'single')} -config cfg myDLNet_predict

 Load Pretrained Networks for Code Generation

39-31

See Also
Functions
codegen | trainNetwork | coder.loadDeepLearningNetwork

Objects
SeriesNetwork | DAGNetwork | yolov2ObjectDetector | ssdObjectDetector | dlarray |
dlnetwork

More About
• “Networks and Layers Supported for Code Generation” on page 39-8
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39

39 Deep Learning with MATLAB Coder

39-32

Generate Generic C/C++ Code for Deep Learning Networks
With MATLAB Coder, you can generate generic C or C++ code for prediction from an already trained
neural network. The generated C/C++ code does not depend on any third-party libraries. The
generated code implements a neural network with the architecture, layers, and parameters specified
in the input SeriesNetwork or DAGNetwork network object. See “Networks and Layers Supported
for Code Generation” on page 39-8.

Generate code by using one of these methods:

• The standard codegen command for C/C++ code generation from MATLAB code.
• The MATLAB Coder app.

Requirements
• On Windows, code generation for deep learning networks with the codegen function requires

Microsoft Visual Studio or the MinGW compiler.
• MATLAB Coder Interface for Deep Learning Libraries. To install this support package, select it

from the MATLAB Add-Ons menu.
• Deep Learning Toolbox.

Code Generation by Using codegen
1 Write an entry-point function in MATLAB that:

• Uses the coder.loadDeepLearningNetwork function to construct and set up a network
object. For more information, see “Load Pretrained Networks for Code Generation” on page
39-30.

• Calls the predict method of the network on the entry-point function input.
• Specifies a MiniBatchSize in the predict method to manage memory usage for prediction

on multiple input images or observations.

For example:
function out = my_predict(in) %#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is reused
% to call predict on inputs, thus avoiding reconstructing and reloading the
% network object.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('myNetwork.mat');
end

% pass in input
out = predict(mynet,in,'MiniBatchSize',2);

2 Create a deep learning configuration object dlconfig that is configured for generating generic
C/C++ code by using the coder.DeepLearningConfig function.

dlconfig = coder.DeepLearningConfig(TargetLibrary='none');

Create a code generation configuration object for MEX or for a static or dynamically linked
library. By default, the code generator produces generic C code. To produce generic C++ code,

 Generate Generic C/C++ Code for Deep Learning Networks

39-33

in your code generation configuration object, set the TargetLang parameter to 'C++'. Set the
DeepLearningConfig parameter to the previously created object dlconfig.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = dlconfig;

3 Run the codegen command. Use the -config option to specify the configuration object. Use the
-args option to specify the input type.

codegen -config cfg my_predict -args {myInput} -report

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB.

Code Generation by Using the MATLAB Coder App
1 Follow the usual steps for specifying the entry-point function and specifying input types. See

“Generate C Code by Using the MATLAB Coder App”.
2 In the Generate Code step:

• Set Language to either C or C++.
• Click More Settings. In the Deep Learning pane, set Target library to None.

3 Generate code.

See Also
codegen | coder.DeepLearningConfig | coder.loadDeepLearningNetwork

39 Deep Learning with MATLAB Coder

39-34

Related Examples
• “Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep

Learning” on page 39-130
• “Generate C Code by Using the MATLAB Coder App”

 Generate Generic C/C++ Code for Deep Learning Networks

39-35

Code Generation for Deep Learning Networks with MKL-DNN
With MATLAB Coder, you can generate code for prediction from an already trained convolutional
neural network (CNN), targeting an embedded platform that uses an Intel processor. The code
generator takes advantage of the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN).
The generated code implements a CNN with the architecture, layers, and parameters specified in the
input SeriesNetwork or DAGNetwork network object.

Generate code by using one of these methods:

• The standard codegen command for C/C++ code generation from MATLAB code.
• The MATLAB Coder app.

Requirements
• On Windows, code generation for deep learning networks with the codegen function requires

Microsoft Visual Studio 2015 or later.
• MATLAB Coder Interface for Deep Learning Libraries. To install this support package, select it

from the MATLAB Add-Ons menu.
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Deep Learning Toolbox.
• Environment variables for the compilers and libraries. For more information, see “Prerequisites

for Deep Learning with MATLAB Coder” on page 39-2.

Code Generation by Using codegen
1 Write an entry-point function in MATLAB that:

• Uses the coder.loadDeepLearningNetwork function to construct and set up a CNN
network object. For more information, see “Load Pretrained Networks for Code Generation”
on page 39-30.

• Calls the predict method of the network on the entry-point function input.
• Specifies a MiniBatchSize in the predict method to manage memory usage for prediction

on multiple input images or observations.

For example:
function out = googlenet_predict(in) %#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is reused
% to call predict on inputs, thus avoiding reconstructing and reloading the
% network object.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('googlenet');
end

% pass in input
out = predict(mynet,in,'MiniBatchSize',2);

2 Create a code generation configuration object for MEX or for a static or dynamically linked
library. To specify code generation parameters for MKL-DNN, set the DeepLearningConfig
property to a coder.MklDNNConfig object that you create with coder.DeepLearningConfig.

39 Deep Learning with MATLAB Coder

39-36

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

3 Run the codegen command. Use the -config option to specify the configuration object. Use the
-args option to specify the input type. The input size corresponds to the input layer size of the
GoogLeNet network with 16 different images or observations.

codegen -config cfg googlenet_predict -args {ones(224,224,3,16)} -report

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB.

Generated Code

The network is generated as a C++ class containing an array of layer classes. The setup() method
of the class sets up handles and allocates memory for each layer of the network object. The
predict() method invokes prediction for each of the layers in the network. The code generator
produces the function googlenet_predict() in googlenet_predict.cpp that corresponds to
the MATLAB entry-point function. This function constructs the static object for the network and
invokes the setup and predict methods.

Binary files are exported for layers with parameters such as fully connected and convolution layers in
the network. For example, files cnn_googlenet_conv*_w and cnn_googlenet_conv*_b
correspond to weights and bias parameters for the convolution layers in the network.

By default, the generated application looks for the weight files in the codegen folder. If you are
relocating the generated application and weight files to a different location such as an embedded
board, create an environment variable called USER_DL_DATA_PATH, whose value is the location of
the relocated weight files. The generated application will then look for the weight files in this
location.

Code Generation by Using the MATLAB Coder App
1 Follow the usual steps for specifying the entry-point function and specifying input types. See

“Generate C Code by Using the MATLAB Coder App”.
2 In the Generate Code step:

• Set Language to C++.
• Click More Settings. In the Deep Learning pane, set Target library to MKL-DNN.

 Code Generation for Deep Learning Networks with MKL-DNN

39-37

3 Generate code.

See Also
codegen | coder.DeepLearningConfig | coder.MklDNNConfig |
coder.loadDeepLearningNetwork

More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning Networks by Using cuDNN” (GPU Coder)
• “Code Generation for Deep Learning Networks by Using TensorRT” (GPU Coder)
• “Generate C Code by Using the MATLAB Coder App”

39 Deep Learning with MATLAB Coder

39-38

Code Generation for Deep Learning Networks with ARM
Compute Library

With MATLAB Coder, you can generate code for prediction from an already trained convolutional
neural network (CNN), targeting an embedded platform that uses an ARM processor that supports
the NEON extension. The code generator takes advantage of the ARM Compute Library for computer
vision and machine learning. The generated code implements a CNN that has the architecture,
layers, and parameters specified in the input SeriesNetwork or DAGNetwork network object.

Generate code by using one of these methods:

• codegen on page 39-39
• MATLAB Coder app on page 39-42

Requirements
• MATLAB Coder Interface for Deep Learning Libraries. To install the support package, select it

from the MATLAB Add-Ons menu.
• ARM Compute Library for computer vision and machine learning must be installed on the target

hardware.
• Deep Learning Toolbox.
• Environment variables for the compilers and libraries.

Note The ARM Compute library version that the examples in this help topic uses might not be the
latest version that code generation supports. For supported versions of libraries and for information
about setting up environment variables, see “Prerequisites for Deep Learning with MATLAB Coder”
on page 39-2.

Code Generation by Using codegen
To generate code for deep learning on an ARM target by using codegen:

• Write an entry-point function that loads the pretrained CNN and calls predict. For example:

function out = squeezenet_predict(in)
%#codegen

persistent net;
opencv_linkflags = '`pkg-config --cflags --libs opencv`';
coder.updateBuildInfo('addLinkFlags',opencv_linkflags);
if isempty(net)
 net = coder.loadDeepLearningNetwork('squeezenet', 'squeezenet');
end

out = net.predict(in);
end

• If your target hardware is Raspberry Pi, you can take advantage of the MATLAB Support Package
for Raspberry Pi Hardware. With the support package, codegen moves the generated code to the
Raspberry Pi and builds the executable program on the Raspberry Pi. When you generate code for

 Code Generation for Deep Learning Networks with ARM Compute Library

39-39

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library

a target that does not have a hardware support package, you must run commands to move the
generated files and build the executable program.

• MEX generation is not supported for code generation for deep learning on ARM targets.
• For ARM, for inputs to predict with multiple images or observations (N > 1), a MiniBatchSize

of greater than 1 is not supported. Specify a MiniBatchSize of 1.

Code Generation for Deep Learning on a Raspberry Pi

When you have the MATLAB Support Package for Raspberry Pi Hardware, to generate code for deep
learning on a Raspberry Pi:

1 To connect to the Raspberry Pi, use raspi. For example:

r = raspi('raspiname','username','password');
2 Create a code generation configuration object for a library or executable by using

coder.config. Set the TargetLang property to 'C++'.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

3 Create a deep learning configuration object by using coder.DeepLearningConfig. Set the
ArmComputeVersion and ArmArchitecture properties. Set the DeepLearningConfig
property of the code generation configuration object to the coder.ARMNEONConfig object. For
example:

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '19.05';
cfg.DeepLearningConfig = dlcfg;

4 To configure code generation hardware settings for the Raspberry Pi, create a coder.Hardware
object, by using coder.hardware. Set the Hardware property of the code generation
configuration object to the coder.Hardware object .

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

5 If you are generating an executable program, provide a C++ main program. For example:

cfg.CustomSource = 'main.cpp';
6 To generate code, use codegen. Specify the code generation configuration object by using the -

config option. For example:
codegen -config cfg squeezenet_predict -args {ones(227, 227, 3,'single')} -report

Note You can specify half-precision inputs for code generation. However, the code generator
type casts the inputs to single-precision. The Deep Learning Toolbox uses single-precision,
floating-point arithmetic for all computations in MATLAB.

Code Generation When You Do Not Have a Hardware Support Package

To generate code for deep learning when you do not have a hardware support package for the target:

1 Generate code on a Linux host only.
2 Create a configuration object for a library. For example:

cfg = coder.config('lib');

39 Deep Learning with MATLAB Coder

39-40

Do not use a configuration object for an executable program.
3 Configure code generation to generate C++ code and to generate source code only.

cfg.GenCodeOnly = true;
cfg.TargetLang = 'C++';

4 To specify code generation with the ARM Compute Library, create a coder.ARMNEONConfig
object by using coder.DeepLearningConfig. Set the ArmComputeVersion and
ArmArchitecture properties. Set the DeepLearningConfig property of the code generation
configuration object to the coder.ARMNEONConfig object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '19.05';
cfg.DeepLearningConfig = dlcfg;

5 To configure code generation parameters that are specific to the target hardware, set the
ProdHWDeviceType property of the HardwareImplementation object.

• For the ARMv7 architecture, use 'ARM Compatible->ARM Cortex'.
• for the ARMv8 architecture, use 'ARM Compatible->ARM 64-bit (LP64)'.

For example:
cfg.HardwareImplementation.ProdHWDeviceType = 'ARM Compatible->ARM 64-bit (LP64)';

6 To generate code, use codegen. Specify the code generation configuration object by using the -
config option. For example:
codegen -config cfg squeezenet_predict -args {ones(227, 227, 3, 'single')} -d arm_compute

For an example, see “Code Generation for Deep Learning on ARM Targets” on page 39-68.

Generated Code

The series network is generated as a C++ class containing an array of layer classes.

class b_squeezenet_0
{
 public:
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 MWCNNLayer *layers[68];
 private:
 MWTargetNetworkImpl *targetImpl;
 public:
 b_squeezenet_0();
 void presetup();
 void postsetup();
 void setup();
 void predict();
 void cleanup();
 real32_T *getLayerOutput(int32_T layerIndex, int32_T portIndex);
 ~b_squeezenet_0();
};

The setup() method of the class sets up handles and allocates memory for each layer of the network
object. The predict() method invokes prediction for each of the layers in the network. Suppose that

 Code Generation for Deep Learning Networks with ARM Compute Library

39-41

you generate code for an entry-point function, squeezenet_predict. In the generated"for you" file,
squeezenet_predict.cpp, the entry-point function squeeznet_predict() constructs a static
object of b_squeezenet_0 class type and invokes setup and predict on the network object.
static b_squeezenet_0 net;
static boolean_T net_not_empty;

// Function Definitions
//
// A persistent object net is used to load the DAGNetwork object.
// At the first call to this function, the persistent object is constructed and
// set up. When the function is called subsequent times, the same object is reused
// to call predict on inputs, avoiding reconstructing and reloading the
// network object.
// Arguments : const real32_T in[154587]
// real32_T out[1000]
// Return Type : void
//
void squeezenet_predict(const real32_T in[154587], real32_T out[1000])
{
 // Copyright 2018 The MathWorks, Inc.
 if (!net_not_empty) {
 DeepLearningNetwork_setup(&net);
 net_not_empty = true;
 }

 DeepLearningNetwork_predict(&net, in, out);
}

Binary files are exported for layers that have parameters, such as fully connected and convolution
layers in the network. For example, the files with names having the pattern cnn_squeezenet_*_w
and cnn_squeezenet_*_b correspond to weights and bias parameters for the convolution layers in
the network.

cnn_squeezenet_conv10_b
cnn_squeezenet_conv10_w
cnn_squeezenet_conv1_b
cnn_squeezenet_conv1_w
cnn_squeezenet_fire2-expand1x1_b
cnn_squeezenet_fire2-expand1x1_w
cnn_squeezenet_fire2-expand3x3_b
cnn_squeezenet_fire2-expand3x3_w
cnn_squeezenet_fire2-squeeze1x1_b
cnn_squeezenet_fire2-squeeze1x1_w
...

Quantized Deep Learning Networks

See “Code Generation for Quantized Deep Learning Networks” on page 39-47.

Code Generation by Using the MATLAB Coder App
1 Complete the Select Source Files and Define Input Types steps.
2 Go to the Generate Code step. (Skip the Check for Run-Time Issues step because MEX

generation is not supported for code generation with the ARM Compute Library.)
3 Set Language to C++.
4 Specify the target ARM hardware.

If your target hardware is Raspberry Pi and you installed the MATLAB Support Package for
Raspberry Pi Hardware:

• For Hardware Board, select Raspberry Pi.

39 Deep Learning with MATLAB Coder

39-42

• To access the Raspberry Pi settings, click More Settings. Then, click Hardware. Specify the
Device Address, Username, Password, and Build directory.

When you do not have a support package for your ARM target:

• Make sure that Build type is Static Library or Dynamic Library and select the
Generate code only check box.

• For Hardware Board, select None - Select device below.
• For Device vendor, select ARM Compatible.
• For the Device type:

• For the ARMv7 architecture, select ARM Cortex.
• For the ARMv8 architecture, select ARM 64-bit (LP64).

Note If you generate code for deep learning on an ARM target, and do not use a hardware
support package, generate code on a Linux host only.

5 In the Deep Learning pane, set Target library to ARM Compute. Specify ARM Compute
Library version and ARM Compute Architecture.

6 Generate the code.

See Also
coder.loadDeepLearningNetwork | coder.DeepLearningConfig | coder.ARMNEONConfig

More About
• “Deep Learning Prediction with ARM Compute Using codegen” on page 39-63
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• “Code Generation for Quantized Deep Learning Networks” on page 39-47
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Code Generation for Deep Learning Networks by Using cuDNN” (GPU Coder)
• “Code Generation for Deep Learning Networks by Using TensorRT” (GPU Coder)

 Code Generation for Deep Learning Networks with ARM Compute Library

39-43

Cross-Compile Deep Learning Code That Uses ARM Compute
Library

On the computer that hosts your MATLAB session, you can generate deep learning source code and
compile it to create a library or an executable that runs on a target ARM hardware device. The
compilation of source code on one platform to create binary code for another platform is known as
cross-compilation. This workflow is supported only for the Linux host platform and target devices that
have armv7 (32-bit) or armv8 (64-bit) ARM architecture.

Use this workflow to deploy deep learning code on ARM devices that do not have hardware support
packages.

Note The ARM Compute library version that the examples in this help topic uses might not be the
latest version that code generation supports. For supported versions of libraries and for information
about setting up environment variables, see “Prerequisites for Deep Learning with MATLAB Coder”
on page 39-2.

Prerequisites
These are the prerequisites specific to the cross-compilation workflow. For the general prerequisites,
see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

• The target device must have armv7 (32-bit) or armv8 (64-bit) ARM architecture. To verify the
architecture of your device run this command in the terminal of the device:

arch
• You must have the Linaro AArch32 or AArch64 toolchain installed on the host computer.

• For armv7 target, install the GNU/GCC g++-arm-linux-gnueabihf toolchain on the host.
• For armv8 target, install the GNU/GCC g++-aarch64-linux-gnu toolchain on the host.

For example, to install the Linaro AArch64 toolchain on the host, run this command in the
terminal:

sudo apt-get install g++-aarch64-linux-gnu
• At the MATLAB command line, set the environment variable LINARO_TOOLCHAIN_AARCH32 or

LINARO_TOOLCHAIN_AARCH64 for the path of the toolchain binaries. You must set the path once
per MATLAB session.

Suppose that the toolchain is installed at the location /usr/bin in the host.

• For armv7 target, run this command:

setenv('LINARO_TOOLCHAIN_AARCH32', '/usr/bin')
• For armv8 target, run this command:

setenv('LINARO_TOOLCHAIN_AARCH64', '/usr/bin')
• Cross-compile the ARM Compute library on the host:

• Clone the Git™ repository for ARM Compute library and check out the version you need. For
example, to check out v19.05, run these commands in the host terminal:

39 Deep Learning with MATLAB Coder

39-44

git clone https://github.com/Arm-software/ComputeLibrary.git
cd ComputeLibrary
git tag -l
git checkout v19.05

• Install scons on the host. For example, run this commands in the host terminal:

sudo apt-get install scons
• Use scons to cross-compile the ARM Compute library on host. For example, to build the library

to run on armv8 architecture, run this command in the host terminal:

scons Werror=0 -j8 debug=0 neon=1 opencl=0 os=linux arch=arm64-v8a openmp=1 cppthreads=1 examples=0 asserts=0 build=cross_compile
• At the MATLAB command line, set the environment variable ARM_COMPUTELIB for the path of

the ARM Compute library. You must set the path once per MATLAB session.

Suppose that the ARM Compute library is installed at the location /home/$(USER)/Desktop/
ComputeLibrary. Run this command at the MATLAB command line:

setenv('ARM_COMPUTELIB','/home/$(USER)/Desktop/ComputeLibrary')

Generate and Deploy Deep Learning Code
There are two possible workflows for cross-compiling deep learning code on your host computer and
then deploying the code on target ARM hardware. Here is a summary of the two workflows. For an
example that demonstrates both workflows, see “Cross Compile Deep Learning Code for ARM Neon
Targets” on page 39-113.

• On the host computer, you generate a static or dynamic library for deep learning code. Follow
these steps:

• On the host, use the codegen command to generate and build deep learning code to create a
static or dynamic library.

• Copy the generated library, the ARM Compute library files, the makefile, and other supporting
files to the target hardware.

• Compile the copied makefile on the target to create an executable.
• Run the generated executable on the target hardware.

• On the host computer, you generate an executable for deep learning code. Follow these steps:

• On the host, use the codegen command to generate and build deep learning code to create an
executable.

• Copy the generated executable, the ARM Compute library files, and other supporting files to
the target hardware.

• Run the executable on the target hardware.

See Also
codegen

More About
• “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2
• “Networks and Layers Supported for Code Generation” on page 39-8

 Cross-Compile Deep Learning Code That Uses ARM Compute Library

39-45

• “Cross Compile Deep Learning Code for ARM Neon Targets” on page 39-113

39 Deep Learning with MATLAB Coder

39-46

Code Generation for Quantized Deep Learning Networks
Deep learning uses neural network architectures that contain many processing layers, including
convolutional layers. Deep learning models typically work on large sets of labeled data. Performing
inference on these models is computationally intensive, consuming significant amount of memory.
Neural networks use memory to store input data, parameters (weights), and activations from each
layer as the input propagates through the network. Deep Neural networks trained in MATLAB use
single-precision floating point data types. Even networks that are small in size require a considerable
amount of memory and hardware to perform these floating-point arithmetic operations. These
restrictions can inhibit deployment of deep learning models to devices that have low computational
power and smaller memory resources. By using a lower precision to store the weights and
activations, you can reduce the memory requirements of the network.

You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use MATLAB Coder to generate optimized code for the quantized network.

ARM Cortex-A Processors
The generated code takes advantage of ARM processor SIMD by using the ARM Compute library. The
generated code can be integrated into your project as source code, static or dynamic libraries, or
executables that you can deploy to a variety of ARM Cortex-A CPU platforms such as Raspberry Pi. To
deploy quantized networks on ARM Cortex-A processors, you must use ARM Compute library version
20.02.1.

Supported Layers and Classes

You can generate C++ code for these layers that uses the ARM Compute Library and performs
inference computations in 8-bit integers:

• 2-D average pooling layer (averagePooling2dLayer)
• 2-D convolution layer (convolution2dLayer)
• Fully connected layer (fullyConnectedLayer)
• 2-D grouped convolution layer (groupedConvolution2dLayer). The value of the NumGroups

input argument must be equal to 2.
• Max pooling layer (maxPooling2dLayer)
• Rectified Linear Unit (ReLU) layer (reluLayer)
• Input and output layers

C++ code generation for such quantized deep learning networks supports DAGNetwork and
SeriesNetwork objects.

Generating Code

To generate code that performs inference computations in 8-bit integers, in your
coder.ARMNEONConfig object dlcfg, set these additional properties:

dlcfg.CalibrationResultFile = 'dlquantizerObjectMatFile';
dlcfg.DataType = 'int8';

 Code Generation for Quantized Deep Learning Networks

39-47

Alternatively, in the MATLAB Coder app, on the Deep Learning tab, set Target library to ARM
Compute. Then set the Data type and Calibration result file path parameters.

Here 'dlquantizerObjectMatFile' is the name of the MAT-file that dlquantizer generates for
specific calibration data. For the purpose of calibration, set the ExecutionEnvironment property of
the dlquantizer object to 'CPU'.

Otherwise, follow the steps described in “Code Generation for Deep Learning Networks with ARM
Compute Library” on page 39-39.

For an example, see “Code Generation for Quantized Deep Learning Network on Raspberry Pi” on
page 39-119.

ARM Cortex-M Processors
The generated code takes advantage of the CMSIS-NN library version 5.7.0 and can be integrated
into your project as a static library that you can deploy to a variety of ARM Cortex-M CPU platforms.

Supported Layers and Classes

You can generate C static library code for networks containing these layers that uses the CMSIS-NN
library and performs inference computations in 8-bit integers:

• Fully connected layer (fullyConnectedLayer)
• Long short-term memory layer (lstmLayer). The value of SequenceLength that you pass to

predict must be a compile-time constant.
• Softmax layer (softmaxLayer). The generated code performs computations for this layer in 32-

bit floating point type.
• Input and output layers

C code generation for such quantized deep learning networks supports SeriesNetwork objects and
DAGNetwork objects that can be converted to SeriesNetwork objects.

Generating Code

To generate code that performs inference computations in 8-bit integers by using the CMSIS-NN
library, in your coder.CMSISNNConfig object dlcfg, set the CalibrationResultFile property:

dlcfg.CalibrationResultFile = 'dlquantizerObjectMatFile';

Alternatively, in the MATLAB Coder app, on the Deep Learning tab, set Target library to CMSIS-
NN. Then set the Calibration result file path parameter.

Here 'dlquantizerObjectMatFile' is the name of the MAT-file that dlquantizer generates for
specific calibration data. For the purpose of calibration, set the ExecutionEnvironment property of
the dlquantizer object to 'CPU'.

For an example, see “Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target”
on page 39-127.

39 Deep Learning with MATLAB Coder

39-48

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate |
coder.loadDeepLearningNetwork | codegen

Objects
coder.ARMNEONConfig | coder.CMSISNNConfig

More About
• “Quantization of Deep Neural Networks” (Deep Learning Toolbox)
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Quantized Deep Learning Network on Raspberry Pi” on page 39-119

 Code Generation for Quantized Deep Learning Networks

39-49

Update Network Parameters After Code Generation
In this section...
“Create an Entry-Point Function” on page 39-50
“Create a Network” on page 39-50
“Code Generation by Using codegen” on page 39-51
“Run the Generated MEX” on page 39-51
“Update Network with Different Learnable Parameters” on page 39-52
“Run the Generated MEX with Updated Learnables” on page 39-52
“Limitations” on page 39-53

This example shows how to update learnable and state parameters of deep learning networks without
regenerating code for the network. You can update the network parameters for SeriesNetwork,
DAGNetwork and dlnetwork.

Parameter update supports MEX and standalone code generation for the Intel Math Kernel Library
for Deep Neural Networks (MKL-DNN) and the ARM Compute libraries.

Create an Entry-Point Function
1 Write an entry-point function in MATLAB that:

a Uses the coder.loadDeepLearningNetwork function to construct and set up a CNN
network object. For more information, see “Load Pretrained Networks for Code Generation”
on page 39-30.

b Calls predict to predict the responses.
2 For example:

function out = mLayer(in, matFile)

myNet = coder.loadDeepLearningNetwork(coder.const(matFile));

out = myNet.predict(in);

Create a Network
The network used in this example requires input images of size 4-by-5-by-3. Create sample network
inputs of the same size format as the network inputs.

inputSize = [4 5 3];
im = dlarray(rand(inputSize, 'single'), 'SSCB');

Define the network architecture.

outSize = 6;
layers = [
 imageInputLayer(inputSize,'Name','input','Normalization','none')
 convolution2dLayer([3 3], 5, 'Name', 'conv-1')
 batchNormalizationLayer('Name', 'batchNorm')
 reluLayer('Name','relu1')
 transposedConv2dLayer([2 2], 5, 'Name', 'transconv')
 convolution2dLayer([2 2], 5, 'Name', 'conv2')

39 Deep Learning with MATLAB Coder

39-50

 reluLayer('Name','relu2')
 fullyConnectedLayer(outSize, 'Name', 'fc3')
];

Create an initialized dlnetwork object from the layer graph.

rng(0);
dlnet1 = dlnetwork(layers);
save('trainedNet.mat', 'dlnet1');

Code Generation by Using codegen
1 To configure build settings such as output file name, location, and type, you create coder

configuration objects. To create the objects, use the coder.config function.
2 To specify code generation parameters for MKL-DNN, set the DeepLearningConfig property to

a coder.MklDNNConfig object that you create with coder.DeepLearningConfig
cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary', 'mkldnn')

3 Specify the inputs.

cnnMatFile = fullfile(pwd, 'trainedNet.mat');
inputArgs = {im, coder.Constant(cnnMatFile)};

4 Run the codegen command. The codegen command generates CUDA code from the mLayers.m
MATLAB entry-point function.

codegen -config cfg mLayer -args inputArgs -report

Run the Generated MEX
Call predict on the input image and compare the results with MATLAB.

out = mLayer_mex(im,cnnMatFile)
out_MATLAB = mLayer(im,cnnMatFile)

out1 =

 6(C) x 1(B) single dlarray

 -0.0064
 -0.1422
 -0.0897
 0.2223
 0.0329
 0.0365

out_MATLAB =

 6(C) x 1(B) single dlarray

 -0.0064
 -0.1422
 -0.0897
 0.2223

 Update Network Parameters After Code Generation

39-51

 0.0329
 0.0365

Update Network with Different Learnable Parameters
Re-initialize dlnetwork to update learnables to different values.

rng(10);
dlnet2 = dlnetwork(layers);
save('trainedNet.mat', 'dlnet2');

Use the coder.regenerateDeepLearningParameters function to regenerate the bias files based
on the new learnables and states of the network.

The first input to the coder.regenerateDeepLearningParameters function is a
SeriesNetwork, DAGNetwork or dlnetwork object. The second argument is the path to the
network parameter information file emitted during code generation. You can optionally specify the
NetworkName=MYNET name-value pair to specify the name of the C++ class for the network in the
generated code.

codegenDir = fullfile(pwd, 'codegen/mex/mLayer');
networkFileNames = (coder.regenerateDeepLearningParameters(dlnet2, codegenDir))'

The coder.regenerateDeepLearningParameters function returns a cell-array of files containing
network learnables and states.

networkFileNames =

 8×1 cell array

 {'cnn_trainedNet0_0_conv-1_b.bin' }
 {'cnn_trainedNet0_0_conv-1_w.bin' }
 {'cnn_trainedNet0_0_conv2_b.bin' }
 {'cnn_trainedNet0_0_conv2_w.bin' }
 {'cnn_trainedNet0_0_fc3_b.bin' }
 {'cnn_trainedNet0_0_fc3_w.bin' }
 {'cnn_trainedNet0_0_transconv_b.bin'}
 {'cnn_trainedNet0_0_transconv_w.bin'}

Note For MEX workflows, when the generated MEX and the associated codegen folder is moved
from one location to another, coder.regenerateDeepLearningParameters cannot regenerate
files containing network learnables and states parameters in the new location. Set the
'OverrideParameterFiles' parameter of coder.regenerateDeepLearningParameters to
true to allow the coder.regenerateDeepLearningParameters function to regenerate files
containing network learnables and states parameters in the original codegen location.

For standalone workflows, coder.regenerateDeepLearningParameters can regenerate files
containing network learnables and states parameters in the new location

Run the Generated MEX with Updated Learnables
Call predict on the input image and compare the results with MATLAB.

clear mLayer_mex;
outNew = mLayer_mex(im,cnnMatFile)
outNew_MATLAB = mLayer(im,cnnMatFile)

39 Deep Learning with MATLAB Coder

39-52

outNew =

 6(C) x 1(B) single dlarray

 0.1408
 -0.0080
 0.0342
 -0.0065
 0.1843
 0.0799

outNew_MATLAB =

 6(C) x 1(B) single dlarray

 0.1408
 -0.0080
 0.0342
 -0.0065
 0.1843
 0.0799

Limitations
Only the network learnables and states can be updated by using the
coder.regenerateDeepLearningParameters function. For modifications that the code generator
does not support, an error message is thrown. For example, using
coder.regenerateDeepLearningParameters after changing the scale factor of a leaky ReLU
layer throws the following error message as scale factor is not a network learnable.
Network architecture has been modified since the last code generation. Unable
to accommodate the provided network in the generated code. Regenerate code
for the provided network to reflect changes in the network. For more
information, see Limitations to Regenerating Network Parameters After Code Generation.

See Also
Functions
codegen | coder.loadDeepLearningNetwork | coder.regenerateDeepLearningParameters

Objects
SeriesNetwork | DAGNetwork | dlarray | dlnetwork

Related Examples
• “Post-Code-Generation Update of Deep Learning Network Parameters” on page 39-145

More About
• “Networks and Layers Supported for Code Generation” on page 39-8
• “Load Pretrained Networks for Code Generation” on page 39-30
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36

 Update Network Parameters After Code Generation

39-53

Deep Learning Code Generation on Intel Targets for Different
Batch Sizes

This example shows how to use the codegen command to generate code for an image classification
application that uses deep learning on Intel® processors. The generated code uses the Intel Math
Kernel Library for Deep Neural Networks (MKL-DNN). This example consists of two parts:

• The first part shows how to generate a MEX function that accepts a batch of images as input.
• The second part shows how to generate an executable that accepts a batch of images as input.

Prerequisites

• Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for the compilers and libraries. For information on the supported versions

of compilers, see Supported Compilers. For setting up the environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

This example is supported on Linux® , Windows® and Mac® platforms and not supported for
MATLAB Online.

Download input video File

Download a sample video file.

 if ~exist('./object_class.avi', 'file')
 url = 'https://www.mathworks.com/supportfiles/gpucoder/media/object_class.avi.zip';
 websave('object_class.avi.zip',url);
 unzip('object_class.avi.zip');
 end

Define the resnet_predict Function

This example uses the DAG network ResNet-50 to show image classification on Intel desktops. A
pretrained ResNet-50 model for MATLAB is available as part of the support package Deep Learning
Toolbox Model for ResNet-50 Network.

The resnet_predict function loads the ResNet-50 network into a persistent network object and
then performs prediction on the input. Subsequent calls to the function reuse the persistent network
object.

type resnet_predict

% Copyright 2020 The MathWorks, Inc.

function out = resnet_predict(in)
%#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is reused
% to call predict on inputs, avoiding reconstructing and reloading the
% network object.

39 Deep Learning with MATLAB Coder

39-54

https://www.mathworks.com/support/requirements/supported-compilers.html

persistent mynet;

if isempty(mynet)
 % Call the function resnet50 that returns a DAG network
 % for ResNet-50 model.
 mynet = coder.loadDeepLearningNetwork('resnet50','resnet');
end

% pass in input
out = mynet.predict(in);

Generate MEX for resnet_predict

To generate a MEX function for the resnet_predict function, use codegen with a deep learning
configuration object for the MKL-DNN library. Attach the deep learning configuration object to the
MEX code generation configuration object that you pass to codegen. Run the codegen command
and specify the input as a 4D matrix of size [224,224,3,|batchSize|]. This value corresponds to the
input layer size of the ResNet-50 network.

 batchSize = 5;
 cfg = coder.config('mex');
 cfg.TargetLang = 'C++';
 cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
 codegen -config cfg resnet_predict -args {ones(224,224,3,batchSize,'single')} -report

Code generation successful: To view the report, open('codegen\mex\resnet_predict\html\report.mldatx').

Perform Prediction on a Batch of Images

Presuming the Object_class.avi video file is already downloaded. Create the videoReader object and
read five frames using videoReader read function.Since batchSize is set to 5 read 5 images .Resize
the batch of input images to size needed by resnet50 size expected by ResNet50 network.

 videoReader = VideoReader('Object_class.avi');
 imBatch = read(videoReader,[1 5]);
 imBatch = imresize(imBatch, [224,224]);

Call the generated resnet_predict_mex function which outputs classification results for the inputs
that you provide.

 predict_scores = resnet_predict_mex(single(imBatch));

Get top 5 probability scores and their labels for each image in the batch.

 [val,indx] = sort(transpose(predict_scores), 'descend');
 scores = val(1:5,:)*100;
 net = resnet50;
 classnames = net.Layers(end).ClassNames;
 for i = 1:batchSize
 labels = classnames(indx(1:5,i));
 disp(['Top 5 predictions on image, ', num2str(i)]);
 for j=1:5
 disp([labels{j},' ',num2str(scores(j,i), '%2.2f'),'%'])
 end
 end

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

39-55

For predictions on the first image, map the top five prediction scores to words in the synset
dictionary.

 fid = fopen('synsetWords.txt');
 synsetOut = textscan(fid,'%s', 'delimiter', '\n');
 synsetOut = synsetOut{1};
 fclose(fid);
 [val,indx] = sort(transpose(predict_scores), 'descend');
 scores = val(1:5,1)*100;
 top5labels = synsetOut(indx(1:5,1));

Display the top five classification labels on the image.

 outputImage = zeros(224,400,3, 'uint8');
 for k = 1:3
 outputImage(:,177:end,k) = imBatch(:,:,k,1);
 end

 scol = 1;
 srow = 1;
 outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', 'w','FontSize',20, 'BoxColor', 'black');
 srow = srow + 30;
 for k = 1:5
 outputImage = insertText(outputImage, [scol, srow], [top5labels{k},' ',num2str(scores(k), '%2.2f'),'%'], 'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
 srow = srow + 25;
 end

 imshow(outputImage);

Clear the persistent network object from memory.

clear mex;

39 Deep Learning with MATLAB Coder

39-56

Define the resnet_predict_exe Entry-Point Function

To generate an executable from MATLAB code, define a new entry-point function
resnet_predict_exe. This function is similar to the previous entry-point function
resent_predict but, in addition, includes code for preprocessing and postprocessing. The API that
resnet_predict_exe uses is platform independent. This function accepts a video and the batch
size as input arguments. These arguments are compile-time constants.

type resnet_predict_exe

% Copyright 2020 The MathWorks, Inc.

function resnet_predict_exe(inputVideo,batchSize)
%#codegen

 % A persistent object mynet is used to load the series network object.
 % At the first call to this function, the persistent object is constructed and
 % setup. When the function is called subsequent times, the same object is reused
 % to call predict on inputs, avoiding reconstructing and reloading the
 % network object.
 persistent mynet;

 if isempty(mynet)
 % Call the function resnet50 that returns a DAG network
 % for ResNet-50 model.
 mynet = coder.loadDeepLearningNetwork('resnet50','resnet');
 end

 % Create video reader and video player objects %
 videoReader = VideoReader(inputVideo);
 depVideoPlayer = vision.DeployableVideoPlayer;

 % Read the classification label names %
 synsetOut = readImageClassLabels('synsetWords.txt');

 i=1;
 % Read frames until end of video file %
 while ~(i+batchSize > (videoReader.NumFrames+1))
 % Read and resize batch of frames as specified by input argument%
 reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i);

 % run predict on resized input images %
 predict_scores = mynet.predict(reSizedImagesBatch);

 % overlay the prediction scores on images and display %
 overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)

 i = i+ batchSize;
 end
 release(depVideoPlayer);
end

function synsetOut = readImageClassLabels(classLabelsFile)
% Read the classification label names from the file
%

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

39-57

% Inputs :
% classLabelsFile - supplied by user
%
% Outputs :
% synsetOut - cell array filled with 1000 image class labels

 synsetOut = cell(1000,1);
 fid = fopen(classLabelsFile);
 for i = 1:1000
 synsetOut{i} = fgetl(fid);
 end
 fclose(fid);
end

function reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i)
% Read and resize batch of frames as specified by input argument%
%
% Inputs :
% videoReader - Object used for reading the images from video file
% batchSize - Number of images in batch to process. Supplied by user
% i - index to track frames read from video file
%
% Outputs :
% reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize

 img = read(videoReader,[i (i+batchSize-1)]);
 reSizedImagesBatch = coder.nullcopy(ones(224,224,3,batchSize,'like',img));
 resizeTo = coder.const([224,224]);
 reSizedImagesBatch(:,:,:,:) = imresize(img,resizeTo);
end

function overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)
% Read and resize batch of frames as specified by input argument%
%
% Inputs :
% predict_scores - classification results for given network
% synsetOut - cell array filled with 1000 image class labels
% reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize
% batchSize - Number of images in batch to process. Supplied by user
% depVideoPlayer - Object for displaying results
%
% Outputs :
% Predicted results overlayed on input images

 % sort the predicted scores %
 [val,indx] = sort(transpose(predict_scores), 'descend');

 for j = 1:batchSize
 scores = val(1:5,j)*100;
 outputImage = zeros(224,400,3, 'uint8');
 for k = 1:3
 outputImage(:,177:end,k) = reSizedImagesBatch(:,:,k,j);
 end

 % Overlay the results on image %
 scol = 1;
 srow = 1;

39 Deep Learning with MATLAB Coder

39-58

 outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', [255 255 255],'FontSize',20, 'BoxColor', [0 0 0]);
 srow = srow + 30;
 for k = 1:5
 scoreStr = sprintf('%2.2f',scores(k));
 outputImage = insertText(outputImage, [scol, srow], [synsetOut{indx(k,j)},' ',scoreStr,'%'], 'TextColor', [255 255 255],'FontSize',15, 'BoxColor', [0 0 0]);
 srow = srow + 25;
 end

 depVideoPlayer(outputImage);
 end
end

Structure of the resnet_predict_exe Function

The function resnet_predict_exe contains four subsections that perform these actions:

• Read the classification labels from supplied input text file
• Read the input batch of images and resize them as needed by the network
• Run inference on input image batch
• Overlay the results on the images

For more information each of these steps, see the subsequent sections.

The readImageClassLabels Function

This function accepts the synsetWords.txt file as an input argument. It reads the classification
labels and populates a cell array.

 function synsetOut = readImageClassLabels(classLabelsFile)
 % Read the classification label names from the file
 %
 % Inputs :
 % classLabelsFile - supplied by user
 %
 % Outputs :
 % synsetOut - cell array filled with 1000 image class labels

 synsetOut = cell(1000,1);
 fid = fopen(classLabelsFile);
 for i = 1:1000
 synsetOut{i} = fgetl(fid);
 end
 fclose(fid);
 end

The readImageInputBatch Function

This function reads and resizes the images from the video input file that is passed to the function as
an input argument. It reads the specified input images and resizes them to 224x224x3 which is the
size the resnet50 network expects.

 function reSizedImagesBatch = readImageInputBatch(videoReader,batchSize,i)
 % Read and resize batch of frames as specified by input argument%
 %
 % Inputs :

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

39-59

 % videoReader - Object used for reading the images from video file
 % batchSize - Number of images in batch to process. Supplied by user
 % i - index to track frames read from video file
 %
 % Outputs :
 % reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize

 img = read(videoReader,[i (i+batchSize-1)]);
 reSizedImagesBatch = coder.nullcopy(ones(224,224,3,batchSize,'like',img));
 resizeTo = coder.const([224,224]);
 reSizedImagesBatch(:,:,:,:) = imresize(img,resizeTo);
 end

The mynet.predict Function

This function accepts the resized batch of images as input and returns the prediction results.

 % run predict on resized input images %
 predict_scores = mynet.predict(reSizedImagesBatch);

The overlayResultsOnImages Function

This function accepts the prediction results and sorts them in descending order. It overlays these
results on the input images and displays them.

 function overlayResultsOnImages(predict_scores,synsetOut,reSizedImagesBatch,batchSize,depVideoPlayer)
 % Read and resize batch of frames as specified by input argument%
 %
 % Inputs :
 % predict_scores - classification results for given network
 % synsetOut - cell array filled with 1000 image class labels
 % reSizedImagesBatch - Batch of images resized to 224x224x3xbatchsize
 % batchSize - Number of images in batch to process. Supplied by user
 % depVideoPlayer - Object for displaying results
 %
 % Outputs :
 % Predicted results overlayed on input images

 % sort the predicted scores %
 [val,indx] = sort(transpose(predict_scores), 'descend');

 for j = 1:batchSize
 scores = val(1:5,j)*100;
 outputImage = zeros(224,400,3, 'uint8');
 for k = 1:3
 outputImage(:,177:end,k) = reSizedImagesBatch(:,:,k,j);
 end

 % Overlay the results on image %
 scol = 1;
 srow = 1;
 outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', [255 255 255],'FontSize',20, 'BoxColor', [0 0 0]);
 srow = srow + 30;
 for k = 1:5
 scoreStr = sprintf('%2.2f',scores(k));
 outputImage = insertText(outputImage, [scol, srow], [synsetOut{indx(k,j)},' ',scoreStr,'%'], 'TextColor', [255 255 255],'FontSize',15, 'BoxColor', [0 0 0]);
 srow = srow + 25;
 end

39 Deep Learning with MATLAB Coder

39-60

 depVideoPlayer(outputImage);
 end
 end

Build and Run Executable

Create a code configuration object for generating an executable. Attach a deep learning configuration
object to it. Set the batchSize and inputVideoFile variables.

If you do not intend to create a custom C++ main function and use the generated example C++ main
instead, set the GenerateExampleMain parameter to 'GenerateCodeAndCompile'. Also, disable
cfg.EnableOpenMP to make sure there are no openmp library dependencies when you run your
executable from the desktop terminal.

 cfg = coder.config('exe');
 cfg.TargetLang = 'C++';
 cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
 batchSize = 5;
 inputVideoFile = 'object_class.avi';
 cfg.GenerateExampleMain = 'GenerateCodeAndCompile';
 cfg.EnableOpenMP = 0;

Run the codegen command to build the executable. Run the generated executable
resnet_predict_exe either at the MATLAB command line or at the desktop terminal.

 codegen -config cfg resnet_predict_exe -args {coder.Constant(inputVideoFile), coder.Constant(batchSize)} -report
 system('./resnet_predict_exe')

See Also
codegen | coder.DeepLearningConfig | coder.MklDNNConfig |
coder.loadDeepLearningNetwork

 Deep Learning Code Generation on Intel Targets for Different Batch Sizes

39-61

More About
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Deep Learning Prediction with ARM Compute Using codegen” on page 39-63
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7

39 Deep Learning with MATLAB Coder

39-62

Deep Learning Prediction with ARM Compute Using codegen
This example shows how to use codegen to generate code for a Logo classification application that
uses deep learning on ARM® processors. The logo classification application uses the LogoNet series
network to perform logo recognition from images. The generated code takes advantage of the ARM
Compute library for computer vision and machine learning.

Prerequisites

• ARM processor that supports the NEON extension
• Open Source Computer Vision Library (OpenCV) v3.1
• Environment variables for ARM Compute and OpenCV libraries
• MATLAB® Coder™ for C++ code generation
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™ for using the SeriesNetwork object

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

This example is supported on Linux® and Windows® platforms and not supported for MATLAB
Online.

Get the Pretrained SeriesNetwork

Download the pretrained LogoNet network and save it as logonet.mat, if it does not exist. The
network was developed in MATLAB® and its architecture is similar to that of AlexNet. This network
can recognize 32 logos under various lighting conditions and camera angles.

net = getLogonet();

The network contains 22 layers including convolution, fully connected, and the classification output
layers.

net.Layers

ans =

 22×1 Layer array with layers:

 1 'imageinput' Image Input 227×227×3 images with 'zerocenter' normalization and 'randfliplr' augmentations
 2 'conv_1' Convolution 96 5×5×3 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_1' ReLU ReLU
 4 'maxpool_1' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
 5 'conv_2' Convolution 128 3×3×96 convolutions with stride [1 1] and padding [0 0 0 0]
 6 'relu_2' ReLU ReLU
 7 'maxpool_2' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
 8 'conv_3' Convolution 384 3×3×128 convolutions with stride [1 1] and padding [0 0 0 0]
 9 'relu_3' ReLU ReLU
 10 'maxpool_3' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
 11 'conv_4' Convolution 128 3×3×384 convolutions with stride [2 2] and padding [0 0 0 0]
 12 'relu_4' ReLU ReLU
 13 'maxpool_4' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]

 Deep Learning Prediction with ARM Compute Using codegen

39-63

 14 'fc_1' Fully Connected 2048 fully connected layer
 15 'relu_5' ReLU ReLU
 16 'dropout_1' Dropout 50% dropout
 17 'fc_2' Fully Connected 2048 fully connected layer
 18 'relu_6' ReLU ReLU
 19 'dropout_2' Dropout 50% dropout
 20 'fc_3' Fully Connected 32 fully connected layer
 21 'softmax' Softmax softmax
 22 'classoutput' Classification Output crossentropyex with 'adidas' and 31 other classes

Set Environment Variables

On the ARM target hardware, make sure that ARM_COMPUTELIB is set and that LD_LIBRARY_PATH
contains the path to the ARM Compute Library folder.

See “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

logonet_predict Function

The logonet_predict.m entry-point function takes an image input and performs prediction on the
image using the deep learning network saved in the LogoNet MAT-file. The function loads the
network object from LogoNet.mat into a persistent network variable logonet. On subsequent calls to
the function, the persistent object is reused.

type logonet_predict

function out = logonet_predict(in)
%#codegen

% Copyright 2017-2020 The MathWorks, Inc.

persistent logonet;

if isempty(logonet)

 logonet = coder.loadDeepLearningNetwork('LogoNet.mat','logonet');
end

out = logonet.predict(in);

end

Set Up a Code Generation Configuration Object for a Static Library

When you generate code targeting an ARM-based device and do not use a hardware support package,
create a configuration object for a library. Do not create a configuration object for an executable
program.

Set up the configuration object for generation of C++ code and generation of code only.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

39 Deep Learning with MATLAB Coder

39-64

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 19.05.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv8';

Attach the Deep Learning Configuration Object to the Code Generation Configuration
Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

cfg.DeepLearningConfig = dlcfg;

Generate Source C++ Code by Using codegen

codegen -config cfg logonet_predict -args {ones(227, 227, 3, 'single')} -d arm_compute

The code is generated in the arm_compute folder in the current working folder on the host computer.

Generate the Zip File Using the packNGo function

The packNGo function packages all relevant files in a compressed zip file.

zipFileName = 'arm_compute.zip';
bInfo = load(fullfile('arm_compute','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

Copy the Generated Zip File to the Target Hardware

Copy the Zip file and extract into a folder. Remove the Zip file from the target hardware.

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Run these commands to copy and extract zip file from Linux.

if isunix, system(['sshpass -p password scp -r ' fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [-d targetloc/arm_compute]; then rm -rf targetloc/arm_compute; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf targetloc' zipFileName '"']), end

Run these commands to copy and extract zip file from Windows.

if ispc, system(['pscp.exe -pw password -r ' fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [-d targetloc/arm_compute]; then rm -rf targetloc/arm_compute; fi"'), end
if ispc, system(['plink.exe -l username -pw password targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf targetloc' zipFileName '"']), end

 Deep Learning Prediction with ARM Compute Using codegen

39-65

Copy Example Files to the Target Hardware

Copy these supporting files from the host computer to the target hardware:

• Input image, coderdemo_google.png
• Makefile for generating the library, logonet_predict_rtw.mk
• Makefile for building the executable program, makefile_arm_logo.mk
• Synset dictionary, synsetWordsLogoDet.txt

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy all the required files when running from Linux

if isunix, system('sshpass -p password scp logonet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp coderdemo_google.png username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp makefile_arm_logo.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp synsetWordsLogoDet.txt username@targetname:targetloc/arm_compute/'), end

Perform the steps below to copy all the required files when running from Windows

if ispc, system('pscp.exe -pw password logonet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password coderdemo_google.png username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password makefile_arm_logo.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password synsetWordsLogoDet.txt username@targetname:targetloc/arm_compute/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2. The
ARM_ARCH variable is used in the Makefile to pass compiler flags based on Arm Architecture.
ARM_VER variable is used in the Makefile to compile the code based on Arm Compute Version.
Replace the hardware credentials and paths in these commands similar to previous section.

Perform the below steps to build the library from Linux.

if isunix, system('sshpass -p password scp main_arm_logo.cpp username@targetname:targetloc/arm_compute/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f logonet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Perform the below steps to build the library from windows.

if ispc, system('pscp.exe -pw password main_arm_logo.cpp username@targetname:targetloc/arm_compute/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f logonet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Create Executable from the Library on the Target Hardware

Build the library with the source main wrapper file to create the executable. main_arm_logo.cpp is
the C++ main wrapper file which invokes the logonet_predict function.

Run the below command to create the executable from Linux.

39 Deep Learning with MATLAB Coder

39-66

if isunix, system('sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f makefile_arm_logo.mk targetDirName=targetloc/arm_compute"'), end

Run the below command to create the executable from Windows.

if ispc, system('plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f makefile_arm_logo.mk targetDirName=targetloc/arm_compute"'), end

Run the Executable on the Target Hardware

Run the executable from Linux using below command.

if isunix, system('sshpass -p password ssh username@targetname "cd targetloc/arm_compute/; ./logonet coderdemo_google.png"'), end

Run the executable from Windows using below command.

if ispc, system('plink.exe -l username -pw password targetname "cd targetloc/arm_compute/; ./logonet coderdemo_google.png"'), end

Top 5 Predictions:

99.992% google
0.003% corona
0.003% singha
0.001% esso
0.000% fedex

See Also
cnncodegen | coder.DeepLearningConfig | coder.loadDeepLearningNetwork

More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68

 Deep Learning Prediction with ARM Compute Using codegen

39-67

Code Generation for Deep Learning on ARM Targets
This example shows how to generate and deploy code for prediction on an ARM®-based device
without using a hardware support package.

When you generate code for prediction using the ARM Compute Library and a hardware support
package, codegen generates code on the host computer, copies the generated files to the target
hardware, and builds the executable on the target hardware. Without a hardware support package,
codegen generates code on the host computer. You must run commands to copy the files and build
the executable program on the target hardware.

This example uses the packNGo function to package all relevant files into a compressed zip file. Use
this example to learn how to deploy the generated code on ARM Neon targets that do not have a
hardware support package by using packNGo.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• Open Source Computer Vision Library(Open CV)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

This example is not supported for MATLAB Online.

squeezenet_predict Function

This example uses the DAG network SqueezeNet to show image classification with the ARM Compute
Library. A pretrained SqueezeNet for MATLAB is available in the Deep Learning Toolbox. The
squeezenet_predict function loads the SqueezeNet network into a persistent network object. On
subsequent calls to the function, the persistent object is reused.

type squeezenet_predict

% Copyright 2018 The MathWorks, Inc.

function out = squeezenet_predict(in)
%#codegen

% A persistent object mynet is used to load the DAG network object.
% At the first call to this function, the persistent object is constructed and
% set up. When the function is called subsequent times, the same object is reused
% to call predict on inputs, avoiding reconstructing and reloading the
% network object.

persistent mynet;

39 Deep Learning with MATLAB Coder

39-68

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('squeezenet','squeezenet');
end

out = mynet.predict(in);

Set Up a Code Generation Configuration Object for a Static Library

When you generate code targeting an ARM-based device and do not use a hardware support package,
create a configuration object for a library. Do not create a configuration object for an executable
program.

Set up the configuration object for generation of C++ code and generation of code only.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 19.05.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv8';

Attach the Deep Learning Configuration Object to the Code Generation Configuration
Object

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

cfg.DeepLearningConfig = dlcfg;

Generate Source C++ Code by Using codegen

codegen -config cfg squeezenet_predict -args {ones(227, 227, 3, 'single')} -d arm_compute

The code is generated in the arm_compute folder in the current working folder on the host computer.

Generate the Zip File using packNGo function

The packNGo function packages all relevant files in a compressed zip file.

zipFileName = 'arm_compute.zip';
bInfo = load(fullfile('arm_compute','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

The code is generated as zip file.

Copy the Generated Zip file to the Target Hardware

Copy the Zip file and extract into folder and remove the Zip file in the hardware

In the following commands, replace:

 Code Generation for Deep Learning on ARM Targets

39-69

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy and extract zip file from Linux.

if isunix, system(['sshpass -p password scp -r ' fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [-d targetloc/arm_compute]; then rm -rf targetloc/arm_compute; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf targetloc' zipFileName '"']), end

Perform the steps below to copy and extract zip file from Windows.

if ispc, system(['pscp.exe -pw password -r ' fullfile(pwd,zipFileName) ' username@targetname:targetloc/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [-d targetloc/arm_compute]; then rm -rf targetloc/arm_compute; fi"'), end
if ispc, system(['plink.exe -l username -pw password targetname "unzip targetloc/' zipFileName ' -d targetloc/arm_compute"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf targetloc' zipFileName '"']), end

Copy Example Files to the Target Hardware

Copy these supporting files from the host computer to the target hardware:

• Input image, coffeemug.png
• Makefile for generating the library, squeezenet_predict_rtw.mk
• Makefile for building the executable program, makefile_squeezenet_arm_generic.mk
• Synset dictionary, synsetWords.txt

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetloc with the destination folder for the files

Perform the steps below to copy all the required files when running from Linux

if isunix, system('sshpass -p password scp squeezenet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp coffeemug.png username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp makefile_squeezenet_arm_generic.mk username@targetname:targetloc/arm_compute/'), end
if isunix, system('sshpass -p password scp synsetWords.txt username@targetname:targetloc/arm_compute/'), end

Perform the steps below to copy all the required files when running from Windows

if ispc, system('pscp.exe -pw password squeezenet_predict_rtw.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password coffeemug.png username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password makefile_squeezenet_arm_generic.mk username@targetname:targetloc/arm_compute/'), end
if ispc, system('pscp.exe -pw password synsetWords.txt username@targetname:targetloc/arm_compute/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

39 Deep Learning with MATLAB Coder

39-70

ARM_ARCH variable is used in Makefile to pass compiler flags based on Arm Architecture. ARM_VER
variable is used in Makefile to compile the code based on Arm Compute Version. Replace the
hardware credentials and paths in similar to above steps.

Perform the below steps to build the library from Linux.

if isunix, system('sshpass -p password scp main_squeezenet_arm_generic.cpp username@targetname:targetloc/arm_compute/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f squeezenet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Perform the below steps to build the library from windows.

if ispc, system('pscp.exe -pw password main_squeezenet_arm_generic.cpp username@targetname:targetloc/arm_compute/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f squeezenet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Create Executable from the Library on the Target Hardware

Build the library with the source main wrapper file to create the executable.
main_squeezenet_arm_generic.cpp is the C++ main wrapper file which invokes
squeezenet_predict function to create the executable.

Run the below command to create the executable from Linux.

if isunix, system('sshpass -p password ssh username@targetname "make -C targetloc/arm_compute/ -f makefile_squeezenet_arm_generic.mk targetDirName=targetloc/arm_compute"'), end

Run the below command to create the executable from Windows.

if ispc, system('plink.exe -l username -pw password targetname "make -C targetloc/arm_compute/ -f makefile_squeezenet_arm_generic.mk targetDirName=targetloc/arm_compute"'), end

Run the Executable on the Target Hardware

Run the executable from Linux using below command.

if isunix, system('sshpass -p password ssh username@targetname "cd targetloc/arm_compute/; ./squeezenet coffeemug.png"'), end

Run the executable from Windows using below command.

if ispc, system('plink.exe -l username -pw password targetname "cd targetloc/arm_compute/; ./squeezenet coffeemug.png"'), end

Top 5 Predictions:

88.299% coffee mug
7.309% cup
1.098% candle
0.634% paper towel
0.591% water jug

 Code Generation for Deep Learning on ARM Targets

39-71

See Also
coder.ARMNEONConfig | coder.HardwareImplementation | coder.DeepLearningConfig |
packNGo

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39

39 Deep Learning with MATLAB Coder

39-72

Generate C++ Code for Object Detection Using YOLO v2 and
Intel MKL-DNN

This example shows how to generate C++ code for the YOLO v2 Object detection network on an
Intel® processor. The generated code uses the Intel Math Kernel Library for Deep Neural Networks
(MKL-DNN).

For more information, see “Object Detection Using YOLO v2 Deep Learning” (Computer Vision
Toolbox).

Prerequisites

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Refer MKLDNN CPU Support to know the list of processors that supports MKL-DNN library
• MATLAB® Coder™ for C++ code generation
• MATLAB Coder Interface for Deep Learning support package
• Deep Learning Toolbox™ for using the DAGNetwork object
• Computer Vision Toolbox™ for video I/O operations

For more information on the supported versions of the compilers and libraries, see “Third-Party
Hardware and Software” on page 39-2.

This example is supported on Linux®, Windows®, and macOS platforms and not supported for
MATLAB Online.

Get the Pretrained DAGNetwork Object

The DAG network contains 150 layers including convolution, ReLU, and batch normalization layers
and the YOLO v2 transform and YOLO v2 output layers.

net = getYOLOv2();

Downloading pretrained detector (98 MB)...

Use the command net.Layers to see all the layers of the network.

net.Layers

Code Generation for yolov2_detection Function

The yolov2_detection function attached with the example takes an image input and runs the
detector on the image using the network saved in yolov2ResNet50VehicleExample.mat. The
function loads the network object from yolov2ResNet50VehicleExample.mat into a persistent
variable yolov2Obj. Subsequent calls to the function reuse the persistent object for detection.

type('yolov2_detection.m')

function outImg = yolov2_detection(in)

% Copyright 2018-2019 The MathWorks, Inc.

% A persistent object yolov2Obj is used to load the YOLOv2ObjectDetector object.
% At the first call to this function, the persistent object is constructed and

 Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN

39-73

https://github.com/intel/mkl-dnn#cpu-support

% set up. Subsequent calls to the function reuse the same object to call detection
% on inputs, thus avoiding having to reconstruct and reload the
% network object.
persistent yolov2Obj;

if isempty(yolov2Obj)
 yolov2Obj = coder.loadDeepLearningNetwork('yolov2ResNet50VehicleExample.mat');
end

% pass in input
[bboxes,~,labels] = yolov2Obj.detect(in,'Threshold',0.5);
outImg = in;

% convert categorical labels to cell array of character vectors
labels = cellstr(labels);

if ~(isempty(bboxes) && isempty(labels))
% Annotate detections in the image.
 outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);
end

To generate code, create a code configuration object for a MEX target and set the target language to
C++. Use the coder.DeepLearningConfig function to create a MKL-DNN deep learning
configuration object. Assign this object to the DeepLearningConfig property of the code
configuration object. Specify the input size as an argument to the codegen command. In this
example, the input layer size of the YOLO v2 network is [224,224,3].

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -config cfg yolov2_detection -args {ones(224,224,3,'uint8')} -report

Code generation successful: To view the report, open('codegen/mex/yolov2_detection/html/report.mldatx').

Run the Generated MEX Function on Example Input

Set up a video file reader and read the example input video highway_lanechange.mp4. Create a
video player to display the video and the output detections.

videoFile = 'highway_lanechange.mp4';
videoFreader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
depVideoPlayer = vision.DeployableVideoPlayer('Size','Custom','CustomSize',[640 480]);

Read the video input frame by frame and detect the vehicles in the video by using the detector.

cont = ~isDone(videoFreader);
while cont
 I = step(videoFreader);
 in = imresize(I,[224,224]);
 out = yolov2_detection_mex(in);
 depVideoPlayer(out);
 cont = ~isDone(videoFreader) && isOpen(depVideoPlayer); % Exit the loop if the video player figure window is closed
end

39 Deep Learning with MATLAB Coder

39-74

References

[1] Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 6517–25. Honolulu, HI: IEEE, 2017.

See Also
coder.DeepLearningConfig | coder.hardware

More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7

 Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN

39-75

Code Generation and Deployment of MobileNet-v2 Network to
Raspberry Pi

This example shows how to generate and deploy C++ code that uses the MobileNet-v2 pretrained
network for object prediction.

Prerequisites

• ARM processor that supports the NEON extension
• ARM Compute Library (on the target ARM hardware)
• Open Source Computer Vision Library(OpenCV) v2.4 (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• MATLAB Coder Interface for Deep Learning Libraries support package
• Deep Learning Toolbox™
• Deep Learning Toolbox Model for MobileNet-v2 Network support package
• Image Processing Toolbox™
• MATLAB Support Package for Raspberry Pi Hardware

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For supported versions of libraries and for information about setting up
environment variables, see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

This example is not supported for MATLAB online.

This example uses the DAG network MobileNet-v2 to perform image classification with the ARM®
Compute Library. The pretrained MobileNet-v2 network for MATLAB is available in the Deep
Learning Toolbox Model for MobileNet-v2 Network support package.

When you generate code that uses the ARM Compute Library and a hardware support package,
codegen generates code on the host computer, copies the generated files to the target hardware, and
builds the executable on the target hardware.

Configure Code Generation for the mobilenet_predict Function

The mobilenet_predict function calls the predict method of the MobileNet-v2 network object on
an input image and returns the prediction score output. The function calls
coder.updateBuildInfo to specify linking options for the generated makefile.

type mobilenet_predict

function out = mobilenet_predict(in)

persistent net;
opencv_linkflags = '`pkg-config --cflags --libs opencv`';
coder.updateBuildInfo('addLinkFlags',opencv_linkflags);
if isempty(net)
 net = coder.loadDeepLearningNetwork('mobilenetv2', 'mobilenet');
end

39 Deep Learning with MATLAB Coder

39-76

out = net.predict(in);

end

Create a C++ code generation configuration object.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Specify Use of the ARM Compute Library. The ARM Compute Library provides optimized functionality
for the Raspberry Pi hardware. To generate code that uses the ARM Compute Library, create a
coder.ARMNEONConfig object. Specify the version of the ARM Compute Library installed on your
Raspberry Pi and the architecture of the Raspberry Pi. Attach the deep learning configuration object
to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
supportedVersions = dlcfg.getARMComputeSupportedVersions;
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '19.05';
cfg.DeepLearningConfig = dlcfg;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Hardware function raspi to create a connection
to the Raspberry Pi. In this code, replace:

• raspiname with the host name of your Raspberry Pi
• username with your user name
• password with your password

r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for the Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify a build folder on the Raspberry Pi:

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Provide a C++ Main File

Specify the main file main_mobilenet.cpp in the code generation configuration object. The file
calls the generated C++ code for the mobilenet_predict function. The file reads the input image,
passes the data to the generated function calls, retrieves the predictions on the image, and prints the
prediction scores to a file.

cfg.CustomSource = 'main_mobilenet.cpp';

Generate the Executable Program on the Raspberry Pi

Generate C++ code. When you use codegen with the MATLAB Support Package for Raspberry PI
Hardware, the executable is built on the Raspberry Pi.

 Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi

39-77

For code generation, you must set the “Environment Variables” on page 39-4 ARM_COMPUTELIB and
LD_LIBRARY_PATH on the Raspberry Pi.

codegen -config cfg mobilenet_predict -args {ones(224, 224, 3,'single')} -report

Fetch the Generated Executable Folder

To test the generated code on the Raspberry Pi, copy the input image to the generated code folder.
You can find this folder manually or by using the raspi.utils.getRemoteBuildDirectory API.
This function lists the folders of the binary files that are generated by using codegen. Assuming that
the binary is found in only one folder, enter:

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName','mobilenet_predict');
targetDirPath = applicationDirPaths{1}.directory;

Copy Example Files to the Raspberry Pi

To copy files required to run the executable program, use putFile.

r.putFile('peppers_raspi_mobilenet.png',targetDirPath);

Run the Executable Program on the Raspberry Pi

Run the executable program on the Raspberry Pi from MATLAB and direct the output back to
MATLAB.

exeName = 'mobilenet_predict.elf';
argsforexe = ' peppers_raspi_mobilenet.png '; % Provide the input image;
command = ['cd ' targetDirPath ';sudo ./' exeName argsforexe];
output = system(r,command);

Get the Prediction Scores for the 1000 Output Classes of the Network

outputfile = [targetDirPath, '/output.txt'];
r.getFile(outputfile);

Map the Prediction Scores to Labels and Display Output

Map the top five prediction scores to the corresponding labels in the trained network, and display the
output.

type mapPredictedScores_mobilenet

%% Map the Prediction Scores to Labels and Display Output
net = mobilenetv2;
ClassNames = net.Layers(end).ClassNames;

%% Read the classification
fid = fopen('output.txt') ;
S = textscan(fid,'%s');
fclose(fid) ;
S = S{1} ;
predict_scores = cellfun(@(x)str2double(x), S);

%% Remove NaN values that were strings
predict_scores(isnan(predict_scores))=[];
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;

39 Deep Learning with MATLAB Coder

39-78

top5labels = ClassNames(indx(1:5));

%% Display classification labels on the image
im = imread('peppers_raspi_mobilenet.png');
im = imresize(im, [224 224]);
outputImage = zeros(224,400,3, 'uint8');
for k = 1:3
 outputImage(:,177:end,k) = im(:,:,k);
end
scol = 1;
srow = 1;
outputImage = insertText(outputImage, [scol, srow], 'Classification with MobileNetv2', 'TextColor', 'w','FontSize',20, 'BoxColor', 'black');
srow = srow + 30;
for k = 1:5
 outputImage = insertText(outputImage, [scol, srow], [top5labels{k},' ',num2str(scores(k), '%2.2f'),'%'], 'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
 srow = srow + 25;
end
imshow(outputImage);

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68

 Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi

39-79

Code Generation for Semantic Segmentation Application on
Intel CPUs That Uses U-Net

This example demonstrates code generation for an image segmentation application that uses deep
learning. It uses the codegen command to generate a MEX function that performs prediction by
using the deep learning network U-Net for image segmentation.

For a similar example that demonstrates segmentation of images by using U-Net but does not use the
codegen command, see “Semantic Segmentation of Multispectral Images Using Deep Learning”
(Image Processing Toolbox).

Third-Party Prerequisites

• Xeon processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions

This example is supported on Linux®, Windows®, and macOS platforms.

This example uses the Intel MKL-DNN library that ships with MATLAB and generates a MEX function
for semantic segmentation.

This example is not supported in MATLAB Online.

Overview of U-Net

U-Net [1] is a type of convolutional neural network (CNN)that is designed for semantic image
segmentation. In U-Net, the initial series of convolutional layers are interspersed with max pooling
layers, successively decreasing the resolution of the input image. These layers are followed by a
series of convolutional layers interspersed with upsampling operators, successively increasing the
resolution of the input image. The combination of these two series paths forms a U-shaped graph. The
network was originally trained to perform prediction for biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep-learning-based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One of the challenges is differentiating classes that have
similar visual characteristics, such as trying to classify a green pixel as grass, shrubbery, or tree. To
increase classification accuracy, some data sets contain multispectral images that provide additional
information about each pixel. For example, the Hamlin Beach State Park data set supplements the
color images with near-infrared channels that provide a clearer separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network in
order to correctly classify each pixel.

The U-Net this example uses is trained to segment pixels belonging to 18 classes which includes:

0. Other Class/Image Border 7. Picnic Table 14. Grass
1. Road Markings 8. Black Wood Panel 15. Sand
2. Tree 9. White Wood Panel 16. Water (Lake)
3. Building 10. Orange Landing Pad 17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy 18. Asphalt (Parking Lot/Walkway)
5. Person 12. Rocks
6. Lifeguard Chair 13. Other Vegetation

39 Deep Learning with MATLAB Coder

39-80

Get Pretrained U-Net DAG Network Object

trainedUnet_url = 'https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat';
downloadTrainedUnet(trainedUnet_url,pwd);

Downloading Pre-trained U-net for Hamlin Beach dataset...
This will take several minutes to download...
done.

ld = load("trainedUnet/multispectralUnet.mat");
net = ld.net;

The DAG network contains 58 layers including convolution, max pooling, depth concatenation, and
pixel classification output layers. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

% analyzeNetwork(net);

The segmentImageUnet Entry-Point Function

The segmentImageUnet.m entry-point function performs semantic segmentation on the input image
for each patch of a fixed size by using the multispectralUnet network contained in the
multispectralUnet.mat file. This function loads the network object from the
multispectralUnet.mat file into a persistent variable mynet. The function reuses this persistent
variable in subsequent prediction calls.

type('segmentImageUnet.m')

% OUT = segmentImageUnet(IM, PATCHSIZE) returns a semantically segmented
% image, segmented using the network multispectralUnet. The segmentation
% is performed over each patch of size PATCHSIZE.
%
% Copyright 2019-2020 The MathWorks, Inc.
function out = segmentImageUnet(im, patchSize)

%#codegen

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('trainedUnet/multispectralUnet.mat');
end

[height, width, nChannel] = size(im);
patch = coder.nullcopy(zeros([patchSize, nChannel-1]));

% pad image to have dimensions as multiples of patchSize
padSize = zeros(1,2);
padSize(1) = patchSize(1) - mod(height, patchSize(1));
padSize(2) = patchSize(2) - mod(width, patchSize(2));

im_pad = padarray (im, padSize, 0, 'post');
[height_pad, width_pad, ~] = size(im_pad);

out = zeros([size(im_pad,1), size(im_pad,2)], 'uint8');

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

39-81

for i = 1:patchSize(1):height_pad
 for j =1:patchSize(2):width_pad
 for p = 1:nChannel-1
 patch(:,:,p) = squeeze(im_pad(i:i+patchSize(1)-1,...
 j:j+patchSize(2)-1,...
 p));
 end

 % pass in input
 segmentedLabels = activations(mynet, patch, 'Segmentation-Layer');

 % Takes the max of each channel (6 total at this point)
 [~,L] = max(segmentedLabels,[],3);
 patch_seg = uint8(L);

 % populate section of output
 out(i:i+patchSize(1)-1, j:j+patchSize(2)-1) = patch_seg;

 end
end

% Remove the padding
out = out(1:height, 1:width);

Prepare Data

Download the Hamlin Beach State Park data.

if ~exist(fullfile(pwd,'data'),'dir')
 url = 'http://www.cis.rit.edu/~rmk6217/rit18_data.mat';
 downloadHamlinBeachMSIData(url,pwd+"/data/");
end

Downloading Hamlin Beach dataset...
This will take several minutes to download...
done.

Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

% Examine data
whos test_data

 Name Size Bytes Class Attributes

 test_data 7x12446x7654 1333663576 uint16

The image has seven channels. The RGB color channels are the fourth, fifth, and sixth image
channels. The first three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so
that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

39 Deep Learning with MATLAB Coder

39-82

test_data = switchChannelsToThirdPlane(test_data);

Confirm data has the correct structure (channels last).

whos test_data

 Name Size Bytes Class Attributes

 test_data 12446x7654x7 1333663576 uint16

This example uses a cropped version of the full Hamlin Beach State Park dataset that the test_data
variable contains. Crop the height and width of test_data to create the variable input_data that
this example uses.

test_datacropRGB = imcrop(test_data(:,:,1:3),[2600, 3000, 2000, 2000]);
test_datacropInfrared = imcrop(test_data(:,:,4:6),[2600, 3000, 2000, 2000]);
test_datacropMask = imcrop(test_data(:,:,7),[2600, 3000, 2000, 2000]);
input_data(:,:,1:3) = test_datacropRGB;
input_data(:,:,4:6) = test_datacropInfrared;
input_data(:,:,7) = test_datacropMask;

Examine the input_data variable.

whos('input_data');

 Name Size Bytes Class Attributes

 input_data 2001x2001x7 56056014 uint16

Generate MEX

To generate a MEX function for the segmentImageUnet.m entry-point function, create a code
configuration object cfg for MEX code generation. Set the target language to C++. Use the
coder.DeepLearningConfig (GPU Coder) function to create an MKL-DNN deep learning
configuration object and assign it to the DeepLearningConfig property of cfg. Run the codegen
command specifying an input size of [12446,7654,7] and a patch size of [1024,1024]. These values
correspond to the size of the entire input_data variable. The smaller patch sizes speed up
inference. To see how the patches are calculated, see the segmentImageUnet entry-point function.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -config cfg segmentImageUnet -args {ones(size(input_data),'uint16'),coder.Constant([1024 1024])} -report

Code generation successful: To view the report, open('codegen\mex\segmentImageUnet\html\report.mldatx').

Run Generated MEX to Predict Results for input_data

The segmentImageUnet function accepts input_data and a vector containing the dimensions of
the patch size as inputs. The function divides the image into patches, predicts the pixels in a
particular patch, and finally combines all the patches. Because of the large size of input_data
(12446x7654x7), it is easier to process the image in patches.

segmentedImage = segmentImageUnet_mex(input_data,[1024 1024]);

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

39-83

To extract only the valid portion of the segmentation, multiply the segmented image by the mask
channel of the test data.

segmentedImage = uint8(input_data(:,:,7)~=0) .* segmentedImage;

Remove the noise and stray pixels by using the medfilt2 function.

segmentedImage = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented input_data

This line of code creates a vector of the class names:

classNames = net.Layers(end).Classes;

Overlay the labels on the segmented RGB test image and add a color bar to the segmentation image.

% Display input data

figure(1);
imshow(histeq(input_data(:,:,1:3)));
title('Input Image');
cmap = jet(numel(classNames));
segmentedImageOut = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0,'Colormap',cmap);

% Display segmented data

figure(2);
imshow(segmentedImageOut);
title('Segmented Image Output');
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)
title('Segmented Image using Mkldnn');
segmentedImageOverlay = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0.7,'Colormap',cmap);
figure(3);
imshow(segmentedImageOverlay);
title('Segmented Overlay Image');

39 Deep Learning with MATLAB Coder

39-84

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

39-85

39 Deep Learning with MATLAB Coder

39-86

References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for
Biomedical Image Segmentation." arXiv preprint arXiv:1505.04597, 2015.

[2] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918, 2017.

See Also
coder.DeepLearningConfig | coder.hardware | analyzeNetwork (Deep Learning Toolbox)

 Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net

39-87

More About
• “Deep Learning Code Generation on Intel Targets for Different Batch Sizes” on page 39-54
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 39-7
• Semantic Segmentation of Multispectral Images Using Deep Learning

39 Deep Learning with MATLAB Coder

39-88

Code Generation for Semantic Segmentation Application on
ARM Neon Targets That Uses U-Net

This example shows how to generate code for an image segmentation application that uses deep
learning. It uses the codegen command to generate a static library that performs prediction on a
DAG Network object for U-Net. U-Net is a deep learning network for image segmentation.

For a similar example that uses U-Net for image segmentation but does not use the codegen
command, see “Semantic Segmentation of Multispectral Images Using Deep Learning” (Image
Processing Toolbox).

Prerequisites

• ARM® processor that supports the NEON extension and has a RAM of at least 3GB
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries
• MATLAB® Coder™
• MATLAB Coder Interface for Deep Learning Libraries support package
• Deep Learning Toolbox™

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For information about supported versions of libraries and about environment
variables, see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

This example is not supported in MATLAB Online.

Overview of U-Net

U-Net [1] is a type of convolutional neural network (CNN) designed for semantic image segmentation.
In U-Net, the initial series of convolutional layers are interspersed with max pooling layers,
successively decreasing the resolution of the input image. These layers are followed by a series of
convolutional layers interspersed with upsampling operators, successively increasing the resolution
of the input image. The combination of these two series paths forms a U-shaped graph. The U-Net
network was originally trained to perform prediction on biomedical image segmentation applications.
This example demonstrates the ability of the network to track changes in forest cover over time.
Environmental agencies track deforestation to assess and qualify the environmental and ecological
health of a region.

Deep learning based semantic segmentation can yield a precise measurement of vegetation cover
from high-resolution aerial photographs. One of the challenges of such computation is to
differentiating classes that have similar visual characteristics, such as classifying a green pixel as
grass, shrubbery, or tree. To increase classification accuracy, some data sets contain multispectral
images that provide additional information about each pixel. For example, the Hamlin Beach State
Park data set supplements the color images with near-infrared channels that provide a clearer
separation of the classes.

This example uses the Hamlin Beach State Park Data [2] along with a pretrained U-Net network to
correctly classify each pixel.

The U-Net that this example uses is trained to segment pixels belonging to a set of 18 classes which
includes:

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

39-89

0. Other Class/Image Border 7. Picnic Table 14. Grass
1. Road Markings 8. Black Wood Panel 15. Sand
2. Tree 9. White Wood Panel 16. Water (Lake)
3. Building 10. Orange Landing Pad 17. Water (Pond)
4. Vehicle (Car, Truck, or Bus) 11. Water Buoy 18. Asphalt (Parking Lot/Walkway)
5. Person 12. Rocks
6. Lifeguard Chair 13. Other Vegetation

The segmentationUnetARM Entry-Point Function

The segmentationUnetARM.m entry-point function performs patchwise semantic segmentation on the
input image by using the multispectralUnet network contained in the multispectralUnet.mat file.
The function loads the network object from the multispectralUnet.mat file into a persistent
variable mynet and reuses the persistent variable on subsequent prediction calls.

type('segmentationUnetARM.m')

% OUT = segmentationUnetARM(IM) returns a semantically segmented
% image, which is segmented using the network multispectralUnet. This segmentation
% is performed on the input image patchwise on patches of size 256,256.
%
% Copyright 2019-2020 The MathWorks, Inc.
function out = segmentationUnetARM(im)

%#codegen

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('trainedUnet/multispectralUnet.mat');
end

% The input data has to be padded to the size compatible
% with the network Input Size. This input_data is padded inorder to
% perform semantic segmentation on each patch of size (Network Input Size)
[height, width, nChannel] = size(im);
patch = coder.nullcopy(zeros([256, 256, nChannel-1]));
%
padSize = zeros(1,2);
padSize(1) = 256 - mod(height, 256);
padSize(2) = 256 - mod(width, 256);
%
% Pad image must have have dimensions as multiples of network input dimensions
im_pad = padarray (im, padSize, 0, 'post');
[height_pad, width_pad, ~] = size(im_pad);
%
out = zeros([size(im_pad,1), size(im_pad,2)], 'uint8');

for i = 1:256:height_pad
 for j =1:256:width_pad
 for p = 1:nChannel -1
 patch(:,:,p) = squeeze(im(i:i+255,...
 j:j+255,...
 p));
 end

 % pass in input
 segmentedLabels = activations(mynet, patch, 'Segmentation-Layer');

39 Deep Learning with MATLAB Coder

39-90

 % Takes the max of each channel (6 total at this point)
 [~,L] = max(segmentedLabels,[],3);
 patch_seg = uint8(L);

 % populate section of output
 out(i:i+255, j:j+255) = patch_seg;

 end
end

% Remove the padding
out = out(1:height, 1:width);

Get Pretrained U-Net DAG Network Object

Download the multispectralUnet.mat file and load the U-Net DAG network object.

if ~exist('trainedUnet/multispectralUnet.mat','file')
 trainedUnet_url = 'https://www.mathworks.com/supportfiles/vision/data/multispectralUnet.mat';
 downloadUNet(trainedUnet_url,pwd);
end

ld = load("trainedUnet/multispectralUnet.mat");
net = ld.net;

The DAG network contains 58 layers that include convolution, max pooling, depth concatenation, and
pixel classification output layers. To display an interactive visualization of the deep learning network
architecture, use the analyzeNetwork (Deep Learning Toolbox) function.

analyzeNetwork(net);

Prepare Input Data

Download the Hamlin Beach State Park data.

if ~exist(fullfile(pwd,'data'),'dir')
 url = 'http://www.cis.rit.edu/~rmk6217/rit18_data.mat';
 downloadHamlinBeachMSIData(url,pwd+"/data/");
end

Load and examine the data in MATLAB.

load(fullfile(pwd,'data','rit18_data','rit18_data.mat'));

Examine data

whos test_data

The image has seven channels. The RGB color channels are the fourth, fifth, and sixth image
channels. The first three channels correspond to the near-infrared bands and highlight different
components of the image based on their heat signatures. Channel 7 is a mask that indicates the valid
segmentation region.

The multispectral image data is arranged as numChannels-by-width-by-height arrays. In MATLAB,
multichannel images are arranged as width-by-height-by-numChannels arrays. To reshape the data so
that the channels are in the third dimension, use the helper function,
switchChannelsToThirdPlane.

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

39-91

test_data = switchChannelsToThirdPlane(test_data);

Confirm data has the correct structure (channels last).

whos test_data

This example uses a cropped version of the full Hamlin Beach State Park dataset that the test_data
variable contains. Crop the height and width of test_data to create the variable input_data that
this example uses.

test_datacropRGB = imcrop(test_data(:,:,1:3),[2600, 3000, 2000, 2000]);
test_datacropInfrared = imcrop(test_data(:,:,4:6),[2600, 3000, 2000, 2000]);
test_datacropMask = imcrop(test_data(:,:,7),[2600, 3000, 2000, 2000]);

input_data(:,:,1:3) = test_datacropRGB;
input_data(:,:,4:6) = test_datacropInfrared;
input_data(:,:,7) = test_datacropMask;

Examine the input_data variable.

whos('input_data');

Write the input data into a text file that is passed as input to the generated executable.

WriteInputDatatoTxt(input_data);
[height, width, channels] = size(input_data);

Set Up a Code Generation Configuration Object for a Static Library

To generate code that targets an ARM-based device, create a configuration object for a library. Do not
create a configuration object for an executable program. Set up the configuration object for
generation of C++ source code only.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.GenCodeOnly = true;

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the library version and the architecture of the
target ARM processor. For example, suppose that the target board is a HiKey/Rock960 board with
ARMv8 architecture and ARM Compute Library version 19.05.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
dlcfg.ArmArchitecture = 'armv8';

Assign the DeepLearningConfig property of the code generation configuration object cfg to the
deep learning configuration object dlcfg.

cfg.DeepLearningConfig = dlcfg;

Generate C++ Source Code by Using codegen

codegen -config cfg segmentationUnetARM -args {ones(size(input_data),'uint16')} -d unet_predict -report

The code gets generated in the unet_predict folder that is located in the current working directory
on the host computer.

39 Deep Learning with MATLAB Coder

39-92

Generate Zip File by Using packNGo

The packNGo function packages all relevant files into a compressed zip file.

zipFileName = 'unet_predict.zip';
bInfo = load(fullfile('unet_predict','buildInfo.mat'));
packNGo(bInfo.buildInfo, {'fileName', zipFileName,'minimalHeaders', false, 'ignoreFileMissing',true});

The name of the generated zip file is unet_predict.zip.

Copy Generated Zip file to the Target Hardware

Copy the zip file into the target hardware board. Extract the contents of the zip file into a folder and
delete the zip file from the hardware.

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetDir with the destination folder for the files

On the Linux® platform, to transfer and extract the zip file on the target hardware, run these
commands:

if isunix, system(['sshpass -p password scp -r ' fullfile(pwd,zipFileName) ' username@targetname:targetDir/']), end
if isunix, system('sshpass -p password ssh username@targetname "if [-d targetDir/unet_predict]; then rm -rf targetDir/unet_predict; fi"'), end
if isunix, system(['sshpass -p password ssh username@targetname "unzip targetDir/' zipFileName ' -d targetDir/unet_predict"']), end
if isunix, system(['sshpass -p password ssh username@targetname "rm -rf targetDir/' zipFileName '"']), end

On the Windows® platform, to transfer and extract the zip file on the target hardware, run these
commands:

if ispc, system(['pscp.exe -pw password -r ' fullfile(pwd,zipFileName) ' username@targetname:targetDir/']), end
if ispc, system('plink.exe -l username -pw password targetname "if [-d targetDir/unet_predict]; then rm -rf targetDir/unet_predict; fi"'), end
if ispc, system(['plink.exe -l username -pw password targetname "unzip targetDir/' zipFileName ' -d targetDir/unet_predict"']), end
if ispc, system(['plink.exe -l username -pw password targetname "rm -rf targetDir/' zipFileName '"']), end

Copy Supporting Files to the Target Hardware

Copy these files from the host computer to the target hardware:

• Input data, input_data.txt
• Makefile for creating the library, unet_predict_rtw.mk
• Makefile for building the executable program, makefile_unet_arm_generic.mk

In the following commands, replace:

• password with your password
• username with your user name
• targetname with the name of your device
• targetDir with the destination folder for the files

On the Linux® platform, to transfer the supporting files to the target hardware, run these commands:

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

39-93

if isunix, system('sshpass -p password scp unet_predict_rtw.mk username@targetname:targetDir/unet_predict/'), end
if isunix, system('sshpass -p password scp input_data.txt username@targetname:targetDir/unet_predict/'), end
if isunix, system('sshpass -p password scp makefile_unet_arm_generic.mk username@targetname:targetDir/unet_predict/'), end

On the Windows® platform, to transfer the supporting files to the target hardware, run these
commands:

if ispc, system('pscp.exe -pw password unet_predict_rtw.mk username@targetname:targetDir/unet_predict/'), end
if ispc, system('pscp.exe -pw password input_data.txt username@targetname:targetDir/unet_predict/'), end
if ispc, system('pscp.exe -pw password makefile_unet_arm_generic.mk username@targetname:targetDir/unet_predict/'), end

Build the Library on the Target Hardware

To build the library on the target hardware, execute the generated makefile on the ARM hardware.

Make sure that you set the environment variables ARM_COMPUTELIB and LD_LIBRARY_PATH on the
target hardware. See “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2. The
ARM_ARCH variable is used in Makefile to pass compiler flags based on the ARM Architecture. The
ARM_VER variable is used in Makefile to compile the code based on the version of the ARM Compute
library.

On the Linux host platform, run this command to build the library:

if isunix, system(['sshpass -p password ssh username@targetname "make -C targetDir/unet_predict/ -f unet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

On the Windows host platform, run this command to build the library:

if ispc, system(['plink.exe -l username -pw password targetname "make -C targetDir/unet_predict/ -f unet_predict_rtw.mk ARM_ARCH=' dlcfg.ArmArchitecture ' ARM_VER=' dlcfg.ArmComputeVersion ' "']), end

Create Executable on the Target

In these commands, replace targetDir with the destination folder where the library is generated.
The variables height, width, and channels represent the dimensions of the input data.

main_unet_arm_generic.cpp is the C++ main wrapper file which invokes the
segmentationUnetARM function and passes the input image to it. Build the library with the wrapper
file to create the executable.

On the Linux host platform, to create the executable, run these commands:

if isunix, system('sshpass -p password scp main_unet_arm_generic.cpp username@targetname:targetDir/unet_predict/'), end
if isunix, system(['sshpass -p password ssh username@targetname "make -C targetDir/unet_predict/ IM_H=' num2str(height) ' IM_W=' num2str(width) ' IM_C=' num2str(channels) ' -f makefile_unet_arm_generic.mk"']), end

On the Windows host platform, to create the executable, run these commands:

if ispc, system('pscp.exe -pw password main_unet_arm_generic.cpp username@targetname:targetDir/unet_predict/'), end
if ispc, system(['plink.exe -l username -pw password targetname "make -C targetDir/unet_predict/ IM_H=' num2str(height) ' IM_W=' num2str(width) ' IM_C=' num2str(channels) ' -f makefile_unet_arm_generic.mk"']), end

Run the Executable on the Target Hardware

Run the Executable on the target hardware with the input image file input_data.txt.

On the Linux host platform, run this command:

if isunix, system('sshpass -p password ssh username@targetname "cd targetDir/unet_predict/; ./unet input_data.txt output_data.txt"'), end

On the Windows host platform, run this command:

39 Deep Learning with MATLAB Coder

39-94

if ispc, system('plink.exe -l username -pw password targetname "cd targetDir/unet_predict/; ./unet input_data.txt output_data.txt"'), end

The unet executable accepts the input data. Because of the large size of input_data
(2001x2001x7), it is easier to process the input image in patches. The executable splits the input
image into multiple patches, each corresponding to network input size. The executable performs
prediction on the pixels in one particular patch at a time and then combines all the patches together.

Transfer the Output from Target Hardware to MATLAB

Copy the generated output file output_data.txt back to the current MATLAB session. On the
Linux platform, run:

if isunix, system('sshpass -p password scp username@targetname:targetDir/unet_predict/output_data.txt ./'), end

To perform the same action on the Windows platform, run:

if ispc, system('pscp.exe -pw password username@targetname:targetDir/unet_predict/output_data.txt ./'), end

Store the output data in the variable segmentedImage:

segmentedImage = uint8(importdata('output_data.txt'));
segmentedImage = reshape(segmentedImage,[height,width]);

To extract only the valid portion of the segmented image, multiply it by the mask channel of the input
data.

segmentedImage = uint8(input_data(:,:,7)~=0) .* segmentedImage;

Remove the noise and stray pixels by using the medfilt2 function.

segmentedImageCodegen = medfilt2(segmentedImage,[5,5]);

Display U-Net Segmented data

This line of code creates a vector of the class names.

classNames = net.Layers(end).Classes;
disp(classNames);

Overlay the labels on the segmented RGB test image and add a color bar to the segmented image.

Display input data

figure(1);
imshow(histeq(input_data(:,:,1:3)));
title('Input Image');

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

39-95

cmap = jet(numel(classNames));
segmentedImageOut = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0,'Colormap',cmap);
figure(2);
imshow(segmentedImageOut);

Display segmented data

title('Segmented Image using Codegen on ARM');
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'TickLength',0,'TickLabelInterpreter','none');
colormap(cmap)

Display segmented overlay Image

segmentedImageOverlay = labeloverlay(imadjust(input_data(:,:,4:6),[0 0.6],[0.1 0.9],0.55),segmentedImage,'Transparency',0.7,'Colormap',cmap);
figure(3);
imshow(segmentedImageOverlay);
title('Segmented Overlayed Image');

39 Deep Learning with MATLAB Coder

39-96

References

[1] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for
Biomedical Image Segmentation." arXiv preprint arXiv:1505.04597, 2015.

[2] Kemker, R., C. Salvaggio, and C. Kanan. "High-Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918, 2017.

[3] Reference Input Data used is part of the Hamlin Beach State Park data. The following steps can be
used to download the data for further evaluation.

if ~exist(fullfile(pwd,'data'))
 url = 'http://www.cis.rit.edu/~rmk6217/rit18_data.mat';
 downloadHamlinBeachMSIData(url,pwd+"/data/");
end

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware | packNGo

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• Semantic Segmentation of Multispectral Images Using Deep Learning

 Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net

39-97

Code Generation for LSTM Network on Raspberry Pi
This example shows how to generate code for a pretrained long short-term memory (LSTM) network
that uses the ARM® Compute Library and deploy the code on a Raspberry Pi™ target. In this
example, the LSTM network predicts the Remaining Useful Life (RUL) of a machine. The network
takes as input time series data sets that represent various sensors in the engine. The network returns
the Remaining Useful Life of an engine, measured in cycles, as its output.

This example uses the Turbofan Engine Degradation Simulation Data Set as described in [1]. This
data set contains 100 training observations and 100 test observations. The training data contains
simulated time series data for 100 engines. Each sequence has 17 features, varies in length, and
corresponds to a full run to failure (RTF) instance. The test data contains 100 partial sequences and
corresponding values of the Remaining Useful Life at the end of each sequence.

This example uses a pretrained LSTM network. For more information on how to train an LSTM
network, see the example “Sequence Classification Using Deep Learning” (Deep Learning Toolbox).

This example demonstrates two different approaches for performing prediction by using an LSTM
network:

• The first approach uses a standard LSTM network and runs inference on a set of time series data.
• The second approach leverages the stateful behavior of the same LSTM network. In this method,

you pass a single timestep of data at a time, and have the network update its state at each time
step.

This example uses the PIL based workflow to generate a MEX function, which in turn calls the
executable generated in the target hardware from MATLAB.

Notes:

• The code lines in this example are commented out. Uncomment them before you run the example.
• The ARM Compute library version that this example uses might not be the latest version that code

generation supports. For information on the supported versions of the compilers and libraries, see
“Third-Party Hardware and Software” on page 39-2.

• This example is not supported in MATLAB Online.

Prerequisites

• MATLAB® Coder™
• Embedded Coder®
• Deep Learning Toolbox™
• MATLAB Coder Interface for Deep Learning Libraries. To install this support package, use the

Add-On Explorer.
• MATLAB Support Package for Raspberry Pi Hardware. To install this support package, use the

Add-On Explorer.
• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. For setting up the environment variables,

see “Environment Variables” on page 39-4.

39 Deep Learning with MATLAB Coder

39-98

Set Up a Code Generation Configuration Object for a Static Library

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++.

% cfg = coder.config('lib', 'ecoder', true);
% cfg.VerificationMode = 'PIL';
% cfg.TargetLang = 'C++';

Set Up a Configuration Object for Deep Learning Code Generation

Create a coder.ARMNEONConfig object. Specify the Compute Library version and arm architecture.
For this example, suppose that the ARM Compute Library in the Raspberry Pi hardware is version
19.05.

% dlcfg = coder.DeepLearningConfig('arm-compute');
% dlcfg.ArmComputeVersion = '19.05';
% dlcfg.ArmArchitecture = 'armv7';

Set the DeepLearningConfig property of the code generation configuration object to the deep
learning configuration object.

% cfg.DeepLearningConfig = dlcfg;

Create a Connection to the Raspberry Pi

Use the MATLAB Support Package for Raspberry Pi Support Package function, raspi, to create a
connection to the Raspberry Pi. In the following code, replace:

• raspiname with the name of your Raspberry Pi
• username with your user name
• password with your password

% r = raspi('raspiname','username','password');

Configure Code Generation Hardware Parameters for Raspberry Pi

Create a coder.Hardware object for Raspberry Pi and attach it to the code generation configuration
object.

% hw = coder.hardware('Raspberry Pi');
% cfg.Hardware = hw;

First Approach: Generate PIL MEX Function for LSTM Network

In this approach, you generate code for the entry-point function rul_lstmnet_predict.

The rul_lstmnet_predict.m entry-point function takes an entire time series data set as an input and
passes it to the network for prediction. Specifically, the function uses the LSTM network that is
trained in the example “Sequence Classification Using Deep Learning” (Deep Learning Toolbox). The
function loads the network object from the rul_lstmnet.mat file into a persistent variable and
reuses this persistent object in subsequent prediction calls. A sequence-to-sequence LSTM network
enables you to make different predictions for each individual time step of a data sequence.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork (Deep Learning Toolbox) function.

 Code Generation for LSTM Network on Raspberry Pi

39-99

type('rul_lstmnet_predict.m')

function out = rul_lstmnet_predict(in) %#codegen

% Copyright 2019 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('rul_lstmnet.mat');
end

out = mynet.predict(in);

To generate code by using the codegen command, use the coder.typeof function to specify the
type and size of the input argument to the entry-point function. In this example, the input is of double
data type with a feature dimension value of 17 and a variable sequence length. Specify the sequence
length as variable-size to perform prediction on an input sequence of any length.

% matrixInput = coder.typeof(double(0),[17 Inf],[false true]);

Run the codegen command to generate a PIL based mex function rul_lstmnet_predict_pil on
the host platform.

% codegen -config cfg rul_lstmnet_predict -args {matrixInput} -report

Run Generated PIL MEX Function on Test Data

Load the MAT-file RULTestData. This MAT-file stores the variables XTest and YTest that contain
sample timeseries of sensor readings on which you can test the generated code. This test data is
taken from the example “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
after data pre-processing.

load RULTestData;

The XTest variable contains 100 input observations. Each observation has 17 features with varying
sequence length.

XTest(1:5)

ans=5×1 cell array
 {17×31 double}
 {17×49 double}
 {17×126 double}
 {17×106 double}
 {17×98 double}

The YTest variable contains 100 output observations that correspond to the XTest input variable.
Each output observation is a Remaining Useful Life (RUI) value, measured in cycles, for each time
step data in entire sequence.

YTest(1:5)

ans=5×1 cell array
 {[142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112]}
 {[146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98]}

39 Deep Learning with MATLAB Coder

39-100

 {[150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69]}
 {[150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82]}
 {[150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91]}

Run the generated MEX function rul_lstmnet_predict_pil on a random test data set.

% idx = randperm(numel(XTest), 1);
% inputData = XTest{idx};

% YPred1 = rul_lstmnet_predict_pil(inputData);

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

% figure('Name', 'Standard LSTM', 'NumberTitle', 'off');
%
% plot(YTest{idx},'--')
% hold on
% plot(YPred1,'.-')
% hold off
%
% ylim([0 175])
% title("Test Observation " + idx)
% xlabel("Time Step")
% ylabel("RUL measured in cycles")

 Code Generation for LSTM Network on Raspberry Pi

39-101

Clear PIL
% clear rul_lstmnet_predict_pil;

Second Approach: Generate PIL MEX Function for Stateful LSTM Network

Instead of passing the entire timeseries data all at once to predict, you can run prediction by
streaming the input data segment-wise by using the predictAndUpdateState function.

The entry-point function rul_lstmnet_predict_and_update.m accepts a single-timestep input and
processes it by using the predictAndUpdateState (Deep Learning Toolbox) function.
predictAndUpdateState returns a prediction for the input timestep and updates the network so
that subsequent parts of the input are treated as subsequent timesteps of the same sample.

type('rul_lstmnet_predict_and_update.m')

function out = rul_lstmnet_predict_and_update(in) %#codegen

% Copyright 2019 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('rul_lstmnet.mat');
end

[mynet, out] = predictAndUpdateState(mynet, in);

end

Create the input type for the codegen command. Because rul_lstmnet_predict_and_update
accepts a single timestep data in each call, specify the input type matrixInput to have a fixed
sequence length of 1 instead of a variable sequence length.

% matrixInput = coder.typeof(double(0),[17 1]);

Run the codegen command to generate PIL based mex function
rul_lstmnet_predict_and_update_pil on the host platform.

% codegen -config cfg rul_lstmnet_predict_and_update -args {matrixInput} -report

Run Generated PIL MEX Function on Test Data
% Run generated MEX function(|rul_lstmnet_predict_and_update_pil|) for each
% time step data in the inputData sequence.

% sequenceLength = size(inputData,2);
% YPred2 = zeros(1, sequenceLength);
% for i=1:sequenceLength
% inTimeStep = inputData(:,i);
% YPred2(:, i) = rul_lstmnet_predict_and_update_pil(inTimeStep);
% end

After you pass all timesteps, one at a time, to the rul_lstmnet_predict_and_update function,
the resulting output is the same as that in the first approach in which you passed all inputs at once.

Compare Predictions with Test Data

Use a plot to compare the MEX output data with the test data.

39 Deep Learning with MATLAB Coder

39-102

matlab:edit(fullfile(matlabroot,'examples','deeplearning_shared',main','rul_lstmnet_predict_and_update.m')))

% figure('Name', 'Statefull LSTM', 'NumberTitle', 'off');
%
%
% plot(YTest{idx},'--')
% hold on
% plot(YPred2,'.-')
% hold off
%
% ylim([0 175])
% title("Test Observation " + idx)
% xlabel("Time Step")
% ylabel("RUL measured in cycles")

Clear PIL
% clear rul_lstmnet_predict_and_update_pil;

References

[1] Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM 2008.
International Conference on, pp. 1-9. IEEE, 2008.

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware |
predictAndUpdateState

 Code Generation for LSTM Network on Raspberry Pi

39-103

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)

39 Deep Learning with MATLAB Coder

39-104

Code Generation for LSTM Network That Uses Intel MKL-DNN
This example shows how to generate code for a pretrained long short-term memory (LSTM) network
that uses the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN).This example
generates a MEX function that makes predictions for each step of an input timeseries. The example
demonstrates two approaches. The first approach uses a standard LSTM network. The second
approach leverages the stateful behavior of the same LSTM network. This example uses textual
descriptions of factory events that can be classified into one of these four categories: Electronic
Failure, Leak, Mechanical Failure, and Software Failure. The example uses a pretrained LSTM
network. For more information on training a network, see the “Classify Text Data Using Deep
Learning” (Text Analytics Toolbox).

Third-Party Prerequisites

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• For a list of processors that support the MKL-DNN library, see MKLDNN CPU Support
• For more information on the supported versions of the compilers and libraries, see “Prerequisites

for Deep Learning with MATLAB Coder” on page 39-2

This example is supported on Mac®, Linux® and Windows® platforms and not supported for
MATLAB Online.

Prepare Input

Load the wordEncoding MAT-file. This MAT-file stores the words encoded as numerical indices. This
encoding was performed during the training of the network. For more information, see “Classify Text
Data Using Deep Learning” (Text Analytics Toolbox).

load("wordEncoding.mat");

Create a string array containing the new reports to classify the event type.

reportsNew = [...
 "Coolant is pooling underneath sorter."
 "Sorter blows fuses at start up."
 "There are some very loud rattling sounds coming from the assembler."
 "At times mechanical arrangement software freezes."
 "Mixer output is stuck."];

Tokenize the input string by using the preprocessText function.

documentsNew = preprocessText(reportsNew);

Use the doc2sequence (Text Analytics Toolbox) function to convert documents to sequences.

XNew = doc2sequence(enc,documentsNew);
labels = categorical({'Electronic Failure', 'Leak', 'Mechanical Failure', 'Software Failure'});

The lstm_predict Entry-Point Function

A sequence-to-sequence LSTM network enables you to make different predictions for each individual
time step of a data sequence. The lstm_predict.m entry-point function takes an input sequence
and passes it to a trained LSTM network for prediction. Specifically, the function uses the LSTM
network that is trained in the example “Classify Text Data Using Deep Learning” (Text Analytics
Toolbox). The function loads the network object from the textClassifierNetwork.mat file into a

 Code Generation for LSTM Network That Uses Intel MKL-DNN

39-105

https://github.com/intel/mkl-dnn#cpu-support

persistent variable and then performs prediction. On subsequent calls, the function reuses the
persistent object.

type('lstm_predict.m')

function out = lstm_predict(in)
%#codegen

% Copyright 2020 The MathWorks, Inc.

 persistent mynet;

 if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('textClassifierNetwork.mat');
 end

 out = predict(mynet, in);
end

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork (Deep Learning Toolbox) function.

Generate MEX

To generate code, create a code configuration object for a MEX target and set the target language to
C++. Use the coder.DeepLearningConfig function to create a MKL-DNN deep learning
configuration object. Assign it to the DeepLearningConfig property of the code configuration
object.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

Use the coder.typeof function to specify the type and size of the input argument to the entry-point
function. In this example, the input is of double data type with a feature dimension value of 1 and a
variable sequence length.

matrixInput = coder.typeof(double(0),[1 Inf],[false true]);

Generate a MEX function by running the codegen command.

codegen -config cfg lstm_predict -args {matrixInput} -report

Code generation successful: View report

Run Generated MEX

Call lstm_predict_mex on the first observation.

YPred1 = lstm_predict_mex(XNew{1});

YPred1 contains the probabilities for the four classes. Find the predicted class by calculating the
index of the maximum probability.

[~, maxIndex] = max(YPred1);

Associate the indices of max probability to the corresponding label. Display the classification. From
the results, you can see that the network predicted the first event to be a Leak.

39 Deep Learning with MATLAB Coder

39-106

predictedLabels1 = labels(maxIndex);
disp(predictedLabels1)

 Leak

Generate MEX that Accepts Multiple Observations

If you want to perform prediction on many observations at once, you can group the observations
together in a cell array and pass the cell array for prediction. The cell array must be a column cell
array, and each cell must contain one observation. The sequence lengths of the inputs might vary. In
this example, XNew contains five observations. To generate a MEX function that can accept XNew as
input, specify the input type to be a 5-by-1 cell array. Specify that each cell be of the same type as
matrixInput.

matrixInput = coder.typeof(double(0),[1 Inf],[false true]);
cellInput = coder.typeof({matrixInput}, [5 1]);
codegen -config cfg lstm_predict -args {cellInput} -report

Code generation successful: View report

Run the generated MEX function with XNew as input.

YPred2 = lstm_predict_mex(XNew);

YPred2 is 5-by-4 cell array. Find the indices that have maximum probability for each of the five inputs
and classify them.

[~, maxIndex] = max(YPred2, [], 2);
predictedLabels2 = labels(maxIndex);
disp(predictedLabels2)

 Leak Mechanical Failure Mechanical Failure Software Failure Electronic Failure

Generate MEX with Stateful LSTM

Instead of passing the entire timeseries to predict in a single step, you can run prediction on an
input by streaming in one timestep at a time and using the function predictAndUpdateState
(Deep Learning Toolbox). This function accepts an input, produces an output prediction, and updates
the internal state of the network so that future predictions take this initial input into account.

The entry-point function lstm_predict_and_update.m accepts a single-timestep input and
processes the input using the predictAndUpdateState function. The predictAndUpdateState
function returns a prediction for the input timestep and updates the network so that subsequent
inputs are treated as subsequent timesteps of the same sample. After passing in all timesteps, one at
a time, the resulting output is identical to the case where all timesteps were passed in as a single
input.

type('lstm_predict_and_update.m')

function out = lstm_predict_and_update(in)
%#codegen

% Copyright 2020 The MathWorks, Inc.

 persistent mynet;

 if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('textClassifierNetwork.mat');

 Code Generation for LSTM Network That Uses Intel MKL-DNN

39-107

 end

 [mynet, out] = predictAndUpdateState(mynet,in);
end

Generate code for lstm_predict_and_update. Because this function accepts a single timestep at
each call, specify matrixInput to have a fixed sequence dimension of 1 instead of a variable
sequence length.

matrixInput = coder.typeof(double(0),[1 1]);
codegen -config cfg lstm_predict_and_update -args {matrixInput} -report

Code generation successful: View report

Run the generated MEX on the first observation.

sequenceLength = size(XNew{1},2);
for i=1:sequenceLength
 inTimeStep = XNew{1}(:,i);
 YPred3 = lstm_predict_and_update_mex(inTimeStep);
end
clear mex;

Find the index that has the highest probability and map it to the labels.

[~, maxIndex] = max(YPred3);
predictedLabels3 = labels(maxIndex);
disp(predictedLabels3)

 Leak

See Also
coder.DeepLearningConfig | doc2sequence | coder.typeof | codegen

More About
• “Classify Text Data Using Deep Learning” (Text Analytics Toolbox)
• “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2

39 Deep Learning with MATLAB Coder

39-108

Code Generation for Convolutional LSTM Network That Uses
Intel MKL-DNN

This example shows how to generate a MEX function for a deep learning network containing both
convolutional and bidirectional long short-term memory (BiLSTM) layers that uses the Intel Math
Kernel Library for Deep Neural Networks (MKL-DNN). The generated MEX function reads the data
from a specified video file as a sequence of video frames and outputs a label that classifies the activity
in the video. For more information on the training of this network, see the example “Classify Videos
Using Deep Learning” (Deep Learning Toolbox).

Third-Party Prerequisites

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• For a list of processors that support the MKL-DNN library, see MKLDNN CPU Support
• For more information on the supported versions of the compilers and libraries, see “Prerequisites

for Deep Learning with MATLAB Coder” on page 39-2

This example is supported on Mac®, Linux® and Windows® platforms and not supported for
MATLAB Online.

Prepare Input

Read the video file pushup.mp4 by using the readvideo helper function included with this example
in a supporting file. To view the video, loop over the individual frames of the video file and use the
imshow function.

filename = "pushup.mp4";
video = readVideo(filename);
numFrames = size(video,4);
figure
for i = 1:numFrames
 frame = video(:,:,:,i);
 imshow(frame/255);
 drawnow
end

 Code Generation for Convolutional LSTM Network That Uses Intel MKL-DNN

39-109

https://github.com/intel/mkl-dnn#cpu-support

Center-crop the input video frames to the input size of the trained network by using the the
centerCrop helper function attached as a supporting file.

inputSize = [224 224 3];
video = centerCrop(video,inputSize);

The video_classify Entry-Point Function

The video_classify.m entry-point function takes image sequences and passes it to a trained
network for prediction. This function uses the convolutional LSTM network that is trained in the
example “Classify Videos Using Deep Learning” (Deep Learning Toolbox). The function loads the
network object from the file net.mat file into a persistent variable and then uses the classify
(Deep Learning Toolbox) function to perform the prediction. On subsequent calls, the function reuses
the already loaded persistent object.

type('video_classify.m')

function out = video_classify(in) %#codegen

% During the execution of the first function call, the network object is
% loaded in the persistent variable mynet. In subsequent calls, this loaded
% object is reused.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('net.mat');
end

39 Deep Learning with MATLAB Coder

39-110

% Provide input and perform prediction
out = classify(mynet,in);

Generate MEX

To generate a MEX function, create a coder.MexCodeConfig object cfg. Set the TargetLang
property of cfg to C++. Use the coder.DeepLearningConfig function to create a deep learning
configuration object for MKL-DNN. Assign it to the DeepLearningConfig property of the cfg.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

Run the getVideoClassificationNetwork helper function to download the video classification
network and save the network in the MAT file net.mat.

getVideoClassificationNetwork();

Use the coder.typeof function to specify the type and size of the input argument to the entry-point
function. In this example, the input is of double type with size [224 224 3] and a variable sequence
length.

Input = coder.typeof(double(0),[224 224 3 Inf],[false false false true]);

Generate a MEX function by running the codegen command.

codegen -config cfg video_classify -args {Input} -report

Code generation successful: View report

Run generated MEX

Run the generated MEX function with center-cropped video input.

output = video_classify_mex(video)

output = categorical
 pushup

Overlay the prediction on to the input video.

video = readVideo(filename);
numFrames = size(video,4);
figure
for i = 1:numFrames
 frame = video(:,:,:,i);
 frame = insertText(frame, [1 1], char(output), 'TextColor', [255 255 255],'FontSize',30, 'BoxColor', [0 0 0]);
 imshow(frame/255);
 drawnow
end

 Code Generation for Convolutional LSTM Network That Uses Intel MKL-DNN

39-111

See Also
coder.DeepLearningConfig | coder.typeof | codegen

More About
• “Classify Videos Using Deep Learning” (Deep Learning Toolbox)
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 39-36
• “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2

39 Deep Learning with MATLAB Coder

39-112

Cross Compile Deep Learning Code for ARM Neon Targets
This example shows how to cross-compile the generated deep learning code to create a library or an
executable, and then deploy the library or executable on an ARM® target such as Hikey 960 or Rock
960. This example uses the codegen command.

Cross compiling the deep learning code for ARM® targets involves these steps:

• Configure the installed cross-compiler toolchain to perform compilation on the host MATLAB®.
The compilation happens when you run the codegen command in MATLAB in the host computer.

• Use the codegen command to build the generated code and create a library or an executable on
the host computer.

• Copy the generated library or executable and other supporting files to the target hardware. If you
generate a library on the host computer, compile the copied makefile on the target to create an
executable.

• Run the generated executable on the target ARM hardware.

You can use this workflow for any ARM Neon target that supportes the Neon|SIMD instruction set.
This example is supported only for host Linux® platforms.

Prerequisites

• ARM processor that supports the Neon|SIMD extension
• ARM Compute Library (on the host computer)
• MATLAB® Coder™
• The support package MATLAB Coder Interface for Deep Learning
• Deep Learning Toolbox™
• The support package Deep Learning Toolbox Model for Inception-v3 Network
• Image Processing Toolbox™
• For deployment on armv7 (32 bit Arm Architecture) target, GNU/GCC g++-arm-linux-

gnueabihf toolchain
• For deployment on armv8 (64 bit Arm Architecture) target, GNU/GCC g++-aarch64-linux-gnu

toolchain
• Environment variables for the cross compilers and libraries

For information about how to install the cross-compiler toolchain and set up the associated
environment variable, see “Cross-Compile Deep Learning Code That Uses ARM Compute Library” on
page 39-44.

The ARM Compute library version that this example uses might not be the latest version that code
generation supports. For information about supported versions of libraries and about environment
variables, see “Prerequisites for Deep Learning with MATLAB Coder” on page 39-2.

The code lines in this example are commented out. Uncomment them before you run the example.

This example in not supported in MATLAB Online.

The inception_predict_arm Entry-Point Function

This example uses the Inception-V3 image classification network. A pretrained Inception-V3 network
for MATLAB is available in the support package Deep Learning Toolbox Model for Inception-V3

 Cross Compile Deep Learning Code for ARM Neon Targets

39-113

Network. The inception_predict_arm entry-point function loads the Inception-V3 network into a
persistent network object. On subsequent calls to the function, the persistent object is reused.

type inception_predict_arm

function out = inception_predict_arm(in)

persistent net;
if isempty(net)
 net = coder.loadDeepLearningNetwork('inceptionv3','inceptionv3');
end

out = net.predict(in);

end

Set up a Deep Learning Configuration Object

Create a coder.ARMNEONConfig object. Specify the version of the ARM Compute library and arm
architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '19.05';
% dlcfg.ArmArchitecture = 'armv7'; % or 'armv8'

For classifying the input image peppers.png, convert the image to a text file.

% generateImagetoTxt('peppers.png');

First Approach: Create Static Library for Entry-Point Function on Host

In this approach, you first cross-compile the generated code to create a static library on the host
computer. You then transfer the generated static library, the ARM Compute library files, the makefile,
and other supporting files to the target hardware. You run the makefile on the target hardware to
generate the executable. Finally, you run the executable on the target hardware.

Set Up a Code Generation Configuration Object

Create a code generation configuration object for a static library. Specify the target language as C++.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';

Attach the deep learning configuration object to the code generation configuration object.

cfg.DeepLearningConfig = dlcfg;

Configure the Cross-Compiler Toolchain

Configure the cross-compiler toolchain based on the ARM Architecture of the target device.

% cfg.Toolchain = 'Linaro AArch64 Linux v6.3.1';% When the Arm Architecture is armv8

% cfg.Toolchain = 'Linaro AArch32 Linux v6.3.1';% When the Arm Architecture is armv7

Generate Static Library on Host Computer by Using codegen

Use the codegen command to generate code for the entry-point function, build the generated code,
and create static library for the target ARM architecture.

39 Deep Learning with MATLAB Coder

39-114

% codegen -config cfg inception_predict_arm -args {ones(299,299,3,'single')} -d arm_compute_cc_lib -report

Copy the Generated Cross-Compiled Static Library to Target hardware

Copy the static library, the bin files, and the header files from the generated folder
arm_compute_cc_lib to the target ARM hardware. In this code line and other code lines that
follow, replace:

• password with your password
• username with your username
• hostname with the name of your device
• targetDir with the destination folder for the files

% system('sshpass -p password scp -r arm_compute_cc_lib/*.bin arm_compute_cc_lib/*.lib arm_compute_cc_lib/*.h arm_compute_cc_lib/*.hpp username@hostname:targetDir/');

Copy the ARM Compute Library Files to Target Hardware

The executable uses the ARM Compute library files during runtime. The target board does not need
header files while generating the executable and running the executable. Copy the library to the
desired path.

% system(['sshpass -p password scp -r ' fullfile(getenv('ARM_COMPUTELIB'),'lib') ' username@hostname:targetDir/']);

Copy Supporting Files to Target Hardware

Copy these files to the target ARM hardware:

• Makefile Makefile_Inceptionv3 to generate executable from static library.
• Input Image inputimage.txt that you want to classify.
• The text file synsetWords.txt that contains the ClassNames returned by

net.Layers(end).Classes
• The main wrapper file main_inception_arm.cpp that calls the code generated for the

inception_predict_arm function.

% system('sshpass -p password scp synsetWords.txt ./Makefile_Inceptionv3 ./inputimage.txt ./main_inception_arm.cpp username@hostname:targetDir/');

Create the Executable on the Target

Compile the makefile on the target to generate the executable from the static library. This makefile
links the static library with the main wrapper file main_inception_arm.cpp and generates the
executable.

% system('sshpass -p password ssh username@hostname "make -C targetDir -f Makefile_Inceptionv3 arm_inceptionv3 "');

Run the Executable on the Target

Run the generated executable on the target. Make sure to export LD_LIBRARY_PATH that points to
the ARM Compute library files while running executable.

% system('sshpass -p password ssh username@hostname "export LD_LIBRARY_PATH=targetDir/lib; cd targetDir;./inception_predict_arm.elf inputimage.txt out.txt"');

Second Approach: Create Executable for Entry-Point function on Host

In this approach, you first cross-compile the generated code to create an executable on the host
computer. You then transfer the generated executable, the ARM Compute library files, and other
supporting files to the target hardware. Finally, you run the executable on the target hardware.

 Cross Compile Deep Learning Code for ARM Neon Targets

39-115

Set Up a Code Generation Configuration Object

Create a code generation configuration object for an generating an executable. Set the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Attach the deep learning configuration object to the code generation configuration object.

cfg.DeepLearningConfig = dlcfg;

Declare the main wrapper file main_inception_arm.cpp as the custom source file.

cfg.CustomSource = 'main_inception_arm.cpp';

Configure the Cross-Compiler Toolchain

Configure the cross-compiler toolchain based on the ARM Architecture of the target device.

% cfg.Toolchain = 'Linaro AArch64 Linux v6.3.1'; % When the Arm Architecture is armv8,

% cfg.Toolchain = 'Linaro AArch32 Linux v6.3.1';% When the Arm Architecture is armv7,

Generate Executable on the Host Computer by Using codegen

Use the codegen command to generate code for the entry-point function, build the generated code,
and create an executablle for the target ARM architecture.

% codegen -config cfg inception_predict_arm -args {ones(299,299,3,'single')} -d arm_compute_cc_exe -report

Copy the Generated Executable to the Target Hardware

Copy the generated executable and the bin files to the target ARM hardware. In this code line and
other code lines that follow, replace:

• password with your password
• username with your username
• hostname with the name of your device
• targetDir with the destination folder for the files

% system('sshpass -p password scp -r arm_compute_cc_exe/*.bin username@hostname:targetDir/');
% system('sshpass -p password scp inception_predict_arm.elf username@hostname:targetDir/');

Copy the ARM Compute Library Files to the Target Hardware

The executable uses the ARM Compute library files during runtime. It does not use header files at
runtime. Copy the library files to the desired path.

% system(['sshpass -p password scp -r ' fullfile(getenv('ARM_COMPUTELIB'),'lib') ' username@hostname:targetDir/']);

Copy Supporting Files to the Target Hardware

Copy these files to the target ARM hardware:

• Input Image inputimage.txt that you want to classify.

39 Deep Learning with MATLAB Coder

39-116

• The text file synsetWords.txt that contains the ClassNames returned by
net.Layers(end).Classes

• The main wrapper file main_inception_arm.cpp that calls the code generated for the
inception_predict_arm function.

% system('sshpass -p password scp synsetWords.txt ./inputimage.txt ./main_inception_arm.cpp username@hostname:targetDir/');

Run the Executable on the Target Hardware

Run the generated executable on the target. Make sure to export LD_LIBRARY_PATH that points to
the ARM Compute library files while running executable.

% system('sshpass -p password ssh username@hostname "export LD_LIBRARY_PATH=targetDir/lib; cd targetDir;./inception_predict_arm.elf inputimage.txt out.txt"');

Transfer the Output Data from Target to MATLAB

Copy the generated output back to the current MATLAB session on the host computer.

% system('sshpass -p password scp username@hostname:targetDir/out.txt ./');

Map Prediction Scores to Labels

Map the top five prediction scores to corresponding labels in the trained network.

% outputImage = mapPredictionScores;

% Display the overlayed Image with Classification Scores.

% imshow(outputImage);

See Also
coder.ARMNEONConfig | coder.DeepLearningConfig | coder.hardware

 Cross Compile Deep Learning Code for ARM Neon Targets

39-117

More About
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39
• “Code Generation for Deep Learning on ARM Targets” on page 39-68
• “Cross-Compile Deep Learning Code That Uses ARM Compute Library” on page 39-44

39 Deep Learning with MATLAB Coder

39-118

Code Generation for Quantized Deep Learning Network on
Raspberry Pi

Deep learning uses neural network architectures that contain many processing layers, including
convolutional layers. Deep learning models typically work on large sets of labeled data. Performing
inference on these models is computationally intensive, consuming significant amount of memory.
Neural networks use memory to store input data, parameters (weights), and activations from each
layer as the input propagates through the network. Deep Neural networks trained in MATLAB use
single-precision floating point data types.. Even networks that are small in size require a considerable
amount of memory and hardware to perform these floating-point arithmetic operations. These
restrictions can inhibit deployment of deep learning models to devices that have low computational
power and smaller memory resources. By using a lower precision to store the weights and
activations, you can reduce the memory requirements of the network.

You can use Deep Learning Toolbox in tandem with the Deep Learning Toolbox Model Quantization
Library support package to reduce the memory footprint of a deep neural network by quantizing the
weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Then, you can
use MATLAB Coder™ to generate optimized code for the quantized network. The generated code
takes advantage of ARM® processor SIMD by using the ARM Compute library. The generated code
can be integrated into your project as source code, static or dynamic libraries, or executables that
you can deploy to a variety of ARM CPU platforms such as Raspberry Pi™.

This example shows how to generate C++ code for a convolutional neural network that uses the ARM
Compute Library and performs inference computations in 8-bit integers.

This example is not supported for MATLAB Online.

Third-Party Prerequisites

• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see Third-Party Hardware and Software. For setting up the
environment variables, see Environment Variables.

Example: Classify Images Using SqueezeNet

In this example, you use MATLAB Coder to generate optmized C++ code for a quantized deep
convolutional neural network and classify an image. The example uses the pretrained squeezenet
(Deep Learning Toolbox) convolutional neural network.

SqueezeNet has been trained on the ImageNet dataset containing images of 1000 object categories.
The network has learned rich feature representations for a wide range of images. The network takes
an image as input and outputs a label for the object in the image together with the probabilities for
each of the object categories.

This example consists of four steps:

1 Modify the SqueezeNet neural network to classify a smaller subset of images containing five
object categories using transfer learning..

2 Quantize the modified SqueezeNet network.

 Code Generation for Quantized Deep Learning Network on Raspberry Pi

39-119

https://www.mathworks.com/help/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html#mw_896dc1d7-0dbb-40bd-8ff1-1651e17354b4
https://www.mathworks.com/help/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html#mw_9ca789db-b539-4eb1-875b-677d435c0264

3 Generate code for the quantized network by using the codegen command. The generated code
runs on Raspberry Pi target via PIL execution.

4 Execute the generated PIL MEX on Raspberry Pi.

Transfer Learning Using SqueezeNet

To perform classification on a new set of images, you must fine-tune a pretrained SqueezeNet
convolutional neural network by using transfer learning. In transfer learning, you take a pretrained
network and use it as a starting point to learn a new task. Fine-tuning a network by using transfer
learning is usually much faster and easier than training a network with randomly initialized weights
from scratch. You can quickly transfer learned features to a new task by using a smaller number of
training images.

Load Training Data

Unzip and load the new images as an image datastore. The imageDatastore function automatically
labels the images based on folder names and stores the data as an ImageDatastore object. An
image datastore enables you to store large image data, including data that does not fit in memory,
and efficiently read batches of images during training of a convolutional neural network.

unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');

numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,4);
img = imtile(imds, 'Frames', idx);

figure
imshow(img)
title('Random Images from Training Dataset');

Load Pretrained Network

Load the pretrained SqueezeNet network.

net=squeezenet;

The object net contains the DAGNetwork object. The first layer is the image input layer that accepts
input images of size 227-by-227-by-3, where 3 is the number of color channels. Use the
analyzeNetwork (Deep Learning Toolbox) function to display an interactive visualization of the
network architecture, to detect errors and issues in the network, and to display detailed information
about the network layers. The layer information includes the sizes of layer activations and learnable
parameters, the total number of learnable parameters, and the sizes of state parameters of recurrent
layers.

inputSize = net.Layers(1).InputSize;
analyzeNetwork(net);

39 Deep Learning with MATLAB Coder

39-120

Replace Final Layers

The convolutional layers of the network extract image features that the last learnable layer and the
final classification layer use to classify the input image. These two layers, 'conv10' and
'ClassificationLayer_predictions' in SqueezeNet, contain information about how to
combine the features that the network extracts into class probabilities, a loss value, and predicted
labels.

To retrain a pretrained network to classify new images, replace these two layers with new layers
adapted to the new data set. You can do this manually or use the helper function
findLayersToReplace to find these layers automatically.

This is the findLayersToReplace helper Function:

type findLayersToReplace.m

function [learnableLayer,classLayer] = findLayersToReplace(lgraph)
% findLayersToReplace(lgraph) finds the single classification layer and the

 Code Generation for Quantized Deep Learning Network on Raspberry Pi

39-121

% preceding learnable (fully connected or convolutional) layer of the layer
% graph lgraph.

% Copyright 2021 The MathWorks, Inc.

if ~isa(lgraph,'nnet.cnn.LayerGraph')
 error('Argument must be a LayerGraph object.')
end

% Get source, destination, and layer names.
src = string(lgraph.Connections.Source);
dst = string(lgraph.Connections.Destination);
layerNames = string({lgraph.Layers.Name}');

% Find the classification layer. The layer graph must have a single
% classification layer.
isClassificationLayer = arrayfun(@(l) ...
 (isa(l,'nnet.cnn.layer.ClassificationOutputLayer')|isa(l,'nnet.layer.ClassificationLayer')), ...
 lgraph.Layers);

if sum(isClassificationLayer) ~= 1
 error('Layer graph must have a single classification layer.')
end
classLayer = lgraph.Layers(isClassificationLayer);

% Traverse the layer graph in reverse starting from the classification
% layer. If the network branches, throw an error.
currentLayerIdx = find(isClassificationLayer);
while true

 if numel(currentLayerIdx) ~= 1
 error('Layer graph must have a single learnable layer preceding the classification layer.')
 end

 currentLayerType = class(lgraph.Layers(currentLayerIdx));
 isLearnableLayer = ismember(currentLayerType, ...
 ['nnet.cnn.layer.FullyConnectedLayer','nnet.cnn.layer.Convolution2DLayer']);

 if isLearnableLayer
 learnableLayer = lgraph.Layers(currentLayerIdx);
 return
 end

 currentDstIdx = find(layerNames(currentLayerIdx) == dst);
 currentLayerIdx = find(src(currentDstIdx) == layerNames); %#ok<FNDSB>

end

end

To use this function to replace the final layers, run these commands:

lgraph = layerGraph(net);
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
numClasses = numel(categories(imdsTrain.Labels));

newConvLayer = convolution2dLayer([1, 1],numClasses,'WeightLearnRateFactor',...

39 Deep Learning with MATLAB Coder

39-122

10,'BiasLearnRateFactor',10,"Name",'new_conv');
lgraph = replaceLayer(lgraph,'conv10',newConvLayer);

newClassificatonLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassificatonLayer);

Train Network

The network requires all input images to have the size 227-by-227-by-3, but each image in the image
datastores has a differnet size. Use an augmented image datastore to automatically resize the
training images. Specify these additional augmentation operations to be performed on the training
images: randomly flip the training images about the vertical axis, and randomly translate them up to
30 pixels horizontally and vertically. Data augmentation helps prevent the network from over-fitting
and memorizing the exact details of the training images.

pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter(...
 'RandXReflection',true, ...
 'RandXTranslation',pixelRange, ...
 'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
 'DataAugmentation',imageAugmenter);

To automatically resize the validation images without performing further data augmentation, use an
augmented image datastore without specifying any additional preprocessing operations.

augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);

Specify the training options. For transfer learning, keep the features from the early layers of the
pretrained network (the transferred layer weights). To slow down learning in the transferred layers,
set the initial learning rate to a small value. In the previous step, you increased the learning rate
factors for the convolutional layer to speed up learning in the new final layers. This combination of
learning rate settings results in fast learning only in the new layers and slower learning in the other
layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a
full training cycle on the entire training data set. Specify the mini-batch size to be 11 so that in each
epoch you consider all of the data. During training, the software validates the network after every
ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',11, ...
 'MaxEpochs',7, ...
 'InitialLearnRate',2e-4, ...
 'Shuffle','every-epoch', ...
 'ValidationData',augimdsValidation, ...
 'ValidationFrequency',3, ...
 'Verbose',false);

Train the network that consists of the transferred and new layers.

netTransfer = trainNetwork(augimdsTrain,lgraph,options);
classNames = netTransfer.Layers(end).Classes;
save('mySqueezenet.mat','netTransfer');

Quantize the Network

Create a dlquantizer object and specify the network to quantize.

quantObj = dlquantizer(netTransfer, 'ExecutionEnvironment', 'CPU');

 Code Generation for Quantized Deep Learning Network on Raspberry Pi

39-123

Use the calibrate function to exercise the network with sample inputs and collect range
information. The calibrate function exercises the network and collects the dynamic ranges of the
weights and biases in the convolution and fully connected layers of the network and the dynamic
ranges of the activations in all layers of the network. The function returns a table. Each row of the
table contains range information for a learnable parameter of the optimized network.

calResults = quantObj.calibrate(augimdsTrain);
save('squeezenetCalResults.mat','calResults');
save('squeezenetQuantObj.mat','quantObj');

Generate PIL MEX Function

In this example, you generate code for the entry-point function predict_int8. This function uses
the coder.loadDeepLearningNetwork function to load a deep learning model and to construct
and set up a CNN class. Then the entry-point function predicts the responses by using the predict
(Deep Learning Toolbox) function.

type predict_int8.m

function out = predict_int8(netFile, in)

 persistent mynet;
 if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork(netFile);
 end
 out = predict(mynet,in);
end

To generate a PIL MEX function, create a code configuration object for a static library and set the
verification mode to 'PIL'. Set the target language to C++.

 cfg = coder.config('lib', 'ecoder', true);
 cfg.VerificationMode = 'PIL';
 cfg.TargetLang = 'C++';

Create a deep learning configuration object for the ARM Compute library. Specify the library version
and arm architecture. For this example, suppose that the ARM Compute Library in the Raspberry Pi
hardware is version 20.02.1.

 dlcfg = coder.DeepLearningConfig('arm-compute');
 dlcfg.ArmComputeVersion = '20.02.1';
 dlcfg.ArmArchitecture = 'armv7';

Set the properties of dlcfg to generate code for low precision/INT8 inference.

 dlcfg.CalibrationResultFile = 'squeezenetQuantObj.mat';
 dlcfg.DataType = 'int8';

6. Set the DeepLearningConfig property of cfg to dlcfg.

 cfg.DeepLearningConfig = dlcfg;

7. Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• raspiname with the name of your Raspberry Pi
• username with your user name

39 Deep Learning with MATLAB Coder

39-124

• password with your password

% r = raspi('raspiname','username','password');

8. Create a coder.Hardware object for Raspberry Pi and attach it to the code generation
configuration object.

% hw = coder.hardware('Raspberry Pi');
% cfg.Hardware = hw;

9. Generate a PIL MEX function by using the codegen command

% codegen -config cfg predict_int8 -args {coder.Constant('mySqueezenet.mat'), ones(227,227,3,'uint8')}

Run Generated PIL MEX Function on Raspberry Pi

Input image is expected to be of same size as the input size of the network. Read the image that you
want to classify and resize it to the input size of the network. This resizing slightly changes the aspect
ratio of the image.

% testImage = imread("MerchDataTest.jpg");
% testImage = imresize(testImage,inputSize(1:2));

To compare the predictions of the Deep Learning Toolbox predict function and the generared PIL
MEX function predict_int8_pil, call both these funcions on the input image separately.

% predictScores(:,1) = predict(netTransfer,testImage)';
% predictScores(:,2) = predict_int8_pil('mySqueezenet.mat',testImage);

Display the predicted labels and their associated probabilities as a histogram.

% h = figure;
% h.Position(3) = 2*h.Position(3);
% ax1 = subplot(1,2,1);
% ax2 = subplot(1,2,2);
% image(ax1,testImage);
% barh(ax2,predictScores)
% xlabel(ax2,'Probability')
% yticklabels(ax2,classNames)
% ax2.XLim = [0 1.1];
% ax2.YAxisLocation = 'left';
% legend('Matlab Single','arm-compute 8-bit integer');
% sgtitle('Predictions using Squeezenet')
% saveas(gcf,'SqueeznetPredictionComparison.jpg');
% close(gcf);
imshow('SqueeznetPredictionComparison.jpg');

 Code Generation for Quantized Deep Learning Network on Raspberry Pi

39-125

See Also
Apps
Deep Network Quantizer

Functions
dlquantizer | dlquantizationOptions | calibrate | validate |
coder.loadDeepLearningNetwork | codegen

Objects
coder.ARMNEONConfig

More About
• “Quantization of Deep Neural Networks” (Deep Learning Toolbox)
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page 39-39

39 Deep Learning with MATLAB Coder

39-126

Generate Code for Quantized LSTM Network and Deploy on
Cortex-M Target

Deep learning uses neural network architectures that contain many processing layers. Deep learning
models typically work on large sets of labeled data. Performing inference on these models is
computationally intensive, consuming significant amount of memory. Neural networks use memory to
store input data, parameters (weights), and activations from each layer as the input propagates
through the network. Deep neural networks trained in MATLAB use single-precision floating point
data types. Even networks that are small in size require a considerable amount of memory and
hardware to perform these floating-point arithmetic operations. These restrictions can inhibit
deployment of deep learning models to devices that have low computational power and smaller
memory resources. By using a lower precision to store the weights and activations, memory
requirements of the network can be reduced.

This example shows how to quantize and generate C static library for a pretrained long short-term
memory (LSTM) network and deploy the code on a Cortex-M processor. The generated code reduces
memory consumption by performing inference computations in 8-bit integers and takes advantage of
ARM® processor SIMD by using the CMSIS-NN library. In this example, the LSTM network predicts
human activity based on time series data representing accelerometer readings in three different
directions.

In this example, you generate a PIL MEX function. When you run the PIL MEX within the MATLAB
environment on your host computer, PIL interface in turn executes the generated executable on the
target hardware.

Note:

• This example uses a pretrained LSTM network. For more information on how to train an LSTM
network, see “Sequence Classification Using Deep Learning” (Deep Learning Toolbox).

• Reduction in memory consumption and performance improvement might depend on the specific
network you choose to deploy.

• This example is supported on Windows® platform only.

Third-Party Prerequisites

• Cortex-M hardware - STM32F746G Discovery board
• CMSIS-NN Library

Quantize the Network

Load the pretrained network attached as a MAT-file. Create a dlquantizer (Deep Learning Toolbox)
object and specify the network to quantize.

load('activityRecognisationNet.mat');
dq = dlquantizer(net, 'ExecutionEnvironment', 'CPU');

Use the calibrate (Deep Learning Toolbox) function to exercise the network with sample inputs
and collect range information. The calibrate function exercises the network and collects the dynamic
ranges of the weights and biases in the LSTM and fully connected layers of the network and the
dynamic ranges of the activations in all layers of the network. Save the dlquantizer object as a
MAT-file to pass it to the codegen function.

load('HumanActivityTrain.mat')
xDs = arrayDatastore(cellfun(@single,XTrain,'UniformOutput',false),"IterationDimension",1,"OutputType","same");

 Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target

39-127

tDs = arrayDatastore(YTrain,"IterationDimension",1,"OutputType","same");
data = combine(xDs,tDs);
dq.calibrate(data);
save('activityRecognisationQuantObj.mat', 'dq')

Generate PIL MEX Function

In this example, you generate code for the entry-point function net_predict.m. This function uses
the coder.loadDeepLearningNetwork function to load a deep learning model and to construct
and set up a RNN network. Then the entry-point function predicts the responses by using the
predict (Deep Learning Toolbox) function.

type net_predict.m

% Copyright 2021 The MathWorks, Inc.

function out = net_predict(netFile, in)
net = coder.loadDeepLearningNetwork(netFile);
out = net.predict(in);
end

To generate a PIL MEX function, create a code configuration object for a static library and set the
verification mode to 'PIL'. Set the target language to C. Limit the stack size to reasonable size, for
example 512 bytes, as the default size is much larger than the memory available on the hardware
board.

 cfg = coder.config('lib', 'ecoder', true);
 cfg.VerificationMode = 'PIL';
 cfg.StackUsageMax = 512;
 cfg.TargetLang = 'C';

Create a deep learning configuration object for the CMSIS-NN library.

 dlcfg = coder.DeepLearningConfig('cmsis-nn');

Attach the saved dlquantizer object MAT-file to dlcfg to generate code that performs low precision
(int8) inference.

 dlcfg.CalibrationResultFile = 'activityRecognisationQuantObj.mat';

Set the DeepLearningConfig property of cfg to dlcfg.

 cfg.DeepLearningConfig = dlcfg;

Create a coder.Hardware object for the STM32F746-Discovery board and attach it to the code
generation configuration object. In the following code, replace comport with port to which Cortex-M
hardware is connected. Also, on the Cortex-M hardware board, set the CMSISNN_PATH environment
variable to the location of the CMSIS-NN library build on the Cortex-M board. For more information
on building library and setting environmnet variables, see “Prerequisites for Deep Learning with
MATLAB Coder” on page 39-2.

hwName = 'STM32F746G-Discovery';
hw = coder.hardware(hwName);
hw.PILInterface = 'Serial';
hw.PILCOMPort = comport;
cfg.Hardware = hw;
cfg.BuildConfiguration = 'Faster Builds';

39 Deep Learning with MATLAB Coder

39-128

In the above code, replace comport with the actual port number. Generate a PIL MEX function by
using the codegen command.

codegen -config cfg net_predict -args {coder.Constant('activityRecognisationNet.mat'),single(zeros(3,10));}

Run Generated PIL MEX Function

Load test data from HumanActivityTest.mat. Run the generated MEX function
net_predict_pil on a test data set.

load('HumanActivityTest.mat')
inputData = single(XTest{1}(1:3,1:10));
YPred = net_predict_pil(cnnMatFile, inputData);

 Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target

39-129

Generate Generic C/C++ Code for Sequence-to-Sequence
Regression That Uses Deep Learning

This example demonstrates how to generate plain C/C++ code that does not depend on any third-
party deep learning libraries for a long short-term memory (LSTM) network. You generate a MEX
function that accepts time series data representing various sensors in an engine. The MEX function
then makes predictions for each step of the input timeseries to predict the remaining useful life (RUL)
of the engine measured in cycles.

This example uses the Turbofan Engine Degradation Simulation Data Set as described in [1] and a
pretrained LSTM network to predict the remaining useful life of an engine. The network was trained
on simulated time series sequence data for 100 engines and corresponding values of the remaining
useful life at the end of each sequence. Each sequence in this training data has a different length and
corresponds to a full run to failure (RTF) instance. For more information on training the network, see
the example “Sequence-to-Sequence Regression Using Deep Learning” (Deep Learning Toolbox)

Define Entry-Point Function rulPredict

The rulPredict entry-point function takes an input sequence and passes it to a trained sequence-to-
sequence LSTM network for prediction. The function loads the network object from the
rulNetwork.mat file into a persistent variable and reuses the persistent object on subsequent
prediction calls. The LSTM network makes predictions on the partial sequence one time step at a
time. At each time step, the network predicts using the value at this time step, and the network state
calculated from the previous time steps only. The network updates its state between each prediction.
The predict function returns a sequence of these predictions. The last element of the prediction
corresponds to the predicted RUL for the partial sequence.

To display an interactive visualization of the network architecture and information about the network
layers, use the analyzeNetwork (Deep Learning Toolbox) function.

type rulPredict.m

function out = rulPredict(in)
%#codegen

% Copyright 2020 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('rulNetwork.mat');
end

% pass in input to predict method
% To prevent the function from adding padding to the data, specify the mini-batch size 1.
out = predict(mynet,in,'MiniBatchSize',1);

Run rulPredict on Test Data

Load the TurboFanRULValidate MAT-file. This MAT-file stores the variable XValidate that
contains sample timeseries data for sensor readings the you use to test the entry-point function in
MATLAB. Make predictions on the test data by calling the rulPredict method.

load TurboFanRULValidate.mat
YPred = rulPredict(XValidate);

39 Deep Learning with MATLAB Coder

39-130

Visualize some of the predictions in a plot.

idx = randperm(numel(YPred),4);
figure
for i = 1:numel(idx)
 subplot(2,2,i)

 plot(YValidate{idx(i)},'--')
 hold on
 plot(YPred{idx(i)},'.-')
 hold off

 ylim([0 175])
 title("Test Observation " + idx(i))
 xlabel("Time Step")
 ylabel("RUL")
end
legend(["Test Data" "Predicted"],'Location','southeast')

For a given partial sequence, the predicted current RUL is the last element of the predicted
sequences. Calculate the root-mean-square error (RMSE) of the predictions, and visualize the
prediction error in a histogram.

YValidateLast = zeros(1, numel(YValidate));
YPredLast = zeros(1, numel(YValidate));
for i = 1:numel(YValidate)
 YValidateLast(i) = YValidate{i}(end);
 YPredLast(i) = YPred{i}(end);

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

39-131

end
figure
rmse = sqrt(mean((YPredLast - YValidateLast).^2))

rmse = 19.0286

histogram(YPredLast - YValidateLast)
title("RMSE = " + rmse)
ylabel("Frequency")
xlabel("Error")

Generate MEX function for rulPredict

To generate a MEX function for the rulPredict entry-point function, create a code generation
configuration object cfg for MEX code generation. Create a deep learning configuration object that
specifies that no target library is required and attach this deep learning configuration object to cfg.

cfg = coder.config('mex');
cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary','none');

By default, the target language is set to C. If you want to generate C++ code, explicitly set the target
language to C++.

Use the coder.typeof function to create the input type for the entry-point function rulPredict
that you use with the -args option in the codegen command.

The data XValidate contains 100 observations where each observation is of double data type with a
feature dimension value of 17 and a variable sequence length. In order to perform prediction on

39 Deep Learning with MATLAB Coder

39-132

several such observations in a single function call, you can group the observations together in a cell
array and pass the cell array for prediction. The cell array must be a column cell array, and each cell
must contain one observation. Each observation must have the same feature dimension, but the
sequence lengths might vary as is the case for XValidate. Specifying the sequence length as
variable-size enables us to perform prediction on an input sequence of any length.

matrixInput = coder.typeof(0, [17 Inf],[false true]); % input type for a single observation
cellInput = coder.typeof({matrixInput}, [100 1]); % input type for multiple observations

Run the codegen command. Specify the input type to be cellInput.

codegen -config cfg rulPredict -args {cellInput} -report

Code generation successful: To view the report, open('codegen\mex\rulPredict\html\report.mldatx')

By default for MEX code generation, the generated code calls into BLAS library for matrix operations
and uses OpenMP library (if the compiler supports OpenMP) so that the any parallelizable for loops in
the MEX can run on multiple threads leading to better execution performance. While OpenMP is
enabled by default for standalone code generation, you will have to provide a custom BLAS callback
to indicate to MATLAB Coder ™ that you want to generate BLAS calls for matrix operations following
the steps mentioned in “Speed Up Matrix Operations in Generated Standalone Code by Using BLAS
Calls” on page 35-59.

Run Generated MEX Function on Test Data

Make predictions on the test data by calling the generated MEX function rulPredict_mex.

YPredMex = rulPredict_mex(XValidate);

You can visualize the same predictions as before in a plot.

figure
for i = 1:numel(idx)
 subplot(2,2,i)

 plot(YValidate{idx(i)},'--')
 hold on
 plot(YPredMex{idx(i)},'.-')
 hold off

 ylim([0 175])
 title("Test Observation " + idx(i))
 xlabel("Time Step")
 ylabel("RUL")
end
legend(["Test Data" "Predicted MEX"],'Location','southeast')

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

39-133

Calculate the root-mean-square error (RMSE) of the predictions, and visualize the prediction error in
a histogram.

YPredLastMex = zeros(1, numel(YValidate));
for i = 1:numel(YValidate)
 YPredLastMex(i) = YPredMex{i}(end);
end
figure
rmse = sqrt(mean((YPredLastMex - YValidateLast).^2))

rmse = 19.0286

histogram(YPredLastMex - YValidateLast)
title("RMSE = " + rmse)
ylabel("Frequency")
xlabel("Error")

39 Deep Learning with MATLAB Coder

39-134

Generate MEX function with Stateful LSTM

Instead of passing the entire timeseries to predict in one step, you can make predictions one time
step at a time by using predictAndUpdateState (Deep Learning Toolbox). This is useful when you
have the values of the time steps arriving in a stream. The predictAndUpdateState function takes
in an input, produces an output prediction, and updates the internal state of the network so that
future predictions take this initial input into account. Usually, it is faster to make predictions on full
sequences when compared to making predictions one time step at a time.

The entry-point function rulPredictAndUpdate takes in a single-timestep input and processes the
input using the predictAndUpdateState function. predictAndUpdateState outputs a prediction
for the input timestep and updates the network so that subsequent inputs are treated as subsequent
timesteps of the same sample. After passing in all timesteps one at a time, the resulting output is the
same as if all timesteps were passed in as a single input.

type rulPredictAndUpdate.m

function out = rulPredictAndUpdate(in)
%#codegen

% Copyright 2020 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('rulNetwork.mat');
end

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

39-135

% pass in input to predictAndUpdateState method
[mynet, out] = predictAndUpdateState(mynet, in);

Run codegen on this new entry-point function. Since we are taking in a single timestep each call, we
specify matrixInput to have a fixed sequence dimension of 1 instead of a variable sequence length.

matrixInput = coder.typeof(double(0),[17 1]);
codegen -config cfg rulPredictAndUpdate -args {matrixInput} -report

Code generation successful: To view the report, open('codegen\mex\rulPredictAndUpdate\html\report.mldatx')

Make predictions on the test data by calling the rulPredictAndUpdate function in MATLAB and
the generated MEX function rulPredictAndUpdate_mex.

YPredStatefulMex = cell(numel(idx), 1);
for iSample = 1:numel(idx)
 sample = XValidate{idx(iSample)};
 numTimeStepsTest = size(sample, 2);
 for iStep = 1:numTimeStepsTest
 YPredStatefulMex{iSample}(1, iStep) = rulPredictAndUpdate_mex(sample(:, iStep));
 end
end

Once again you can visualize the predictions for stateful MEX as before in a plot.

figure
for i = 1:numel(idx)
 subplot(2,2,i)

 plot(YValidate{idx(i)},'--')
 hold on
 plot(YPredStatefulMex{i},'.-')
 hold off

 ylim([0 175])
 title("Test Observation " + idx(i))
 xlabel("Time Step")
 ylabel("RUL")
end
legend(["Test Data" "Predicted MEX Stateful LSTM"],'Location','southeast')

39 Deep Learning with MATLAB Coder

39-136

Finally you can also visualize the results for the two different MEX functions along with the MATLAB
prediction in a plot for any particular sample.

figure()
sampleIdx = idx(1);
plot(YValidate{sampleIdx},'--')
hold on
plot(YPred{sampleIdx},'o-')
plot(YPredMex{sampleIdx},'^-')
plot(YPredStatefulMex{1},'x-')
hold off

ylim([0 175])
title("Test Observation " + idx(i))
xlabel("Time Step")
ylabel("RUL")
legend(["Test Data" "Predicted in MATLAB" "Predicted MEX" "Predicted MEX with Stateful LSTM"],'Location','southeast')

 Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning

39-137

References

1 Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." In Prognostics and Health Management, 2008. PHM
2008. International Conference on, pp. 1-9. IEEE, 2008.

See Also
coder.DeepLearningConfig | codegen | coder.config

More About
• “Generate Generic C/C++ Code for Deep Learning Networks” on page 39-33

39 Deep Learning with MATLAB Coder

39-138

Generate Digit Images Using Variational Autoencoder on Intel
CPUs

This example shows how to generate a MEX function for a trained variational autoencoder (VAE)
network that runs on Intel® CPUs. The example illustrates:

• Generation of hand-drawn digit images in the style of the MNIST data set.
• Code generation for a dlnetwork (Deep Learning Toolbox) object representing a deep learning

network using the Intel MKL-DNN library.
• Use of dlarray (Deep Learning Toolbox) objects in code generation.

This example uses a pretrained decoder network based on the Train Variational Autoencoder (VAE) to
Generate Images example from the Deep Learning Toolbox™. For more information, see “Train
Variational Autoencoder (VAE) to Generate Images” (Deep Learning Toolbox).

Third-Party Prerequisites

Required

• Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2) instructions.

Optional

For non-MEX builds such as static, dynamic libraries or executables, this example has the following
additional requirements.

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• For information on the supported versions of the compilers and libraries, see “Prerequisites for

Deep Learning with MATLAB Coder” on page 39-2

This example is not supported in MATLAB® Online.

Pretrained Variational Autoencoder Network

Autoencoders have two parts: the encoder and the decoder. The encoder takes an image input and
outputs a compressed representation (the encoding), which is a vector of size latent_dim, equal to
20 in this example. The decoder takes the compressed representation, decodes it, and recreates the
original image.

VAEs differ from regular autoencoders in that they do not use the encoding-decoding process to
reconstruct an input. Instead, they impose a probability distribution on the latent space, and learn the
distribution so that the distribution of outputs from the decoder matches that of the observed data.
Then, they sample from this distribution to generate new data.

This example uses the decoder network trained in the Train Variational Autoencoder (VAE) to
Generate Images example. To train the network yourself, see “Train Variational Autoencoder (VAE) to
Generate Images” (Deep Learning Toolbox).

 Generate Digit Images Using Variational Autoencoder on Intel CPUs

39-139

39 Deep Learning with MATLAB Coder

39-140

The generateVAE Entry-Point Function

The generateVAE entry-point function loads the dlnetwork object from the
trainedDecoderVAENet MAT-file into a persistent variable and reuses the persistent object for
subsequent prediction calls. It initializes a dlarray object containing 25 randomly generated
encodings, passes them through the decoder network, and extracts the numeric data of the generated
image from the deep learning array object.

type('generateVAE.m')

function generatedImage = generateVAE(decoderNetFileName,latentDim,Environment) %#codegen
% Copyright 2020-2021 The MathWorks, Inc.

persistent decoderNet;
if isempty(decoderNet)
 decoderNet = coder.loadDeepLearningNetwork(decoderNetFileName);
end

% Generate random noise
randomNoise = dlarray(randn(1,1,latentDim,25,'single'),'SSCB');

if coder.target('MATLAB') && strcmp(Environment,'gpu')
 randomNoise = gpuArray(randomNoise);
end

% Generate new image from noise
generatedImage = sigmoid(predict(decoderNet,randomNoise));

% Extract numeric data from dlarray
generatedImage = extractdata(generatedImage);

end

Evaluate the Entry-Point Function

Evaluate the generateVAE entry-point function to generate digit images and plot the results.

latentDim = 20;
matfile = 'trainedDecoderVAENet.mat';
Env = '';

figure()
title("Generated samples of digits - MATLAB")

generatedImageML = generateVAE(matfile, latentDim, Env);
imshow(imtile(generatedImageML, "ThumbnailSize", [100,100]))

 Generate Digit Images Using Variational Autoencoder on Intel CPUs

39-141

Generate MEX Function

To generate a MEX function for the generateVAE entry-point function, create a code configuration
object for a MEX target and set the target language to C++. Use the coder.DeepLearningConfig
function to create a MKL-DNN deep learning configuration object and assign it to the
DeepLearningConfig property of the code configuration object.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

args = {coder.Constant(matfile), coder.Constant(latentDim), coder.Constant(Env)};

codegen -config cfg -args args generateVAE -report

Code generation successful: View report

39 Deep Learning with MATLAB Coder

39-142

Run the Generated MEX

Call the generated MEX and display the results.

figure()
title("Generated samples of digits using MKL-DNN")

generatedImage = generateVAE_mex(matfile, latentDim, Env);
imshow(imtile(generatedImage, "ThumbnailSize", [100,100]))

The generateVAE entry-point function initializes the dlarray object with randomly generated
encodings, passes them through the decoder network, and extracts the numeric data of the generated

 Generate Digit Images Using Variational Autoencoder on Intel CPUs

39-143

image from the deep learning array object. As a result, the image geenrated during MATLAB
simulation is different from the image generated by the MEX function call.

See Also
coder.DeepLearningConfig | codegen | coder.config | dlarray | dlnetwork

Related Examples
• “Train Variational Autoencoder (VAE) to Generate Images” (Deep Learning Toolbox)

More About
• “dlarray Limitations for Code Generation” on page 18-12
• “Code Generation for dlarray” on page 18-2

39 Deep Learning with MATLAB Coder

39-144

Post-Code-Generation Update of Deep Learning Network
Parameters

This example shows how to incrementally update the network learnables of a deep learning network
application running on edge devices such as Raspberry Pi. This example uses a cart-pole
reinforcement learning application to illustrate:

1 Training a policy gradient (PG) agent to balance a cart-pole system modeled in MATLAB®.
Initially, assume the agent can balance the system exerting a force in the range of -10N to 10N.
For more information on PG agents, see “Policy Gradient Agents” (Reinforcement Learning
Toolbox).

2 Generating code for the trained agent and deploying the agent on a Raspberry Pi™ target.
3 Retraining the agent in MATLAB® such that it can only exert a force of -8N to 8N.
4 Updating the learnable parameters of the deployed agent without regenerating code for the

network.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pendulum stand
upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.05 radians.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pendulum falls.

 Post-Code-Generation Update of Deep Learning Network Parameters

39-145

Initialize the environment such that the force action signal from the agent to the environment is from
-10 to 10 N. Later, retrain the agent so that the force action signal varies from -8N to 8N. For more
information on this model, see “Load Predefined Control System Environments” (Reinforcement
Learning Toolbox).

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4×1 double]

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create PG Agent

The PG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action). The actor network has two outputs which correspond to the number of possible actions.
For more information on creating a deep neural network policy representation, see “Create Policies
and Value Functions” (Reinforcement Learning Toolbox).

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedLayer(2,'Name','fc')
 softmaxLayer('Name','actionProb')
];

Specify options for the actor representation using rlRepresentationOptions (Reinforcement
Learning Toolbox).

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

39 Deep Learning with MATLAB Coder

39-146

Create the actor representation using the specified deep neural network and options. Specify the
action and observation information for the critic, obtained from the environment interface. For more
information, see rlStochasticActorRepresentation (Reinforcement Learning Toolbox).

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},actorOpts);

Create the agent using the specified actor representation and the default agent options. For more
information, see rlPGAgent (Reinforcement Learning Toolbox).

agent = rlPGAgent(actor);

Train PG Agent

Train the PG agent using the following specifications:

• Run each training episode for at most 1000 episodes, with each episode lasting at most 200 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 195 over 100
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions (Reinforcement Learning Toolbox).

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 1000, ...
 'MaxStepsPerEpisode', 200, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',195,...
 'ScoreAveragingWindowLength',100);

Visualize the cart-pole system by using the plot function during training or simulation.

plot(env)

The example uses a pretrained agent from the MATLABCartpolePG.mat MAT-file. To train the agent,
set the doTraining flag to true.

 Post-Code-Generation Update of Deep Learning Network Parameters

39-147

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pre-trained agent for the example.
 load('MATLABCartpolePG.mat','agent');
end

Generate PIL Executable for Deployment

To generate a PIL MEX function for a specified entry-point function, create a code configuration
object for a static library and set the verification mode to 'PIL'. Set the target language to C++. Set
the coder.DeepLearningConfig property of the code generation configuration object to the
coder.ARMNEONConfig deep learning configuration object.

cfg = coder.config('lib', 'ecoder', true);
cfg.VerificationMode = 'PIL';
cfg.TargetLang = 'C++';

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmComputeVersion = '20.02.1';
dlcfg.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig = dlcfg;

Use the MATLAB Support Package for Raspberry Pi Support Package function, raspi (MATLAB
Support Package for Raspberry Pi Hardware), to create a connection to the Raspberry Pi. The
example expects raspi object reuses the settings from the most recent successful connection to a
Raspberry Pi board.

r = raspi;

Create a coder.Hardware object for Raspberry Pi and attach it to the code generation configuration
object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Generate PIL MEX Function for deploying PG Agent

To deploy the trained PG agent to the Raspberry Pi™ target, use the generatePolicyFunction
(Reinforcement Learning Toolbox) command to create a policy evaluation function that selects an
action based on a given observation. This command creates the evaluatePolicy.m file, which
contains the policy function, and the agentData.mat file, which contains the trained deep neural
network actor.

% generatePolicyFunction(agent)

For a given observation, the policy function evaluates a probability for each potential action using the
actor network. Then, the policy function randomly selects an action based on these probabilities. In
the generated evaluatePolicy.m file, the actionSet variable represents the set of possible
actions that the agent can perform and is assigned the value [-10 10], based on initial conditions.
However, because the example retrains the agent to exert a different force, change actionSet to be
a runtime input to the generated evaluatePolicy.m file.

39 Deep Learning with MATLAB Coder

39-148

type('evaluatePolicy.m')

function action1 = evaluatePolicy(observation1, actionSet)
%#codegen

% Select action from sampled probabilities
probabilities = localEvaluate(observation1);
% Normalize the probabilities
p = probabilities(:)'/sum(probabilities);
% Determine which action to take
edges = min([0 cumsum(p)],1);
edges(end) = 1;
[~,actionIndex] = histc(rand(1,1),edges); %#ok<HISTC>
action1 = actionSet(actionIndex);
end
%% Local Functions
function probabilities = localEvaluate(observation1)
persistent policy
if isempty(policy)
 policy = coder.loadDeepLearningNetwork('agentData.mat','policy');
end
observation1 = observation1(:);
observation1 = dlarray(single(observation1),'CB');
probabilities = predict(policy,observation1);
probabilities = extractdata(probabilities);
end

In this example, the observation input is a four-element vector and the action input is a two-element
vector.

inputData = {ones(4,1), ones(2,1)};

Run the codegen command to generate a PIL executable evaluatePolicy_pil on the host
platform.

codegen -config cfg evaluatePolicy -args inputData -report

 Deploying code. This may take a few minutes.
Connectivity configuration for function 'evaluatePolicy': 'Raspberry Pi'
Location of the generated elf : /home/pi/MATLAB_ws/R2022a/local-ssd/lnarasim/MATLAB/ExampleManager/lnarasim.Bdoc22a.j1840029/deeplearning_shared-ex30572827/codegen/lib/evaluatePolicy/pil
Code generation successful: View report

Run Generated PIL Executable on Test Data

Load the MAT-file experienceData.mat. This MAT-file stores the variables observationData that
contains sample observations for the PG agent. observationData contains 100 observations.

load experienceData;

Run the generated executable evaluatePolicy_pil on the observation data set.

numActions = size(observationData, 3)-1;
actions = zeros(1, numActions);
actionSet = [-10; 10];
for iAction = 1:numActions
 actions(iAction) = evaluatePolicy_pil(observationData(:, 1, iAction), actionSet);
end

 Post-Code-Generation Update of Deep Learning Network Parameters

39-149

Starting application: 'codegen/lib/evaluatePolicy/pil/evaluatePolicy.elf'
 To terminate execution: clear evaluatePolicy_pil
Launching application evaluatePolicy.elf...

time = (1:numActions)*env.Ts;

Plot Actions Taken by the Agent

Use a plot to visualize the output data.

figure('Name', 'Cart-Pole System', 'NumberTitle', 'off');
plot(time, actions(:),'b-')
ylim(actionSet+[-1; 1]);
title("Force Executed to Keep the Cart-Pole System Upright")
xlabel("Time (in seconds)")
ylabel("Force (in N)")

Retrain PG Agent

After deploying the agent, assume that the power requirement for the agent to be able to apply forces
of -10N or 10N is high. One possible solution for power reduction is to retrain the agent so that it
only applies force of either -8N or 8N. To retrain the agent, update the environment

env.MaxForce = 8;

Obtain the action information from the environment interface.

actInfo = getActionInfo(env);

39 Deep Learning with MATLAB Coder

39-150

Recreate the actor representation using the same deep neural network as before, specifying the
action and observation information for the critic.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},actorOpts);

Create the agent using the specified actor representation and the default agent options.

agent = rlPGAgent(actor);

Retrain the agent in the updated environment and extract the retrained neural network from the
agent.

trainingStats = train(agent,env,trainOpts);

retrainedNet = getModel(getActor(agent));

Update the Deployed PG Agent on Raspberry Pi

Use the coder.regenerateDeepLearningParameters function to regenerate the binary files
storing the network learnables based on the new values of those learnables of the network.

codegenDirOnHost = fullfile(pwd, 'codegen/lib/evaluatePolicy');
networkFileNames = coder.regenerateDeepLearningParameters(retrainedNet, codegenDirOnHost)

networkFileNames = 1×2 cell
 {'cnn_policy0_0_fc_b.bin'} {'cnn_policy0_0_fc_w.bin'}

The coder.regenerateDeepLearningParameters function accepts the retrained deep neural
network and the path to the network parameter information file emitted during code generation on
the host and returns a cellarray of files containing the regenerated network learnables. Note that
coder.regenerateDeepLearningParameters can also regenerate files containing network
states, but for this example the network only has learnables. In order to update the deployed network
on the Raspberry Pi device, these regenerated binary files need to be copied to the generated code
folder on that board. Use the raspi.utils.getRemoteBuildDirectory API to find this directory.
This function lists the folders of the binary files that are generated by using codegen.

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName','evaluatePolicy');
targetDirPath = applicationDirPaths{1}.directory;

To copy the regenerated binary files, use putFile.

 Post-Code-Generation Update of Deep Learning Network Parameters

39-151

for iFile = 1:numel(networkFileNames)
 putFile(r, fullfile(codegenDirOnHost, networkFileNames{iFile}), targetDirPath);
end

Run the Executable Program on the Raspberry Pi

Re-run the generated executable evaluatePolicy_pil on the observation data set.

numActions = size(observationData, 3)-1;
actions = zeros(1, numActions);
actionSet = [-8; 8];
for iAction = 1:numActions
 actions(iAction) = evaluatePolicy_pil(observationData(:, 1, iAction), actionSet);
end
time = (1:numActions)*env.Ts;

Plot Actions Taken by the PG Agent

Use a plot to visualize the output data.

figure('Name', 'Cart-Pole System', 'NumberTitle', 'off');
plot(time, actions(:),'b-')
ylim(actionSet+[-1; 1]);
title("Force Executed to Keep the Cart-Pole System Upright")
xlabel("Time (in seconds)")
ylabel("Force (in N)")

39 Deep Learning with MATLAB Coder

39-152

Clear PIL

clear evaluatePolicy_pil;

Host application produced the following standard output (stdout) and standard error (stderr) messages:

See Also
coder.regenerateDeepLearningParameters | coder.DeepLearningConfig | codegen |
coder.config | dlarray | dlnetwork

Related Examples
• “Train PG Agent to Balance Cart-Pole System” (Reinforcement Learning Toolbox)

More About
• “Update Network Parameters After Code Generation” on page 39-50
• “Policy Gradient Agents” (Reinforcement Learning Toolbox)
• “Load Predefined Control System Environments” (Reinforcement Learning Toolbox)
• “Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi” on page 39-76

 Post-Code-Generation Update of Deep Learning Network Parameters

39-153

Generate Code for LSTM Network and Deploy on Cortex-M
Target

This example demonstrates how to generate floating-point C code for a sequence-to-sequence long
short-term memory (LSTM) network. You generate a PIL application that makes predictions at each
step of an input timeseries.

This example shows three approaches for handling variable sequence length inputs to the LSTM
network in the generated code. For each approach, you generate a PIL application that does one of
the following:

• Accepts a single observation of variable sequence length
• Accepts multiple observations of variable sequence lengths
• Leverages the stateful behavior of the LSTM network to accept an input of fixed sequence length

This example uses the accelerometer sensor data from a smartphone carried on the body and makes
predictions on the activity of the wearer.

Wearer movements are classified into one of five categories, namely dancing, running, sitting,
standing, and walking.

For more information on training the network, see “Sequence Classification Using Deep Learning”
(Deep Learning Toolbox).

When you generate and run the PIL executable, the generated C code runs on an
STMicroelectronics® STM32F746G-Discovery board. This board is an ARM Cortex®-M7 based
microcontroller.

You can also deploy this example on other STMicroelectronics Discovery boards and
STMicroelectronics Nucleo boards that use ARM Cortex-M processors. For deployment on these
devices, you must install the corresponding support package and the associated required products, as
described in the support package documentation.

For deployment on STMicroelectronics Discovery boards, install the Embedded Coder Support
Package for STMicroelectronics Discovery Boards.

Supported STMicroelectronics Discovery boards:

• STM32F746G-Discovery
• STM32F769I-Discovery
• STM32F4-Discovery

For deployment on STMicroelectronics Nucleo boards, install the Simulink Coder Support Package
for STMicroelectronics Nucleo Boards.

Supported STMicroelectronics Nucleo boards:

• Nucleo-F401RE
• Nucleo-F103RB
• Nucleo-F302R8
• Nucleo-F031K6

39 Deep Learning with MATLAB Coder

39-154

• Nucleo-L476RG
• Nucleo-L053R8
• Nucleo-F746ZG
• Nucleo-F411RE
• Nucleo-F767ZI
• Nucleo-H743ZI/Nucleo-H743ZI2

Required Hardware and Peripherals

• STM32F746G-Discovery board
• USB type A to Mini-B cable

Connect the hardware board to the host computer by using an USB type A to Mini-B cable. To install
drivers for the board, see “Install Drivers for STMicroelectronics STM32 Boards” (Embedded Coder
Support Package for STMicroelectronics STM32 Processors).

Set Code Configuration Parameters

Create Code Configuration Object

Create a coder.EmbeddedCodeConfig object cfg for generating a static library.

cfg = coder.config('lib','ecoder',true);

Configure Object for PIL Execution

To enable PIL-based execution, set VerificationMode to 'PIL'.

cfg.VerificationMode = 'PIL';

To generate generic C code that does not depend on third-party libraries, set TargetLibrary to
'none'.

cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary', 'none');

Specify Target Hardware

To specify the target hardware, create a coder.Hardware object. Assign this object to the
Hardware property of the object cfg.

cfg.Hardware = coder.hardware('STM32F746G-Discovery');

Set PIL Communication Interface

Set up a serial PIL communication interface.

cfg.Hardware.PILInterface = 'Serial';

To determine the COM port for serial communication, follow the steps 2 to 4 in “Code Verification and
Validation with PIL and Monitoring and Tuning” (Embedded Coder Support Package for
STMicroelectronics STM32 Processors). Then, set the PILCOMPort property.

cfg.Hardware.PILCOMPort = 'COM4';

 Generate Code for LSTM Network and Deploy on Cortex-M Target

39-155

Limit Stack Size

The default stack size is much larger than the memory available on the hardware this example uses.
Set the stack size to a smaller value, for example, 512 bytes.

cfg.StackUsageMax = 512;

To view the build log at the command line, enable verbose build.

cfg.Verbose = 1;

Enable ARM Cortex-M CRL

To generate optimal code, use the ARM Cortex-M (CMSIS) code replacement library.

cfg.CodeReplacementLibrary = 'ARM Cortex-M (CMSIS)';

Approach 1: Generate PIL Executable That Accepts a Single Observation of Variable
Sequence Length

lstmNetwork_predict Entry-Point Function

This entry-point function takes an input sequence and passes it to a trained LSTM network for
prediction. Specifically, this function uses the LSTM network trained in the example Sequence to
Sequence Classification Using Deep Learning example.

The function loads the network object from the activityRecognitionNet.mat file into a
persistent variable. The function reuses this persistent object on subsequent prediction calls.

type('lstmNetwork_predict.m')

function out = lstmNetwork_predict(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('activityRecognitionNet.mat');
end

% pass in input
out = predict(mynet,in);

Specify Input Type and Size

Specify the type and size of the input argument to the codegen command by using the
coder.typeof function.

For this example, the input is of single data type with a feature dimension value of three and a
variable sequence length.

Specifying the sequence length as variable-size enables the generated code to perform prediction on
an input sequence of any length.

matrixInput = coder.typeof(single(0),[3 Inf],[false true]);

39 Deep Learning with MATLAB Coder

39-156

Generate PIL Executable

Run the codegen command to generate code and the PIL executable.

codegen -config cfg lstmNetwork_predict -args {matrixInput} -report

Run Generated PIL Executable

Load the MAT-file XValidateData.mat. This MAT-file stores the variable XValidateData that
contains sample timeseries of sensor readings on which you can test the generated code. Also, load
the MAT-file labelsActivity.mat that contains the activity labels.

load XValidateData.mat
load labelsActivity.mat

Call lstmNetwork_predict_pil on the first observation which has a sequence length of six. The
same PIL executable can be called using observations of other sequence lengths as well.

YPred1 = lstmNetwork_predict_pil(XValidateData{1});

Clear the PIL executable.

clear lstmNetwork_predict_pil;

YPred1 is a 5-by-6 numeric matrix containing the probabilities of the five classes for each of the 6
time steps.

% For each time step, find the predicted class by calculating the index of the maximum probability value.
[~, maxIndex] = max(YPred1, [], 1);

Associate the index of the maximum probability value to the corresponding label.

Display the associated labels. From the results, you can see that the network predicted the human
position for the first observation.

predictedLabels_1stObservation = labels(maxIndex);
disp(predictedLabels_1stObservation)

Approach 2: Generate PIL Executable That Accepts Multiple Observations of Different
Sequence Lengths

If you want to perform prediction on many observations at once, you can group the observations
together in a cell array and pass the cell array for prediction. The cell array must be a column cell
array, and each cell must contain one observation.

Each observation must have the same feature dimension, but their sequence lengths might vary.

Specify Input Type and Size

In this example, XValidateData contains four observations. To generate a MEX that can accept
XValidateData as an input, specify the input type to be a 4-by-1 cell array.

Further, specify that each cell be of the same type as matrixInput, the type you specified for the
single observation in the previous |codegen| command.

matrixInput = coder.typeof(single(0),[3 Inf],[false true]);
cellInput = coder.typeof({matrixInput}, [4 1]);

 Generate Code for LSTM Network and Deploy on Cortex-M Target

39-157

Generate PIL Executable

Run the codegen command to generate code and PIL executable.

codegen -config cfg lstmNetwork_predict -args {cellInput} -report

Run the PIL Executable

Load the MAT-file XValidateData.mat. This MAT-file stores the variable XValidateData that
contains sample timeseries of sensor readings on which you can test the generated code. Also, load
the MAT-file labelsActivity.mat that contains the activity labels.

load XValidateData.mat;
load labelsActivity.mat;

Run the PIL executable for all observations.

YPred2 = lstmNetwork_predict_pil(XValidateData);

Clear the PIL executable.

clear lstmNetwork_predict_pil;

The output is a 4-by-1 cell array of predictions for the four observations passed to
lstmNetwork_predict_pil.

disp(YPred2)

Display the associated labels for the first observation.

% For each time step, find the predicted class by calculating the index of the maximum probability.
[~, maxIndex] = max(YPred2{1}, [], 1);
predictedLabels_1stObservation = labels(maxIndex);
disp(predictedLabels_1stObservation)

Approach 3: Generate PIL Executable for Stateful LSTM

lstmNetwork_predict_and_update Entry-Point Function

Instead of passing the entire timeseries to predict in one step, you can run prediction on an input
by streaming in one timestep at a time by using the predictAndUpdateState (Deep Learning
Toolbox) function. This function accepts an input, produces an output prediction, and updates the
internal state of the network so that future predictions take this initial input into account. Use this
approach in resource constrained hardware that does not have enough memory is not enough to
operate on the entire timeseries.

The attached lstmNetwork_predict_and_update function accepts a single-timestep input and
processes the input by using the predictAndUpdateState function. This function outputs a
prediction for the input timestep and updates the network so that subsequent inputs are treated as
subsequent timesteps of the same observation. After passing in all timesteps one at a time, the
resulting output is the same as if all timesteps were passed in as a single input.

type('lstmNetwork_predict_and_update.m')

function out = lstmNetwork_predict_and_update(in) %#codegen

% Copyright 2019-2021 The MathWorks, Inc.

39 Deep Learning with MATLAB Coder

39-158

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('activityRecognitionNet.mat');
end

% pass in input
[mynet, out] = predictAndUpdateState(mynet,in);

Specify Input Type and Size

To run the codegen command on this new design file, you must specify the type and size of the input
arguments to the entry-point function. Because each call of lstmNetwork_predict_and_update
accepts a single timestep, specify matrixInput to have a fixed sequence length of 1 instead of a
variable sequence length.

matrixInput = coder.typeof(single(0),[3 1]);

Generate PIL Executable

Run the codegen command to generate code and PIL executable.

codegen -config cfg lstmNetwork_predict_and_update -args {matrixInput} -report

Run Generated PIL Executable

Load the MAT-file XValidateData.mat. This MAT-file stores the variable XValidateData that
contains sample timeseries of sensor readings on which you can test the generated code. Also, load
the MAT-file labelsActivity.mat that contains the activity labels.

load XValidateData.mat;
load labelsActivity.mat;

Get the sequence length of the first observation.

sequenceLength = size(XValidateData{1} ,2);

Run the generated PIL executable on the sample's first observation by looping over each time step.

for i = 1:sequenceLength
% get each timestep data
eachTimestepData = XValidateData{1}(:,i);
YPredStateful(:,i) = lstmNetwork_predict_and_update_pil(eachTimestepData);
end

Clear generated PIL executable after each observation.

clear lstmNetwork_predict_and_update_pil;
clear lstmNetwork_predict;

Associate the index of the maximum probability value to the corresponding label.

 Generate Code for LSTM Network and Deploy on Cortex-M Target

39-159

[~, maxIndex] = max(YPredStateful, [], 1);
predictedLabelsStateful = labels(maxIndex);
disp(predictedLabelsStateful)

See Also
codegen | coder.hardware | coder.typeof | coder.config | coder.DeepLearningConfig |
predictAndUpdateState

Related Examples
• “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
• “Install Drivers for STMicroelectronics STM32 Boards” (Embedded Coder Support Package for

STMicroelectronics STM32 Processors)
• “Code Verification and Validation with PIL and Monitoring and Tuning” (Embedded Coder

Support Package for STMicroelectronics STM32 Processors)

39 Deep Learning with MATLAB Coder

39-160

Prune Filters in a Detection Network Using Taylor Scores
This example shows how to reduce network size and increase inference speed by pruning
convolutional filters in a you only look once (YOLO) v3 object detection network.

Filter pruning is a compression technique that uses some criterion to identify and remove the least
important filters in a network, reducing the overall memory footprint of the network without
significant reduction in the network accuracy. The pruning algorithm used in this example is gradient-
based and uses first-order Taylor expansion [1][2] to evaluate the importance of convolutional filters
in a network. This example also shows how to generate code for the pruned network and deploy a
processor-in-the-loop (PIL) executable to a Raspberry Pi™ embedded target.

This example uses YOLO v3 detector trained on the Caltech Cars data set. For more information, see
“Object Detection Using YOLO v3 Deep Learning” (Computer Vision Toolbox).

Load Network for Pruning

Load the trained network for pruning. The pretrained YOLO v3 detector in this example is based on
SqueezeNet, and uses the feature extraction network in SqueezeNet with the addition of two
detection heads at the end. The second detection head is twice the size of the first detection head, so
it is better able to detect small objects.

For information on network training, see “Object Detection Using YOLO v3 Deep Learning”
(Computer Vision Toolbox).

Download the yolov3SqueezeNetVehicleExample_21a.zip file containing the pretrained YOLO
v3 network. This file is approximately 23MB in size. Download the file from the MathWorks website,
then unzip the file.

fileName = matlab.internal.examples.downloadSupportFile("vision/data/","yolov3SqueezeNetVehicleExample_21aSPKG.zip");
unzip(fileName);
matFile = "yolov3SqueezeNetVehicleExample_21aSPKG.mat";
pretrained = load(matFile);
yolov3Detector = pretrained.detector;
net = yolov3Detector.Network

net =
 dlnetwork with properties:

 Layers: [75×1 nnet.cnn.layer.Layer]
 Connections: [84×2 table]
 Learnables: [66×3 table]
 State: [6×3 table]
 InputNames: {'data'}
 OutputNames: {'customOutputConv1' 'customOutputConv2'}
 Initialized: 1

Load and Prepare Vehicle Data

Load the training and validation data that will be used for pruning, fine-tuning, and retraining. This
example uses a small labeled data set that contains 295 images. Many of these images come from the
Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision website [4 on
page 39-0], created by Pietro Perona and used with permission. Each image contains one or two
labeled instances of a vehicle.

 Prune Filters in a Detection Network Using Taylor Scores

39-161

Unzip the vehicle images and load the vehicle ground truth data.

unzip("vehicleDatasetImages.zip");
data = load("vehicleDatasetGroundTruth.mat");
vehicleDataset = data.vehicleDataset;

Add the full path to the local vehicle data folder.

vehicleDataset.imageFilename = fullfile(pwd, vehicleDataset.imageFilename);

Split the data set into a training set for training the network, and a test set for evaluating the
network. Use 60% of the data for training set and the rest for the test set.

shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.6 * length(shuffledIndices));
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx), :);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end), :);

Create image and box label datastores.

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore(testDataTbl.imageFilename);
bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end));
bldsTest = boxLabelDatastore(testDataTbl(:, 2:end));
trainingData = combine(imdsTrain, bldsTrain);
testData = combine(imdsTest, bldsTest);

Use validateInputData to detect invalid images, bounding boxes or labels. Any invalid samples
must either be discarded or fixed for proper training.

validateInputData(trainingData);
validateInputData(testData);

Use transform function to apply custom data augmentations to the training data. The augmentData
helper function, listed at the end of the example, applies the following augmentations to the input
data.

• Color jitter augmentation in HSV space
• Random horizontal flip
• Random scaling by 10 percent

augmentedTrainingData = transform(trainingData, @augmentData);

Use transform to preprocess the training data for computing the anchor boxes, as the training
images used in this example are bigger than 227-by-227 and vary in size. Then, use the
estimateAnchorBoxes function to estimate the anchor boxes. Specify the number of anchors as 6
to achieve a good tradeoff between number of anchors and mean IoU. To prevent the estimated
anchor boxes from changing while tuning other hyperparameters set the random seed prior to
estimation using rng.

networkInputSize = [227 227 3];
trainingDataForEstimation = transform(trainingData, @(data)preprocessData(data, networkInputSize));
numAnchors = 6;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors);

Specify anchorBoxes to use in both the detection heads. Select anchorBoxes for each detection
head based on the feature map size. Use larger anchors at lower scale and smaller anchors at

39 Deep Learning with MATLAB Coder

39-162

higher scale. To do so, sort the anchors with the larger anchor boxes first and assign the first three
to the first detection head and the next three to the second detection head.

area = anchorBoxes(:, 1).*anchorBoxes(:, 2);
[~, idx] = sort(area, 'descend');
anchorBoxes = anchorBoxes(idx, :);
anchorBoxMasks = {[1,2,3] [4,5,6]};
classNames = trainingDataTbl.Properties.VariableNames(2:end);

Preprocess the augmented training data to prepare for training. The preprocessData helper function
(defined at the end of this example) resizes the images to the network input size by maintaining the
aspect ratio and scales the image pixels to the range [0 1].

augimdsTrain = transform(augmentedTrainingData, @(data)preprocessData(data, networkInputSize));
augimdsTest = transform(testData, @(data)preprocessData(data, networkInputSize));

Evaluate Detector Network Before Pruning

Use the evaluateDetectionPrecision function to measure the average precision of the trained
network before pruning. The average precision provides a single number that incorporates the ability
of the detector to make correct classifications (precision) and the ability of the detector to find all
relevant objects (recall).

results = detect(yolov3Detector,testData,MiniBatchSize=16);
[apTrainedNet, recallTrainedNet, precisionTrainedNet] = evaluateDetectionPrecision(results,testData);
accuracyTrainedNet = mean(apTrainedNet)*100

accuracyTrainedNet = 88.8968

The precision-recall (PR) curve shows how precise a detector is at varying levels of recall. Ideally, the
precision is 1 at all recall levels.

figure
plot(recallTrainedNet,precisionTrainedNet)
xlabel("Recall")
ylabel("Precision")
grid on
title("Average Precision = " + apTrainedNet)

 Prune Filters in a Detection Network Using Taylor Scores

39-163

Prune Network

Create a prunable object based on first-order Taylor approximation by using
taylorPrunableNetwork (Deep Learning Toolbox). A taylorPrunableNetwork has similar
properties and methods as a dlnetwork in addition to pruning specific properties and methods. The
prunable object can be substituted for a dlnetwork in the custom training loop. Pruning is iterative;
each time the loop runs, until a stopping criterion is met, the function removes a small number of the
least important convolution filters and updates the network architecture.

prunableNet = taylorPrunableNetwork(net)

prunableNet =
 TaylorPrunableNetwork with properties:

 Learnables: [66×3 table]
 State: [6×3 table]
 InputNames: {'data'}
 OutputNames: {'customOutputConv1' 'customOutputConv2'}
 NumPrunables: 3496

maxPrunableFilters = prunableNet.NumPrunables;

Specify Pruning Options

Set the pruning options.

39 Deep Learning with MATLAB Coder

39-164

• maxPruningIterations defines the maximum number of iterations to be used in the pruning
loop.

• maxToPrune is the maximum number of filters to be pruned in each iteration of the pruning loop.
• validationFrequency is the number of iterations to wait before validating the pruned network

using the test data.

maxPruningIterations = 20;
maxToPrune = 64;
validationFrequency = 5;

Set the fine-tuning options.

• Fine-tune the network via a custom training loop for 40 mini-batches in every pruning iteration.
• Specify the options for SGDM optimization. Specify an initial learn rate of 0.00001 and momentum

of 0.9. Set the L2 regularization factor to 0.0005. Initialize the velocity of gradient as []. This is
used by SGDM to store the velocity of gradients.

• Specify the penalty threshold as 0.5. Detections that overlap less than 0.5 with the ground truth
are penalized.

• Specify a mini-batch size of 16 to fine-tune the network.

numMinibatchUpdates = 40;
learnRate = 1e-5;
momentum = 0.9;
l2Regularization = 0.0005;
penaltyThreshold = 0.5;
miniBatchSize = 16;

Create the minibatchqueue

Use a minibatchqueue object to process and manage the mini-batches of images. For each mini-
batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) which returns the batched images and bounding boxes combined with the
respective class IDs.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). Do not
add a format to the bounding boxes.

• Specify the data type of the bounding boxes.

mbq = minibatchqueue(augimdsTrain, 2,...
 MiniBatchSize=miniBatchSize,...
 MiniBatchFcn=@(images, boxes, labels) preprocessMiniBatch(images, boxes, labels, classNames), ...
 MiniBatchFormat=["SSCB", ""],...
 OutputCast=["", "double"]);

Prune Network Using Custom Pruning Loop

Initialize the training progress plots.

figure("Position",[10,10,700,700])
tl = tiledlayout(3,1);
lossAx = nexttile;
lineLossFinetune = animatedline(Color=[0.85 0.325 0.098]);
ylim([0 inf])

 Prune Filters in a Detection Network Using Taylor Scores

39-165

xlabel("Fine-Tuning Iteration")
ylabel("Loss")
grid on
title("Mini-Batch Loss during Pruning")
xTickPos = [];

accuracyAx = nexttile;
lineAccuracyPruning = animatedline(Color=[0.098 0.325 0.85]);
ylim([50 100])
xlabel("Pruning Iteration")
ylabel("Accuracy")
grid on
addpoints(lineAccuracyPruning, 0, accuracyTrainedNet)
title("Validation Accuracy After Pruning")

numPrunablesAx = nexttile;
lineNumPrunables = animatedline(Color=[0.4660 0.6470 0.1880]);
ylim([200 3600])
xlabel("Pruning Iteration")
ylabel("Prunable Filters")
grid on
addpoints(lineNumPrunables, 0, double(maxPrunableFilters))
title("Number of Prunable Convolution Filters After Pruning")

Prune the network. For each mini-batch in the pruning iteration, the following steps are used:

• Evaluate the pruning activations, gradients of the pruning activations, model gradients, state, and
loss using dlfeval and modelLossPruning functions.

• Update the network state.
• Apply a weight decay factor to the gradients to regularization for more robust training.
• Update the network learnable parameters using the stochastic gradient descent with momentum

(SGDM) algorithm.
• Compute first-order Taylor scores and accumulate the score across previous minibatches of data.
• Display the progress.

In a loop, alternate between fine-tuning and pruning.

start = tic;
iteration = 0;

for pruningIteration = 1:maxPruningIterations

 % Shuffle the data in the minibatch.
 shuffle(mbq);

 % Reset the velocity parameter for the SGDM solver in every pruning
 % iteration.
 velocity = [];

 % Loop over mini-batches.
 fineTuningIteration = 0;
 while hasdata(mbq)
 iteration = iteration + 1;
 fineTuningIteration = fineTuningIteration + 1;

 % Read mini-batch of data.

39 Deep Learning with MATLAB Coder

39-166

 [X, T] = next(mbq);

 % Evaluate the pruning activations, gradients of the pruning
 % activations, model gradients, state, and loss using dlfeval and
 % modelLossPruning functions.
 [loss, pruningGradients, netGradients, pruningActivations, state] = ...
 dlfeval(@modelLossPruning, prunableNet, X, T, anchorBoxes, ...
 anchorBoxMasks, penaltyThreshold);

 % Update the network state.
 prunableNet.State = state;

 % Apply L2 regularization.
 netGradients = dlupdate(@(g,w) g + l2Regularization*w, ...
 netGradients, prunableNet.Learnables);

 % Update the network parameters using the SGDM optimizer.
 [prunableNet, velocity] = sgdmupdate(prunableNet, ...
 netGradients, velocity, learnRate, momentum);

 % Compute first-order Taylor scores and accumulate the score across
 % previous mini-batches of data.
 prunableNet = updateScore(prunableNet, pruningActivations, pruningGradients);

 % Display the training progress.
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossFinetune, iteration, double(loss.totalLoss))
 title(tl,"Processing Pruning Iteration: " + pruningIteration + " of " + maxPruningIterations + ...
 ", Elapsed Time: " + string(D))
 % Synchronize the x-axis of the accuracy plot with the loss plot.
 xlim(accuracyAx,lossAx.XLim)
 xlim(numPrunablesAx,lossAx.XLim)
 drawnow

 % Stop the fine-tuning loop when numMinibatchUpdates is reached.
 if (fineTuningIteration > numMinibatchUpdates)
 break
 end

 end

 % Prune filters based on previously computed Taylor scores.
 prunableNet = updatePrunables(prunableNet, MaxToPrune = maxToPrune);

 % Show results on validation data set in a subset of pruning
 % iterations.
 isLastPruningIteration = pruningIteration == maxPruningIterations;
 if (mod(pruningIteration, validationFrequency) == 0 || isLastPruningIteration)
 [ap,~,~] = modelAccuracy(prunableNet, augimdsTest, anchorBoxes, anchorBoxMasks, classNames, 16);
 accuracy = mean(ap)*100;
 addpoints(lineAccuracyPruning, iteration, accuracy)
 addpoints(lineNumPrunables,iteration,double(prunableNet.NumPrunables))
 end

 % Set x-axis tick values at the end of each pruning iteration.
 xTickPos = [xTickPos, iteration]; %#ok<AGROW>
 xticks(lossAx,xTickPos)
 xticks(accuracyAx,[0,xTickPos])

 Prune Filters in a Detection Network Using Taylor Scores

39-167

 xticks(numPrunablesAx,[0,xTickPos])
 xticklabels(accuracyAx,["Unpruned",string(1:pruningIteration)])
 xticklabels(numPrunablesAx,["Unpruned",string(1:pruningIteration)])
 drawnow
end

During each pruning iteration, the validation accuracy may reduce because of changes in the network
structure when the convolutional filters are pruned. To minimize loss accuracy, it is recommended to
retrain the network after pruning.

39 Deep Learning with MATLAB Coder

39-168

Once pruning is complete, convert the deep.prune.TaylorPrunableNetwork object back to a
dlnetwork for retraining and further analysis.

prunedNet = dlnetwork(prunableNet);
save("prunedNet","prunedNet");

Retrain Pruned Network

The pruning process can cause the prediction accuracy to decrease. Try to improve the prediction
accuracy by retraining the network using a custom training loop.

Specify Training Options

Specify the options to use during retraining.

• Specify the options for SGDM optimization. Specify an initial learn rate of 0.00001 and momentum
of 0.9. Set the L2 regularization factor to 0.0005. Initialize the velocity of gradient as []. This is
used by SGDM to store the velocity of gradients.

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) which returns the batched images and bounding boxes combined with the
respective class IDs.

• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). Do not
add a format to the bounding boxes.

• Specify the data type of the bounding boxes.

velocity = [];
momentum = 0.9;
numEpochs = 10;
l2Regularization = 0.0005;
mbq = minibatchqueue(augimdsTrain, 2,...
 MiniBatchSize=miniBatchSize,...
 MiniBatchFcn=@(images, boxes, labels) preprocessMiniBatch(images, boxes, labels, classNames), ...
 MiniBatchFormat=["SSCB", ""],...
 OutputCast=["", "double"]);

Train Network Using Custom Training Loop

Initialize the training progress plot.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

For each epoch, loop over mini-batches while data is still available in the minibatchqueue. Update
the network parameters using the SGDM algorithm.

iteration = 0;
start = tic;
prunedDetectorNet = prunedNet;

for i = 1:numEpochs
 % Shuffle the data in the minibatch.
 shuffle(mbq);

 Prune Filters in a Detection Network Using Taylor Scores

39-169

 % Loop over mini-batches.
 while hasdata(mbq)
 iteration = iteration + 1;

 % Read mini-batch of data.
 [X, T] = next(mbq);

 % Evaluate the model gradients, state, and loss using dlfeval and the
 % modelGradients function and update the network state.
 [loss, gradients, state] = dlfeval(@modelLossTraining, prunedDetectorNet,...
 X, T, anchorBoxes, anchorBoxMasks, penaltyThreshold);

 % Update the network state.
 prunedDetectorNet.State = state;

 % Apply L2 regularization.
 gradients = dlupdate(@(g,w) g + l2Regularization*w, gradients, prunedNet.Learnables);

 % Update the network parameters using the SGDM optimizer.
 [prunedDetectorNet, velocity] = sgdmupdate(prunedDetectorNet, gradients, velocity, learnRate, momentum);

 % Display the training progress.
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(loss.totalLoss))
 title("Retraining After Pruning" + newline + "Epoch: " + numEpochs + ", Elapsed: " + string(D))
 drawnow
 end
end

39 Deep Learning with MATLAB Coder

39-170

prunedyolov3ObjectDetector = yolov3ObjectDetector(prunedDetectorNet,classNames,yolov3Detector.AnchorBoxes);
save("prunedyolov3","prunedyolov3ObjectDetector");

Compare Original Network and Pruned Network

Determine the impact of pruning on each layer.

originalNetFilters = numConvLayerFilters(net);
prunedNetFilters = numConvLayerFilters(prunedDetectorNet);
convFilters = join(originalNetFilters,prunedNetFilters,Keys="Row");

Visualize the number of filters in the original network and in the pruned network.

figure("Position",[10,10,900,900])
bar([convFilters.(1),convFilters.(2)])
xlabel("Layer")
ylabel("Number of Filters")
title("Number of Filters Per Layer")
xticks(1:(numel(convFilters.Row)))
xticklabels(convFilters.Row)
xtickangle(90)
ax = gca;
ax.TickLabelInterpreter = "none";
legend("Original Network Filters","Pruned Network Filters","Location","southoutside")

 Prune Filters in a Detection Network Using Taylor Scores

39-171

Next, compare the accuracy of the original network and the pruned network. The average precision
provides a single number that incorporates the ability of the detector to make correct classifications
(precision) and the ability of the detector to find all relevant objects (recall).

[apPrunedNet,recallPrunedNet,precisionPrunedNet] = modelAccuracy(prunedDetectorNet, augimdsTest, anchorBoxes, anchorBoxMasks, classNames, 16);
accuracyPrunedNet = mean(apPrunedNet)*100

accuracyPrunedNet = 73.2348

39 Deep Learning with MATLAB Coder

39-172

The precision-recall (PR) curve is a good way to evaluate the performance of the object detector.
Ideally the precision is 1 for all levels of recall. The pruned object detector has lost some precision
but can still be considered good as its precision stays high when the recall increases.

figure
plot(recallTrainedNet,precisionTrainedNet,recallPrunedNet,precisionPrunedNet)
xlabel("Recall")
ylabel("Precision")
grid on
title("Precision Comparison of Original and Pruned Network")
legend("Original Network","Pruned Network");

Next, estimate the model parameters for the original network and the pruned network to understand
the impact of pruning on the overall network learnables and size.

analyzeNetworkMetrics(net,prunedDetectorNet,accuracyTrainedNet,accuracyPrunedNet)

ans=3×3 table
 Network Learnables Approx. Network Memory (MB) Accuracy
 __________________ ___________________________ ________

 Original Network 6.4158e+06 24.475 88.897
 Pruned Network 1.8201e+06 6.943 73.235
 Percentage Change -71.632 -71.632 -17.618

 Prune Filters in a Detection Network Using Taylor Scores

39-173

Deploy Pruned YOLOv3 Network to Raspberry Pi

Optionally, you can use MATLAB Coder™ to generate C++ code for the pruned network taking
advantage of the ARM® Compute Library. The generated code can be integrated into your project as
source code, static or dynamic libraries, or an executable that you can deploy to a variety of ARM
CPU platforms such as Raspberry Pi. This example uses the PIL based workflow to generate a MEX
function, which in turn calls the executable generated on a Raspberry pi from MATLAB.

Third-Party Prerequisites

• Raspberry Pi hardware
• ARM Compute Library (on the target ARM hardware)
• Environment variables for the compilers and libraries. For information on the supported versions

of the compilers and libraries, see “Third-Party Hardware and Software” on page 39-2. For setting
up the environment variables, see “Environment Variables” on page 39-4.

PIL MEX Function

In this example, you generate code for the entry-point function yolov3Raspi. This function uses the
coder.loadDeepLearningNetwork function to load a deep learning model and to construct and set up a
CNN class. Then the entry-point function detects vehicles in the input and returns an output image
displaying the detections.

type yolov3Raspi.m

function outImg = yolov3Raspi(in,matFile)

% Copyright 2022 The MathWorks, Inc.

persistent yolov3Obj;

if isempty(yolov3Obj)
 yolov3Obj = coder.loadDeepLearningNetwork(matFile);
end

% Call to detect method.
[bboxes,~,labels] = detect(yolov3Obj,in,'Threshold',0.5);

% Convert categorical labels to cell array of charactor vectors.
labels = cellstr(labels);

% Annotate detections in the image.
outImg = insertObjectAnnotation(in,'rectangle',bboxes,labels);

To generate a PIL MEX function, create a code configuration object for a static library and set the
verification mode to 'PIL'. Set the target language to C++.

cfg = coder.config("lib",ecoder=true);
cfg.VerificationMode = "PIL";
cfg.TargetLang = "C++";

Create a deep learning configuration object for the ARM Compute library. Specify the library version
and arm architecture. For this example, suppose that the ARM Compute Library in the Raspberry Pi
hardware is version 20.02.1.

39 Deep Learning with MATLAB Coder

39-174

dlcfg = coder.DeepLearningConfig("arm-compute");
dlcfg.ArmComputeVersion = "20.02.1";
dlcfg.ArmArchitecture = "armv7";

Set the DeepLearningConfig property of cfg to dlcfg.

cfg.DeepLearningConfig = dlcfg;

Use the MATLAB Support Package for Raspberry Pi function, raspi, to create a connection to the
Raspberry Pi. In the following code, replace:

• raspiname with the name of your Raspberry Pi
• username with your user name
• password with your password

r = raspi("raspiname","username","password");

Then, create a coder.Hardware object for Raspberry Pi and attach it to the code generation
configuration object.

hw = coder.hardware("Raspberry Pi");
cfg.Hardware = hw;

Generate a PIL MEX function for the original network in
yolov3SqueezeNetVehicleExample_21aSPKG.mat by using the codegen command.

codegen -config cfg yolov3Raspi -args {ones(227,227,3,'single'),coder.Constant("yolov3SqueezeNetVehicleExample_21aSPKG.mat")}

Read a sample image and call the generated PIL MEX function yolov3Raspi_pil. The PIL MEX
function launches the yolov3Raspi.elf executable on the Raspberry Pi and returns the results of
the execution to MATLAB.

data = read(augimdsTest);
I = data{1};
tic;
detectedImage = yolov3Raspi_pil(I,"yolov3SqueezeNetVehicleExample_21aSPKG.mat");
execTimeOriginalNet = toc;
clear yolov3Raspi_pil;
imshow(detectedImage);
title("Execution Time of Original Network = "+execTimeOriginalNet+"s");
saveas(gcf,"DetectionResultsOriginalNet.png");
close(gcf);

imshow("DetectionResultsOriginalNet.png");

 Prune Filters in a Detection Network Using Taylor Scores

39-175

Then, generate a PIL MEX function for the pruned network in prunedyolov3.mat by using the
codegen command.

codegen -config cfg yolov3Raspi -args {ones(227,227,3,'single'),coder.Constant("prunedyolov3.mat")}

Run the generated PIL MEX.

tic;
detectedImage = yolov3Raspi_pil(I,"prunedyolov3.mat");
execTimeOriginalNet = toc;
clear yolov3Raspi_pil
imshow(detectedImage);
title("Execution Time of Pruned Network = "+execTimeOriginalNet+"s");
saveas(gcf,"DetectionResultsPrunedNet.png");
close(gcf);

imshow("DetectionResultsPrunedNet.png");

39 Deep Learning with MATLAB Coder

39-176

Helper Functions

Model Gradients Function for Fine-Tuning and Pruning

The function modelLossPruning takes as input a deep.prune.TaylorPrunableNetwork object
prunableNet, a mini-batch of input data X with corresponding ground truth boxes T, anchor boxes,
masks, penalty threshold and returns the loss, the gradients of the loss with respect to the pruning
activations, gradients of loss with respect to the learnable parameters in prunableNet, pruning
activations, and the network state.

function [loss, pruningGradients, netGradients, pruningActivations, state] = modelLossPruning(prunableNet, X, T, anchors, mask, penaltyThreshold)

inputImageSize = size(X,1:2);

% Gather the ground truths for post processing.
YTrain = gather(extractdata(T));

% Extract the predictions from the network.
[YPredCell, state, pruningActivations] = yolov3ForwardGate(prunableNet, X, mask);

% Gather the activations for post processing and extract dlarray data.
gatheredPredictions = cellfun(@ gather, YPredCell(:,1:6),'UniformOutput',false);
gatheredPredictions = cellfun(@ extractdata, gatheredPredictions, 'UniformOutput', false);

 Prune Filters in a Detection Network Using Taylor Scores

39-177

% Convert predictions from grid cell coordinates to box coordinates.
tiledAnchors = generateTiledAnchors(gatheredPredictions(:,2:5),anchors,mask);
gatheredPredictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, gatheredPredictions(:,2:5), inputImageSize);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions, YTrain, inputImageSize, anchors, mask, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

loss.boxLoss = boxLoss;
loss.objLoss = objLoss;
loss.clsLoss = clsLoss;
loss.totalLoss = totalLoss;

% Differentiate loss w.r.t learnables and activations
[netGradients, pruningGradients] = dlgradient(totalLoss, prunableNet.Learnables, pruningActivations);

end

Model Gradients Function for Retraining

The function modelLossTraining takes as input a dlNetwork object net, a mini-batch of input
data X with corresponding ground truth boxes T, anchor boxes, masks, penalty threshold and returns
the loss, gradients of loss with respect to the learnable parameters in net, and the network state.

function [loss, gradients, state] = modelLossTraining(net, X, T, anchors, mask, penaltyThreshold)

inputImageSize = size(X,1:2);

% Gather the ground truths for post processing.
YTrain = gather(extractdata(T));

% Extract the predictions from the network.
[YPredCell, state] = yolov3Forward(net,X,mask);

% Gather the activations for post processing and extract dlarray data.
gatheredPredictions = cellfun(@ gather, YPredCell(:,1:6),'UniformOutput',false);
gatheredPredictions = cellfun(@ extractdata, gatheredPredictions, 'UniformOutput', false);

% Convert predictions from grid cell coordinates to box coordinates.
tiledAnchors = generateTiledAnchors(gatheredPredictions(:,2:5),anchors,mask);
gatheredPredictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, gatheredPredictions(:,2:5), inputImageSize);

% Generate target for predictions from the ground truth data.
[boxTarget, objectnessTarget, classTarget, objectMaskTarget, boxErrorScale] = generateTargets(gatheredPredictions, YTrain, inputImageSize, anchors, mask, penaltyThreshold);

% Compute the loss.
boxLoss = bboxOffsetLoss(YPredCell(:,[2 3 7 8]),boxTarget,objectMaskTarget,boxErrorScale);
objLoss = objectnessLoss(YPredCell(:,1),objectnessTarget,objectMaskTarget);
clsLoss = classConfidenceLoss(YPredCell(:,6),classTarget,objectMaskTarget);
totalLoss = boxLoss + objLoss + clsLoss;

loss.boxLoss = boxLoss;

39 Deep Learning with MATLAB Coder

39-178

loss.objLoss = objLoss;
loss.clsLoss = clsLoss;
loss.totalLoss = totalLoss;

% Differentiate loss w.r.t learnables
gradients = dlgradient(totalLoss, net.Learnables);

end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses a mini-batch of data and returns the batched images
and bounding boxes combined with the respective class IDs.

function [X, T] = preprocessMiniBatch(data, groundTruthBoxes, groundTruthClasses, classNames)
% Returns images combined along the batch dimension in XTrain and
% normalized bounding boxes concatenated with classIDs in YTrain.

% Concatenate images along the batch dimension.
X = cat(4, data{:,1});

% Get class IDs from the class names.
classNames = repmat({categorical(classNames')}, size(groundTruthClasses));
[~, classIndices] = cellfun(@(a,b)ismember(a,b), groundTruthClasses, classNames, 'UniformOutput', false);

% Append the label indexes and training image size to scaled bounding boxes
% and create a single cell array of responses.
combinedResponses = cellfun(@(bbox, classid)[bbox, classid], groundTruthBoxes, classIndices, 'UniformOutput', false);
len = max(cellfun(@(x)size(x,1), combinedResponses));
paddedBBoxes = cellfun(@(v) padarray(v,[len-size(v,1),0],0,'post'), combinedResponses, 'UniformOutput',false);
T = cat(4, paddedBBoxes{:,1});
end

Evaluate Model Accuracy

The modelAccuracy computes the accuracy of the network on the data set.

function [ap, recall, precision] = modelAccuracy(net, augimds, anchorBoxes, anchorBoxMasks, classNames, miniBatchSize)
% EVALUATE computes model accuracy on the dataset 'augimds'.
% Create a table to hold the bounding boxes, scores, and labels returned by
% the detector.
results = table('Size', [0 3], ...
 'VariableTypes', {'cell','cell','cell'}, ...
 'VariableNames', {'Boxes','Scores','Labels'});
mbqTest = minibatchqueue(augimds, 1, ...
 "MiniBatchSize", miniBatchSize, ...
 "MiniBatchFormat", "SSCB");

% Run detector on images in the test set and collect results.
while hasdata(mbqTest)
 % Read the datastore and get the image.
 XTest = next(mbqTest);

 % Run the detector.
 [bboxes, scores, labels] = yolov3Detect(net, XTest, net.OutputNames', anchorBoxes, anchorBoxMasks, 0.5, 0.5, classNames);

 % Collect the results.
 tbl = table(bboxes, scores, labels, 'VariableNames', {'Boxes','Scores','Labels'});

 Prune Filters in a Detection Network Using Taylor Scores

39-179

 results = [results; tbl];%#ok<AGROW>
end

% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, augimds);
end

Evaluate Number of Filters in Convolution Layers

The numConvLayerFilters function returns the number of filters in each convolution layer.

function convFilters = numConvLayerFilters(net)
numLayers = numel(net.Layers);
convNames = [];
numFilters = [];
% Check for convolution layers and extract the number of filters.
for cnt = 1:numLayers
 if isa(net.Layers(cnt),"nnet.cnn.layer.Convolution2DLayer")
 sizeW = size(net.Layers(cnt).Weights);
 numFilters = [numFilters; sizeW(end)];%#ok<AGROW>
 convNames = [convNames; string(net.Layers(cnt).Name)];%#ok<AGROW>
 end
end
convFilters = table(numFilters,RowNames=convNames);
end

Evaluate the network statistics of original network and pruned network

The analyzeNetworkMetrics function takes input as the original network, pruned network, accuracy
of original network and the accuracy of the pruned network and returns the different statistics like
network learnables, network memory and the accuracy on the test data in form of a table.

function [statistics] = analyzeNetworkMetrics(originalNet,prunedNet,accuracyOriginal,accuracyPruned)

originalNetMetrics = estimateNetworkMetrics(originalNet);
prunedNetMetrics = estimateNetworkMetrics(prunedNet);

% Accuracy of original network and pruned network
perChangeAccu = 100*(accuracyPruned - accuracyOriginal)/accuracyOriginal;
AccuracyForNetworks = [accuracyOriginal;accuracyPruned;perChangeAccu];

% Total learnables in both networks
originalNetLearnables = sum(originalNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
prunedNetLearnables = sum(prunedNetMetrics(1:end,"NumberOfLearnables").NumberOfLearnables);
percentageChangeLearnables = 100*(prunedNetLearnables - originalNetLearnables)/originalNetLearnables;
LearnablesForNetwork = [originalNetLearnables;prunedNetLearnables;percentageChangeLearnables];

% Approximate parameter memory
approxOriginalMemory = sum(originalNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
approxPrunedMemory = sum(prunedNetMetrics(1:end,"ParameterMemory (MB)").("ParameterMemory (MB)"));
percentageChangeMemory = 100*(approxPrunedMemory - approxOriginalMemory)/approxOriginalMemory;
NetworkMemory = [approxOriginalMemory; approxPrunedMemory; percentageChangeMemory];

% Create the summary table
statistics = table(LearnablesForNetwork,NetworkMemory,AccuracyForNetworks, ...
 'VariableNames',["Network Learnables","Approx. Network Memory (MB)","Accuracy"], ...
 'RowNames',{'Original Network','Pruned Network','Percentage Change'});

end

39 Deep Learning with MATLAB Coder

39-180

Augmentation and Data Processing Functions

function data = augmentData(A)
% Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
% jitter image color.
data = cell(size(A));
for ii = 1:size(A,1)
 I = A{ii,1};
 bboxes = A{ii,2};
 labels = A{ii,3};
 sz = size(I);

 if numel(sz) == 3 && sz(3) == 3
 I = jitterColorHSV(I,...
 'Contrast',0.0,...
 'Hue',0.1,...
 'Saturation',0.2,...
 'Brightness',0.2);
 end

 % Randomly flip image.
 tform = randomAffine2d('XReflection',true,'Scale',[1 1.1]);
 rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput');
 I = imwarp(I,tform,'OutputView',rout);

 % Apply same transform to boxes.
 [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25);
 bboxes = round(bboxes);
 labels = labels(indices);

 % Return original data only when all boxes are removed by warping.
 if isempty(indices)
 data(ii,:) = A(ii,:);
 else
 data(ii,:) = {I, bboxes, labels};
 end
end
end

function data = preprocessData(data, targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.
for ii = 1:size(data,1)
 I = data{ii,1};
 imgSize = size(I);

 % Convert an input image with single channel to 3 channels.
 if numel(imgSize) < 3
 I = repmat(I,1,1,3);
 end
 bboxes = data{ii,2};

 I = im2single(imresize(I,targetSize(1:2)));
 scale = targetSize(1:2)./imgSize(1:2);
 bboxes = bboxresize(bboxes,scale);

 data(ii, 1:2) = {I, bboxes};

 Prune Filters in a Detection Network Using Taylor Scores

39-181

end
end

Utility Functions

function YPredCell = applyActivations(YPredCell)
% Apply activation functions on YOLOv3 outputs.
YPredCell(:,1:3) = cellfun(@ sigmoid, YPredCell(:,1:3), 'UniformOutput', false);
YPredCell(:,4:5) = cellfun(@ exp, YPredCell(:,4:5), 'UniformOutput', false);
YPredCell(:,6) = cellfun(@ sigmoid, YPredCell(:,6), 'UniformOutput', false);
end

function tiledAnchors = applyAnchorBoxOffsets(tiledAnchors,YPredCell,inputImageSize)
% Convert grid cell coordinates to box coordinates.
for i=1:size(YPredCell,1)
 [h,w,~,~] = size(YPredCell{i,1});
 tiledAnchors{i,1} = (tiledAnchors{i,1}+YPredCell{i,1})./w;
 tiledAnchors{i,2} = (tiledAnchors{i,2}+YPredCell{i,2})./h;
 tiledAnchors{i,3} = (tiledAnchors{i,3}.*YPredCell{i,3})./inputImageSize(2);
 tiledAnchors{i,4} = (tiledAnchors{i,4}.*YPredCell{i,4})./inputImageSize(1);
end
end

function boxLoss = bboxOffsetLoss(boxPredCell, boxDeltaTarget, boxMaskTarget, boxErrorScaleTarget)
% Mean squared error for bounding box position.
lossX = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,1),boxDeltaTarget(:,1),boxMaskTarget(:,1),boxErrorScaleTarget));
lossY = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,2),boxDeltaTarget(:,2),boxMaskTarget(:,1),boxErrorScaleTarget));
lossW = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,3),boxDeltaTarget(:,3),boxMaskTarget(:,1),boxErrorScaleTarget));
lossH = sum(cellfun(@(a,b,c,d) mse(a.*c.*d,b.*c.*d),boxPredCell(:,4),boxDeltaTarget(:,4),boxMaskTarget(:,1),boxErrorScaleTarget));
boxLoss = lossX+lossY+lossW+lossH;
end

function clsLoss = classConfidenceLoss(classPredCell, classTarget, boxMaskTarget)
% Binary cross-entropy loss for class confidence score.
clsLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),classPredCell,classTarget,boxMaskTarget(:,3)));
end

function predictions = extractPredictions(YPredictions, anchorBoxMask)
% Function extractPrediction extracts and rearranges the prediction outputs
% from YOLOv3 network.

predictions = cell(size(YPredictions, 1),6);
for ii = 1:size(YPredictions, 1)
 % Get the required info on feature size.
 numChannelsPred = size(YPredictions{ii},3);
 numAnchors = size(anchorBoxMask{ii},2);
 numPredElemsPerAnchors = numChannelsPred/numAnchors;
 allIds = (1:numChannelsPred);

 stride = numPredElemsPerAnchors;
 endIdx = numChannelsPred;

 % X positions.
 startIdx = 1;
 predictions{ii,2} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
 xIds = startIdx:stride:endIdx;

 % Y positions.

39 Deep Learning with MATLAB Coder

39-182

 startIdx = 2;
 predictions{ii,3} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
 yIds = startIdx:stride:endIdx;

 % Width.
 startIdx = 3;
 predictions{ii,4} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
 wIds = startIdx:stride:endIdx;

 % Height.
 startIdx = 4;
 predictions{ii,5} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
 hIds = startIdx:stride:endIdx;

 % Confidence scores.
 startIdx = 5;
 predictions{ii,1} = YPredictions{ii}(:,:,startIdx:stride:endIdx,:);
 confIds = startIdx:stride:endIdx;

 % Accummulate all the non-class indexes
 nonClassIds = [xIds yIds wIds hIds confIds];

 % Class probabilities. Get the indexes which do not belong to the
 % nonClassIds
 classIdx = setdiff(allIds,nonClassIds);
 predictions{ii,6} = YPredictions{ii}(:,:,classIdx,:);
end
end

function [boxDeltaTarget, objectnessTarget, classTarget, maskTarget, boxErrorScaleTarget] = generateTargets(YPredCellGathered, groundTruth, inputImageSize, anchorBoxes, anchorBoxMask, penaltyThreshold)
% generateTargets creates target array for every prediction element
% x, y, width, height, confidence scores and class probabilities.
boxDeltaTarget = cell(size(YPredCellGathered,1),4);
objectnessTarget = cell(size(YPredCellGathered,1),1);
classTarget = cell(size(YPredCellGathered,1),1);
maskTarget = cell(size(YPredCellGathered,1),3);
boxErrorScaleTarget = cell(size(YPredCellGathered,1),1);

% Normalize the ground truth boxes w.r.t image input size.
gtScale = [inputImageSize(2) inputImageSize(1) inputImageSize(2) inputImageSize(1)];
groundTruth(:,1:4,:,:) = groundTruth(:,1:4,:,:)./gtScale;

for numPred = 1:size(YPredCellGathered,1)

 % Select anchor boxes based on anchor box mask indices.
 anchors = anchorBoxes(anchorBoxMask{numPred},:);

 bx = YPredCellGathered{numPred,2};
 by = YPredCellGathered{numPred,3};
 bw = YPredCellGathered{numPred,4};
 bh = YPredCellGathered{numPred,5};
 predClasses = YPredCellGathered{numPred,6};

 gridSize = size(bx);
 if numel(gridSize)== 3
 gridSize(4) = 1;
 end
 numClasses = size(predClasses,3)/size(anchors,1);

 Prune Filters in a Detection Network Using Taylor Scores

39-183

 % Initialize the required variables.
 mask = single(zeros(size(bx)));
 confMask = single(ones(size(bx)));
 classMask = single(zeros(size(predClasses)));
 tx = single(zeros(size(bx)));
 ty = single(zeros(size(by)));
 tw = single(zeros(size(bw)));
 th = single(zeros(size(bh)));
 tconf = single(zeros(size(bx)));
 tclass = single(zeros(size(predClasses)));
 boxErrorScale = single(ones(size(bx)));

 % Get the IOU of predictions with groundtruth.
 iou = getMaxIOUPredictedWithGroundTruth(bx,by,bw,bh,groundTruth);

 % Donot penalize the predictions which has iou greater than penalty
 % threshold.
 confMask(iou > penaltyThreshold) = 0;

 for batch = 1:gridSize(4)
 truthBatch = groundTruth(:,1:5,:,batch);
 truthBatch = truthBatch(all(truthBatch,2),:);

 % Get boxes with center as 0.
 gtPred = [0-truthBatch(:,3)/2,0-truthBatch(:,4)/2,truthBatch(:,3),truthBatch(:,4)];
 anchorPrior = [0-anchorBoxes(:,2)/(2*inputImageSize(2)),0-anchorBoxes(:,1)/(2*inputImageSize(1)),anchorBoxes(:,2)/inputImageSize(2),anchorBoxes(:,1)/inputImageSize(1)];

 % Get the iou of best matching anchor box.
 overLap = bboxOverlapRatio(gtPred,anchorPrior);
 [~,bestAnchorIdx] = max(overLap,[],2);

 % Select gt that are within the mask.
 index = ismember(bestAnchorIdx,anchorBoxMask{numPred});
 truthBatch = truthBatch(index,:);
 bestAnchorIdx = bestAnchorIdx(index,:);
 bestAnchorIdx = bestAnchorIdx - anchorBoxMask{numPred}(1,1) + 1;

 if ~isempty(truthBatch)
 % Convert top left position of ground-truth to centre coordinates.
 truthBatch = [truthBatch(:,1)+truthBatch(:,3)./2,truthBatch(:,2)+truthBatch(:,4)./2,truthBatch(:,3),truthBatch(:,4),truthBatch(:,5)];

 errorScale = 2 - truthBatch(:,3).*truthBatch(:,4);
 truthBatch = [truthBatch(:,1)*gridSize(2),truthBatch(:,2)*gridSize(1),truthBatch(:,3)*inputImageSize(2),truthBatch(:,4)*inputImageSize(1),truthBatch(:,5)];
 for t = 1:size(truthBatch,1)

 % Get the position of ground-truth box in the grid.
 colIdx = ceil(truthBatch(t,1));
 colIdx(colIdx<1) = 1;
 colIdx(colIdx>gridSize(2)) = gridSize(2);
 rowIdx = ceil(truthBatch(t,2));
 rowIdx(rowIdx<1) = 1;
 rowIdx(rowIdx>gridSize(1)) = gridSize(1);
 pos = [rowIdx,colIdx];
 anchorIdx = bestAnchorIdx(t,1);

 mask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;
 confMask(pos(1,1),pos(1,2),anchorIdx,batch) = 1;

39 Deep Learning with MATLAB Coder

39-184

 % Calculate the shift in ground-truth boxes.
 tShiftX = truthBatch(t,1)-pos(1,2)+1;
 tShiftY = truthBatch(t,2)-pos(1,1)+1;
 tShiftW = log(truthBatch(t,3)/anchors(anchorIdx,2));
 tShiftH = log(truthBatch(t,4)/anchors(anchorIdx,1));

 % Update the target box.
 tx(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftX;
 ty(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftY;
 tw(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftW;
 th(pos(1,1),pos(1,2),anchorIdx,batch) = tShiftH;
 boxErrorScale(pos(1,1),pos(1,2),anchorIdx,batch) = errorScale(t);
 tconf(rowIdx,colIdx,anchorIdx,batch) = 1;
 classIdx = (numClasses*(anchorIdx-1))+truthBatch(t,5);
 tclass(rowIdx,colIdx,classIdx,batch) = 1;
 classMask(rowIdx,colIdx,(numClasses*(anchorIdx-1))+(1:numClasses),batch) = 1;
 end
 end
 end
 boxDeltaTarget(numPred,:) = [{tx} {ty} {tw} {th}];
 objectnessTarget{numPred,1} = tconf;
 classTarget{numPred,1} = tclass;
 maskTarget(numPred,:) = [{mask} {confMask} {classMask}];
 boxErrorScaleTarget{numPred,:} = boxErrorScale;
end
end

function iou = getMaxIOUPredictedWithGroundTruth(predx,predy,predw,predh,truth)
% getMaxIOUPredictedWithGroundTruth computes the maximum intersection over
% union scores for every pair of predictions and ground-truth boxes.

[h,w,c,n] = size(predx);
iou = zeros([h w c n],'like',predx);

% For each batch prepare the predictions and ground-truth.
for batchSize = 1:n
 truthBatch = truth(:,1:4,1,batchSize);
 truthBatch = truthBatch(all(truthBatch,2),:);
 predxb = predx(:,:,:,batchSize);
 predyb = predy(:,:,:,batchSize);
 predwb = predw(:,:,:,batchSize);
 predhb = predh(:,:,:,batchSize);
 predb = [predxb(:),predyb(:),predwb(:),predhb(:)];

 % Convert from center xy coordinate to topleft xy coordinate.
 predb = [predb(:,1)-predb(:,3)./2, predb(:,2)-predb(:,4)./2, predb(:,3), predb(:,4)];

 % Compute and extract the maximum IOU of predictions with ground-truth.
 try
 overlap = bboxOverlapRatio(predb, truthBatch);
 catch me
 if(any(isnan(predb(:))|isinf(predb(:))))
 error(me.message + " NaN/Inf has been detected during training. Try reducing the learning rate.");
 elseif(any(predb(:,3)<=0 | predb(:,4)<=0))
 error(me.message + " Invalid predictions during training. Try reducing the learning rate.");
 else
 error(me.message + " Invalid groundtruth. Check that your ground truth boxes are not empty and finite, are fully contained within the image boundary, and have positive width and height.");

 Prune Filters in a Detection Network Using Taylor Scores

39-185

 end
 end

 maxOverlap = max(overlap,[],2);
 iou(:,:,:,batchSize) = reshape(maxOverlap,h,w,c);
end
end

function tiledAnchors = generateTiledAnchors(YPredCell,anchorBoxes,anchorBoxMask)
% Generate tiled anchor offset.
tiledAnchors = cell(size(YPredCell));
for i=1:size(YPredCell,1)
 anchors = anchorBoxes(anchorBoxMask{i}, :);
 [h,w,~,n] = size(YPredCell{i,1});
 [tiledAnchors{i,2}, tiledAnchors{i,1}] = ndgrid(0:h-1,0:w-1,1:size(anchors,1),1:n);
 [~,~,tiledAnchors{i,3}] = ndgrid(0:h-1,0:w-1,anchors(:,2),1:n);
 [~,~,tiledAnchors{i,4}] = ndgrid(0:h-1,0:w-1,anchors(:,1),1:n);
end
end

function objLoss = objectnessLoss(objectnessPredCell, objectnessDeltaTarget, boxMaskTarget)
% Binary cross-entropy loss for objectness score.
objLoss = sum(cellfun(@(a,b,c) crossentropy(a.*c,b.*c,'TargetCategories','independent'),objectnessPredCell,objectnessDeltaTarget,boxMaskTarget(:,2)));
end

function [bboxes,scores,labels] = yolov3Detect(net, XTest, networkOutputs, anchors, anchorBoxMask, confidenceThreshold, overlapThreshold, classes)
% The yolov3Detect function detects the bounding boxes, scores, and labels
% in an image.
imageSize = size(XTest, [1,2]);

% To retain 'networkInputSize' in memory and avoid recalculating it,
% declare it as persistent.
persistent networkInputSize

if isempty(networkInputSize)
 networkInputSize = [227 227 3];
end

% Predict and filter the detections based on confidence threshold.
predictions = yolov3Predict(net,XTest,networkOutputs,anchorBoxMask);
predictions = cellfun(@ gather, predictions,'UniformOutput',false);
predictions = cellfun(@ extractdata, predictions, 'UniformOutput', false);
tiledAnchors = generateTiledAnchors(predictions(:,2:5),anchors,anchorBoxMask);
predictions(:,2:5) = applyAnchorBoxOffsets(tiledAnchors, predictions(:,2:5), networkInputSize);

numMiniBatch = size(XTest, 4);

bboxes = cell(numMiniBatch, 1);
scores = cell(numMiniBatch, 1);
labels = cell(numMiniBatch, 1);

for ii = 1:numMiniBatch
 fmap = cellfun(@(x) x(:,:,:,ii), predictions, 'UniformOutput', false);
 [bboxes{ii}, scores{ii}, labels{ii}] = ...
 generateYOLOv3Detections(fmap, confidenceThreshold, overlapThreshold, imageSize, classes);
end

39 Deep Learning with MATLAB Coder

39-186

end

function YPredCell = yolov3Predict(net,XTrain,networkOutputs,anchorBoxMask)
% Predict the output of network and extract the confidence, x, y, width,
% height, and class.
YPredictions = cell(size(networkOutputs));
[YPredictions{:}] = predict(net, XTrain);
YPredCell = extractPredictions(YPredictions, anchorBoxMask);

% Apply activation to the predicted cell array.
YPredCell = applyActivations(YPredCell);
end

function [YPredCell, state] = yolov3Forward(net, X, anchorBoxMask)
% Predict the output of network.
numNetOutputs = numel(net.OutputNames);
networkOuts = cell(numNetOutputs, 1);

% retrieve pruning activations and network outputs
[networkOuts{:}, state] = forward(net, X);

YPredCell = extractPredictions(networkOuts, anchorBoxMask);

% Append predicted width and height to the end as they are required for
% computing the loss.
YPredCell(:,7:8) = YPredCell(:,4:5);

% Apply sigmoid and exponential activation.
YPredCell(:,1:6) = applyActivations(YPredCell(:,1:6));
end

function [YPredCell, state, activations] = yolov3ForwardGate(prunableNet, X, anchorBoxMask)
% Predict the output of network.
numNetOutputs = numel(prunableNet.OutputNames);
networkOuts = cell(numNetOutputs, 1);

% retrieve outputs of activations and network outputs
[networkOuts{:}, state, activations] = forward(prunableNet, X);

YPredCell = extractPredictions(networkOuts, anchorBoxMask);

% Append predicted width and height to the end as they are required for
% computing the loss.
YPredCell(:,7:8) = YPredCell(:,4:5);

% Apply sigmoid and exponential activation.
YPredCell(:,1:6) = applyActivations(YPredCell(:,1:6));
end

References

[1] Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. "Pruning Convolutional
Neural Networks for Resource Efficient Inference." Preprint, submitted June 8, 2017. https://
arxiv.org/abs/1611.06440.

[2] Molchanov, Pavlo, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. "Importance Estimation
for Neural Network Pruning." In 2019 IEEE/CVF Conference on Computer Vision and Pattern

 Prune Filters in a Detection Network Using Taylor Scores

39-187

Recognition (CVPR), 11256??64. Long Beach, CA, USA: IEEE, 2019. https://doi.org/10.1109/
CVPR.2019.01152.

[3] Redmon, Joseph, and Ali Farhadi. "YOLOv3: An Incremental Improvement." Preprint, submitted
April 8, 2018. https://arxiv.org/abs/1804.02767.

[4] Caltech Computational Vision: Data Sets. http://www.vision.caltech.edu/archive.html.

See Also
Functions
forward | predict | updatePrunables | updateScore | TaylorPrunableNetwork | dlnetwork

39 Deep Learning with MATLAB Coder

39-188

https://arxiv.org/abs/1804.02767
http://www.vision.caltech.edu/archive.html

Generating Code for C++

• “C++ Code Generation” on page 40-2
• “Generate C++ Code with Class Interface” on page 40-4
• “Organize Generated C++ Code into Namespaces” on page 40-9
• “Integrate Multiple Generated C++ Code Projects” on page 40-14
• “Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators”

on page 40-18

40

C++ Code Generation
MATLAB Coder enables you to either generate C or C++ code. The code generator produces C code
by default. Generated C++ code can use functionality not available in the C language that can make
the C++ code more readable and easier to use.

Generate C++ Code
To generate C++ code, follow the same overall workflow steps that you use to generate C code. For
example, see “Generate C Code at the Command Line”. Select the C++ language option from the
command line, or with a code generation configuration setting, or from the MATLAB Coder app.

Suppose that you want to generate C++ code for a function foo that accepts zero inputs:

• From the command line, use the -lang:c++ specifier. This specifier provides a quick and easy
way to generate C++ code. For example, to generate a C++ static library and C++ source code
for foo, enter:

codegen -config:lib -lang:c++ foo

• In the configuration object, set the TargetLang parameter to C++. For example, to generate a C
++ dynamic library, enter:

cfg = coder.config('dll');
cfg.TargetLang = 'C++';
codegen -config cfg foo

• From the app, at the Generate Code step, select the C++ language button.

C++ Language Features Supported in Generated Code
To learn about code generation that utilizes key C++ language features, refer to these help topics:

Goal More Information
Generate C++ classes for classes in your
MATLAB code.

“Generate C++ Classes for MATLAB Classes” on
page 16-2

Generate entry-point functions as methods in a C
++ class.

“Generate C++ Code with a Class Interface” on
page 40-4

Generate C++ namespaces for MATLAB
packages. Place all generated code in a
namespace that you specify. Place all code
generated for MathWorks code in a namespace
that you specify.

“Organize Generated C++ Code into
Namespaces” on page 40-9

Pass dynamically allocated arrays between your
custom C++ code and the generated code. The
generated C++ code implements such arrays by
using the coder::array class template. The
generated code provides a simple API that you
can use to interact with this template.

“Use Dynamically Allocated C++ Arrays in
Generated Function Interfaces” on page 32-15

These examples illustrate the use of these functionalities:

40 Generating Code for C++

40-2

• “Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators” on page
40-18

• “Integrate Multiple Generated C++ Code Projects” on page 40-14

Additional Differences Between Generated C Code and C++ Code
If you separately generate C and C++ code for the same MATLAB function, and inspect the
generated source code, then there are implementation differences. These are some notable
differences:

• The generated C++ code contains overloaded functions or methods that have the same name but
support multiple signatures. The C language does not support overloading of functions.

• The generated C++ code reuses the same identifier name across different namespace hierarchies.
For example, the same type name myType can appear in two different namespaces hierarchies
with top-level namespaces myNamespace_1 and myNamespace_2. The C language does not
support namespaces and such reuse of identifier names.

• In generated C code, the function headers contain #ifdef __cplusplus include guards that
specify the extern "C" identifier for the generated C functions. The compiler and linker use
these identifiers in building C code as part of a C++ project.

• Generated C++ code uses .cpp file extensions for the C++ files and .h extensions for the header
files. Generated C code uses .c and .h extensions.

• The generated C++ code uses some C++ casts, like static_cast, which are more explicit than
the casting syntax in C.

• The generated code defines values for Inf and NaN based on different mechanisms for C++ and
C.

• Generated C++ code uses the custom data types as described in “Mapping MATLAB Types to
Types in Generated Code” on page 34-15.

• Generated C++ code uses different libraries than generated C code. For example, the default
language standard for C++ and C is described in “Change the Language Standard” on page 27-
29.

See Also
codegen

More About
• “Configure Build Settings” on page 27-13

 C++ Code Generation

40-3

Generate C++ Code with Class Interface
When you generate C code, the software analyzes your MATLAB code and generates entry-point C
functions corresponding to your entry-point MATLAB functions. When you generate C++ code, you
can choose to generate entry-point functions as methods in a C++ class. Using this option:

• You obtain more object-oriented code.
• The code generator produces a class constructor and destructor that automatically perform

memory initialization and termination.
• You allocate memory for each class instance separately. The methods for each class instance are

thread-safe and reentrant.
• Multiple entry-point functions become methods in a single C++ class.

You can generate code with a class interface from the command line or from the MATLAB Coder app.
From the command line, use the CppInterfaceStyle and CppInterfaceClassName configuration
parameters. From the app, on the Generate Code step, select Language as C++, select Interface
style as Methods, and then specify the C++ interface class name.

These examples show the command-line workflow.

Generate C++ Code with a Class Interface
This example shows how the generated C++ code differs when it uses a class interface.

MATLAB Algorithm

Consider a simple MATLAB function that performs operations on a matrix and outputs the result.

function out = foog %#codegen
I = eye(447);
out = ones(447)*I + 7;

Generate C++ Code With and Without Class Interface

To generate C++ code with a class interface, use the CppInterfaceStyle and
CppInterfaceClassName parameters. Store the output in the withClass folder.

cfg = coder.config('lib');
cfg.GenCodeOnly = true;
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = 'myClass';
codegen foog -config cfg -report -d withClass

Code generation successful: To view the report, open('withClass\html\report.mldatx')

Next, create a new configuration object and generate C++ code that does not use a class interface.

cfg = coder.config('lib');
cfg.GenCodeOnly = true;
cfg.TargetLang = "C++";
codegen foog -config cfg -report -d withoutClass

40 Generating Code for C++

40-4

Code generation successful: To view the report, open('withoutClass\html\report.mldatx')

Inspect the generated example main function. Compare the versions with and without the class
interface. With the class interface, the main function calls the entry-point function as a class method.

type withClass/examples/main.cpp

Class Definition and Implementation in the Generated Code

When the code generator produces code for the C++ interface class, it ensures that the function
methods are reentrant. If the function methods use variables that can exceed the local stack memory
limit, set by the configuration parameter StackUsageMax, then the code generator produces private
data structures for the variables (identifiable by the suffix StackData), rather than declaring the
variables as static. Static variables persist between function calls and are not reentrant. For
information on generating reentrant C code, see “Generating and Calling Reentrant Code”.

To explore the generated class implementations, modify the function foog such that it contains a
variable that exceeds the maximum stack usage specified by the configuration parameter
StackUsageMax.

function out = foogBig %#codegen
I = eye(448);
out = ones(448)*I + 7;

The default value for StackUsageMax in bytes is:

cfg.StackUsageMax

ans =

 int32

 200000

Because fooBig uses a variable of 448^2 (200704) elements, and the code generator produces an 8-
bit integer array to represent the variable, the default stack usage limit is exceeded by 704 bytes.
Generate code for foogBig.

cfg = coder.config('lib','ecoder',false);
cfg.GenCodeOnly = true;
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = 'myBigClass';
codegen foogBig -config cfg -report -d withBigClass

Code generation successful: To view the report, open('withBigClass\html\report.mldatx')

Inspect the Generated Interface Class Definitions

Inspect the class definitions for the foogBig project and for foog. The foogBig class stores
variables that can exceed the maximum stack usage in a private class property, whereas the foog
class only creates local variables on the stack.

 Generate C++ Code with Class Interface

40-5

When you work with a class definition that contains a StackData structure, indicating that the class
requires data that exceeds the local stack usage limit, then allocate heap memory for the class
instance by using new. See the generated example main file for your generated code for an example.

Globals and Persistents in a Generated C++ Class
When you generate C++ code with a class interface, then you access globals and persistents as
members of the class. This example shows how to interact with globals and persistents in the class.

MATLAB Algorithm

Consider a MATLAB function that keeps count of the number of times you call it with a global and
persistent variable.

function [po,go] = countCalls %#codegen
% increment persistent & global variable
persistent p
global g
if isempty(p)
 p = 0;
end
p = p+1;
g = g+1;
% set output variables
po = double(p);
go = double(g);

Generate C++ Code with a Class Interface

For code generation, initialize the global variable in the workspace.

global g;
g = 0;

Generate code in the class called countClass.

cfg = coder.config('lib');
cfg.GenCodeOnly = true;
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = "countClass";
codegen countCalls -config cfg -report

Code generation successful: To view the report, open('codegen\lib\countCalls\html\report.mldatx')

Inspect the Class Definition

In the generated C++ code, an initialization function sets the global variable to the value that you
specify in the workspace. You can also specify the initial global value with the codegen -globals
syntax.

Inspect the code for the class definition in the header file countClass.h.

type codegen/lib/countCalls/countClass.h

40 Generating Code for C++

40-6

The global variable is a public member of the class. Access this variable from your main function as
needed. The persistent variable is stored in a private class data structure.

Put Multiple Entry-Point Functions in the Same Class
When you generate C++ code for multiple entry-point functions and use the class interface setting,
then each function becomes a public method of the same class. You can use this technique to create a
simpler interface to your multiple entry-point function project.

MATLAB Entry-Point Functions

Break the function countCalls in the previous example into two, so that one function counts the
calls with a persistent variable and the other counts the calls with a global variable. Inspect the two
functions.

function po = countPersistent %#codegen
% increment persistent variable
persistent p
if isempty(p)
 p = 0;
end
p = p+1;
% set output variable
po = double(p);

function go = countGlobal %#codegen
% increment global variable
global g
g = g+1;
% set output variable
go = double(g);

Generate C++ Code

Use the codegen command and specify the initial global variable value as an input.

cfg = coder.config('lib');
cfg.GenCodeOnly = true;
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = 'countClassMulti';
codegen countGlobal countPersistent -config cfg -report -globals {'g',0}

Code generation successful: To view the report, open('codegen\lib\countGlobal\html\report.mldatx')

Inspect the Generated Code

To see the generated class definition, open countClassMulti.h. Each entry-point function is a
public method of the class.

 Generate C++ Code with Class Interface

40-7

type codegen/lib/countGlobal/countClassMulti.h

See Also
codegen

More About
• “Generate Code for Multiple Entry-Point Functions” on page 27-78
• “Generating and Calling Reentrant Code”
• “Generate Code for Global Data” on page 27-88

40 Generating Code for C++

40-8

Organize Generated C++ Code into Namespaces
Namespaces help organize your code into logical parts, prevent name collisions, and enable you to
more easily integrate your generated C++ code into a larger C++ project. Namespaces also increase
compliance with the MISRA C++ standards for safety-critical code. This topic explains how to use the
code generation settings to customize the organization of your generated C++ code into namespaces.

Settings That Control Namespace Structure
These are the code generation settings that enable you to control the creation of namespaces in the
generated code:

Code Configuration
Parameter

Description How to specify

In a code configuration object:
CppNamespace

In the MATLAB Coder app: On
the Code Appearance tab, C+
+ Namespace

Namespace that contains the
generated C++ code.

If this parameter is empty, the
code generator does not create
such a namespace.

In a code configuration object:
'' (default)| character vector

In the MATLAB Coder app:
specify in a text field

In a code configuration object:
CppNamespaceForMathworks
Code

In the MATLAB Coder app: On
the Code Appearance tab,
Namespace for MathWorks
functions

Namespace that contains code
generated for all MathWorks
code (for example, code for the
sparse data type).

If this parameter is empty, the
code generator does not create
such a namespace.

In a code configuration object:
'coder' (default)| character
vector

In the MATLAB Coder app:
specify in a text field

In a code configuration object:
CppPackagesToNamespaces

In the MATLAB Coder app: On
the Code Appearance tab,
MATLAB package to C++
namespace

Whether to generate C++
namespaces for the packages in
the MATLAB code.

In a code configuration object:
true (default)| false

In the MATLAB Coder app: On
the Code Appearance tab,
select or clear the MATLAB
package to C++ namespace
check box

Additional notes about namespace generation:

• When you specify the CppNamespace property (or the corresponding setting in the app), the code
generator packages all the generated functions and type definitions into the namespace, except
for the generic type definitions contained in tmwtypes.h and the hardware-specific definitions in
rtwtypes.h. The example main file and function are not packaged into the namespace.

• If your MATLAB code has nested packages (for example, pkg1 inside pkg2), the generated
namespaces have the same nesting.

• When creating packages for your MATLAB code that is intended for code generation, follow these
guidelines:

• Do not create a package that has the name 'coder'.
• If you set the CppNamespaceForMathworksCode property (or the equivalent parameter in

the app) to a nondefault name, do not create a package that has that name.

 Organize Generated C++ Code into Namespaces

40-9

Example: Generate C++ Code with Namespaces
This example shows how to use these code generation settings to create namespaces.

Define MATLAB® Functions

Define two MATLAB functions foo and bar in two separate files foo.m and bar.m. Place the file
bar.m in a package myPackage. The function foo accepts a string input and then calls the function
bar.

type foo.m

function out = foo(str)
temp = strlength(str);
out = mypackage.bar(temp);
end

type +mypackage/bar.m

function out = bar(in)
coder.inline('never');
out = in + 1;
end

Define Code Configuration Object

Create a code configuration object for a static library. Set the target language to C++. Specify the
namespace that contains all generated code to be named allcode. Specify the namespace that
contains MathWorks® code to be named notmycode.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.CppNamespace = 'allcode';
cfg.CppNamespaceForMathworksCode = 'notmycode';

Generate Code

Generate a static C++ library and a code generation report. Specify the input type to be string scalar
that can have any length.

s = "mystring";
t = coder.typeof(s);
t.Properties.Value = coder.typeof('a',[1 inf]);

codegen -config cfg foo -args {t} -report

Code generation successful: To view the report, open('codegen\lib\foo\html\report.mldatx')

Inspect Generated Code

Open the code generation report and inspect the generated code.

The file foo.h contains the declaration of the generated function foo. Because the MATLAB function
foo that you created is not inside a package, the generated function is declared only inside the
namespace allcode that contains all generated code.

type codegen/lib/foo/foo.h

40 Generating Code for C++

40-10

//
// File: foo.h
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 13:05:05
//

#ifndef FOO_H
#define FOO_H

// Include Files
#include "rtwtypes.h"
#include "string1.h"
#include <cstddef>
#include <cstdlib>

// Function Declarations
namespace allcode {
extern double foo(const notmycode::rtString *str);

}

#endif
//
// File trailer for foo.h
//
// [EOF]
//

The file bar.h contains the declaration of the generated function bar. Because you created the
MATLAB function bar inside the package mypackage, the generated function is declared inside the
namespace hierarchy allcode::myPackage.

type codegen/lib/foo/bar.h

//
// File: bar.h
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 13:05:05
//

#ifndef BAR_H
#define BAR_H

// Include Files
#include "rtwtypes.h"
#include <cstddef>
#include <cstdlib>

// Function Declarations
namespace allcode {
namespace mypackage {
double bar(double in);

}
} // namespace allcode

 Organize Generated C++ Code into Namespaces

40-11

#endif
//
// File trailer for bar.h
//
// [EOF]
//

The file string1.h contains the declaration of the generated class rtString that implements the
MATLAB string data type. Because you instructed the code generator to place all code produced for
MathWorks code inside the namespace notmycode, the generated class rtString is declared inside
the namespace hierarchy allcode::notmycode.

type codegen/lib/foo/string1.h

//
// File: string1.h
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 13:05:05
//

#ifndef STRING1_H
#define STRING1_H

// Include Files
#include "rtwtypes.h"
#include "coder_array.h"
#include <cstddef>
#include <cstdlib>

// Type Definitions
namespace allcode {
namespace notmycode {
class rtString {
public:
 void init(const ::coder::array<char, 2U> &b_Value);
 rtString();
 ~rtString();
 ::coder::array<char, 2U> Value;
};

} // namespace notmycode
} // namespace allcode

#endif
//
// File trailer for string1.h
//
// [EOF]
//

See Also
coder.CodeConfig | coder.EmbeddedCodeConfig | coder.MexCodeConfig

40 Generating Code for C++

40-12

More About
• “C++ Code Generation” on page 40-2
• “Integrate Multiple Generated C++ Code Projects” on page 40-14
• “Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators” on

page 40-18

 Organize Generated C++ Code into Namespaces

40-13

Integrate Multiple Generated C++ Code Projects
This example shows how to integrate two different generated C++ code projects into a single, larger
project.

Your generated code projects might have similar function names, but have different settings,
parameters, or functionality. Generate code with namespaces to aid in integrating different projects
that share the same names. Namespaces can also improve code readability.

Generate C++ Code for a MATLAB® Algorithm

Consider a simple MATLAB function that returns a gravitational constant. The value of the
gravitational constant is derived from a global variable.

type getGravityConst.m

function c = getGravityConst %#codegen
global g
c = g;

Suppose that you want to generate code for getGravityConst that models scenarios for the Moon
and for the Earth. Generate two separate code projects with the same entry-point function. Specify a
different global value, and hence, gravitational constant, for each project.

Create a code generation configuration object. Specify:

• DLL build type.
• C++ target language.
• The name of the orbital body as the namespace.
• #pragma once style #include guards.
• Packaging of the generated code files into a .zip file by calling the packNGo function.

cfg = coder.config('dll');
cfg.TargetLang = "C++";
cfg.CppNamespace = 'moon';
cfg.HeaderGuardStyle = "UsePragmaOnce";
cfg.PostCodeGenCommand = 'packNGo(buildInfo)';

Generate code for getGravityConst to model the Moon:

• By using the previously defined configuration object.
• With a code generation report.
• Such that the code returns the Moon's value of the gravitational constant in units of m/s^2.
• In an output folder called projectMoon.
• With output binaries called getGravityConstMoon.

codegen getGravityConst -config cfg -report -globals {'g', -1.62} ...
 -d projectMoon -o getGravityConstMoon

Code generation successful: To view the report, open('projectMoon\html\report.mldatx')

To generate code for getGravityConst that models the earth, first modify the:

40 Generating Code for C++

40-14

• Namespace name
• Gravitational constant
• Output file name
• Output folder name

cfg = coder.config('dll');
cfg.TargetLang = "C++";
cfg.CppNamespace = 'earth';
cfg.HeaderGuardStyle = "UsePragmaOnce";
cfg.PostCodeGenCommand = 'packNGo(buildInfo)';

codegen getGravityConst -config cfg -report -globals {'g', -9.81} ...
 -d projectEarth -o getGravityConstEarth

Code generation successful: To view the report, open('projectEarth\html\report.mldatx')

Project Integration Scenario: Planetary Modeling

Suppose that you want to design a larger project that performs planetary modeling and computes
quantities such as the flight times of falling objects. The flight time depends on the gravitational
constant for each planet and the initial height of the object. You want to use the generated code
functions for getGravityConst in this larger project.

Determine the Platform-Dependent File Extensions

The generated dynamic libraries have different extensions on different platforms. This code
determines the correct extensions for your platform.

dllext = '';
libext = '';
if ismac
 dllext = '.dylib';
 libext = dllext;
elseif isunix
 dllext = '.so';
 libext = dllext;
elseif ispc
 dllext = '.dll';
 libext = '.lib';
else
 disp('Platform not supported')
 return
end

Write a Main File That Uses the Generated Code Projects

In the general case, you integrate different projects by writing or modifying a main file to call each of
the projects' functions. By using namespaces, you can distinguish the generated functions for each
project, even though the function names are the same.

For an example of how to write a main file that uses the generated C++ code for both projects, see
the attached file main_planetSim.cpp. To build an executable or binary from the main file, you
must specify or provide the following to the build tools (compiler, linker, and/or IDE) and their correct
paths:

• Header files for any called functions.

 Integrate Multiple Generated C++ Code Projects

40-15

• On Windows platforms, import libraries (.lib files).
• Dynamic libraries (.dll, .so and .dylib files).
• Include directories for other generated source and include files.

The .zip files that the packNGo command creates during code generation contain the generated
code files. Unpack the zip files to folders in your build directory or build environment. You must also
make your dynamic libraries accessible to the executable, for example, by moving the generated
dynamic libraries to the same folder as the executable.

Write a MATLAB Function that Integrates the Two Projects

As an alternative to writing a main file by hand, you can also integrate two projects into a third
generated code project by using the coder.ceval function. The coder.ceval function enables you
to call external C/C++ code from generated C/C++ code.

The file planetSim.m shows how to use coder.ceval and associated build configuration functions
to integrate the generated projects into the larger project.

<include>planetSim.m</include>

Generate MEX code for the planetSim function:

linkObjectMoon = ['projectMoon/getGravityConstMoon' libext];
linkObjectEarth = ['projectEarth/getGravityConstEarth' libext];

cfg = coder.config('mex');
cfg.TargetLang = "C++";
codegen('planetSim','-config',cfg,'-d','planetSim','-report',linkObjectMoon,linkObjectEarth)

Code generation successful: To view the report, open('planetSim\html\report.mldatx')

Test the Generated MEX Function

Use the MEX function to test the generated code in the MATLAB environment. The MEX function
must have access to the generated link libraries. Move the link libraries to the current directory and
call the MEX function.

copyfile(['projectMoon/getGravityConstMoon' dllext]);
copyfile(['projectEarth/getGravityConstEarth' dllext]);

[t_m, t_e] = planetSim_mex

t_m = 3.5136

t_e = 1.4278

The output shows the flight times for the falling object on the Moon and on the Earth.

See Also
coder.config | codegen | coder.cinclude | coder.ceval | packNGo | coder.CodeConfig

More About
• “C++ Code Generation” on page 40-2

40 Generating Code for C++

40-16

• “Call Custom C/C++ Code from the Generated Code” on page 34-2
• “Use a Dynamic Library in a Microsoft Visual Studio Project” on page 32-20

 Integrate Multiple Generated C++ Code Projects

40-17

Generate C++ Classes for MATLAB Classes That Model Simple
and Damped Oscillators

MATLAB® classes provide a natural framework for modelling physical systems:

• You can model a simple system as a MATLAB class. The private class properties are the system
parameters. The class constructor creates an instance of the system with given parameters. A
public method captures the dynamics of the system by returning the final state for a given initial
state and a time interval. The class can also contain other helper methods that modularize the
mathematical analysis.

• You often start your analysis with a simple system and then introduce additional effects (such as
mechanical damping) to increase the accuracy of your analysis. In MATLAB, you can model the
enhanced system as a subclass that inherits from the original class. The subclass might contain
additional private properties for additional system parameters (such as damping constant).
Depending on the specifics of the system, the subclass might inherit certain methods from the
base class and might overload the other methods.

This example shows how to generate C++ code for a MATLAB function that compares the time
evolution of a simple oscillator and a damped oscillator with identical parameters and initial
conditions. The two oscillator systems are modelled by using the MATLAB classes
simpleOscillator and dampedOscillator that are defined inside a MATLAB package mySystem.
The generated code contains C++ classes for the source MATLAB classes. The example also shows
how the MATLAB classes map to the generated C++ classes and how to use the generated code in a
custom C++ main function.

Simple and Damped Oscillators as MATLAB Classes

Governing Equations

A simple harmonic oscillator has two parameters, the mass m and the spring constant k. The angular
frequency of the oscillator is ω = k

m . The position of the oscillator x as a function of time t is given
by:

x t = A sin ωt + ϕ .

The amplitude A and the phase constant ϕ are determined by the initial position x0 and the initial
velocity v0 of the simple oscillator. In this example, the MATLAB class simpleOscillator models
this system.

A damped harmonic oscillator has one additional parameter, the damping constant b. This example
considers the case where the normalized damping parameter γ = b

2m is small compared to the
angular frequency ω such that only first-order damping effects are significant. The position of the
damped oscillator xd as a function of time t is:

xd t = A e−γt sin ωt + ϕd

Like before, the amplitude A and the phase constant ϕd are determined by the initial position x0 and
the initial velocity v0 of the damped oscillator. The main effect of damping is to cause the amplitude to
decay exponentially. In this example, the MATLAB class dampedOscillator which is a subclass of
simpleOscillator models the damped system.

40 Generating Code for C++

40-18

MATLAB and C++ Files

This example uses these supporting files that are present in the current working directory:

• The package folder +mySystem contains the two class files simpleOscillator.m and
dampedOscillator.m.

• The function effectOfDamping calculates and returns the trajectories of a simple oscillator and
a damped oscillator with given parameters and initial conditions.

• The C++ header and source files main_damped_oscillator.h and
main_damped_oscillator.cpp implement the custom C++ main function and are used to
generate an executable in the last part of the example.

Run MATLAB Code

Define a structure params that has fields for the three oscillator parameters. Make sure the
dampingConstant parameter is small compared to springConstant and mass (in normalized
units).

params.springConstant = 1;
params.dampingConstant = 0.1;
params.mass = 1;

Call the effectOfDamping function to calculate the position vs. time trajectories of the simple and
damped oscillators from t = 0 to t = 100. Specify initial position x0 = 1and initial velocity v0 = 0.

[time1,position1,time2,position2] = effectOfDamping(params,1,0,100,0.01);

Plot position vs. time graphs of the simple and damped oscillators. Observe how the amplitude of the
damped oscillator decays exponentially with time.

plot(time1,position1)
hold on
plot(time2,position2)

 Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators

40-19

Display the final position of the simple oscillator.

disp(position1(end))

 0.8623

Display the final position of the damped oscillator. Observe that damping causes this final position to
be close to the mean position xmean = 0.

disp(position2(end))

 0.0056

Generate and Run C++ MEX

To check for run-time issues, generate a C++ MEX function for the effectOfDamping function.
Specify the first argument to have the same type and size as params. Specify the other arguments to
be scalar doubles.

codegen -lang:c++ effectOfDamping -args {params,0,0,0,0} -report

Code generation successful: To view the report, open('codegen\mex\effectOfDamping\html\report.mldatx')

Call the generated MEX function effectOfDamping_mex to calculate the position vs. time
trajectories of the simple and damped oscillators from t = 0 to t = 100. Specify initial position x0 = 1
and initial velocity v0 = 0.

40 Generating Code for C++

40-20

[time1,position1,time2,position2] = effectOfDamping_mex(params,1,0,100,0.01);

Plot position vs. time graphs of the simple and damped oscillators. Observe that the plot is identical
to the one produced by the original MATLAB function.

plot(time1,position1)
hold on
plot(time2,position2)

Display the final positions of the two oscillators. These values are also identical to those produced by
the original MATLAB code.

disp(position1(end))

 0.8623

disp(position2(end))

 0.0056

Clear the MEX file from memory.

clear effectOfDamping_mex

Generate and Inspect Static C++ Library

Create a code configuration object for generating a static C++ library with class interface. Specify
the name of the interface class to be 'myOscillators'. For these settings, the code generator

 Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators

40-21

produces the entry-point function as a methods of the C++ class 'myOscillators'. The constructor
and the destructor of this interface class implement the initialize and terminate functions,
respectively.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = 'myOscillators';

Adjust the global settings for function inlining to:

• Preserve the modularity in the code that you wrote for better readability. Set
InlineBetweenUserFunctions to 'Readability'.

• Generate highly optimized code for MathWorks® functions, even if that results in less readable
code because you are less likely to inspect this part of your code base. Set
InlineBetweenMathWorksFunctions to 'Speed'.

• In the generated code, separate functions that you write and MathWorks functions so that the
generated code does not look very different from your MATLAB code. Set
InlineBetweenUserAndMathWorksFunctions to 'Readability'.

cfg.InlineBetweenUserFunctions = 'Readability';
cfg.InlineBetweenUserAndMathWorksFunctions = 'Readability';
cfg.InlineBetweenMathWorksFunctions = 'Speed';

For more information about controlling function inlining behavior of the code generator, see “Control
Inlining to Fine-Tune Performance and Readability of Generated Code” on page 35-9.

Generate a static C++ library by using the codegen command.

codegen -config cfg effectOfDamping -args {params,0,0,0,0} -report

Code generation successful: To view the report, open('codegen\lib\effectOfDamping\html\report.mldatx')

Open the code generation report and inspect the generated C++ source code:

• The files simpleOscillator.h and simpleOscillator.cpp contain the implementation of the
C++ class for the simple oscillator. The files dampedOscillator.h and
dampedOscillator.cpp contain the implementation of the C++ class for the damped oscillator.
The inheritance structure of the MATLAB classes is flattened in the generated code. So,
dampedOscillator is not a subclass of simpleOscillator and reimplements all the methods
that the corresponding MATLAB class inherits. For more information on the mapping between the
MATLAB classes and the C++ classes, see “Generate C++ Classes for MATLAB Classes” on page
16-2.

• The MATLAB package is mapped to a C++ namespace. In the generated code, the
simpleOscillator and dampedOscillator classes are defined in the mySystem namespace.
For more information, see “Organize Generated C++ Code into Namespaces” on page 40-9.

• The files myOscillators.h and myOscillators.cpp contain the implementation of the
interface class myOscillators. The entry-point function is implemented in the method
myOscillators::effectOfDamping. The initialize and terminate functions are implemented in
the class constructor and the class destructor, respectively. The next part of this example shows
how to use this class interface in your custom C++ main function. For more information, see
“Generate C++ Code with Class Interface” on page 40-4.

• The size of output arguments of the effectOfDamping function are determined by the run-time
inputs timeInterval and timeStep. So, the generated code represents these arguments as

40 Generating Code for C++

40-22

dynamic arrays C++ that are implemented by using the coder::array class template. The next
part of this example shows how to use the coder::array class template in your custom C++
main function. For more information, see “Use Dynamically Allocated C++ Arrays in Generated
Function Interfaces” on page 32-15.

For example, here is the declaration of the generated mySystem::simpleOscillator class
contained in the header file simpleOscillator.h.

type codegen/lib/effectOfDamping/simpleOscillator.h

//
// File: simpleOscillator.h
//
// MATLAB Coder version : 5.4
// C/C++ source code generated on : 26-Feb-2022 13:06:45
//

#ifndef SIMPLEOSCILLATOR_H
#define SIMPLEOSCILLATOR_H

// Include Files
#include "rtwtypes.h"
#include "coder_array.h"
#include <cstddef>
#include <cstdlib>

// Type Definitions
namespace mySystem {
class simpleOscillator {
public:
 void init(double m, double k);
 void evolution(double initialPosition, double initialVelocity,
 double timeInterval, double timeStep,
 coder::array<double, 1U> &b_time,
 coder::array<double, 1U> &position) const;
 double dynamics(double initialPosition, double initialVelocity,
 double timeInterval) const;
 double amplitude(double initialPosition, double initialVelocity) const;
 double angularFrequency() const;
 double phase(double initialPosition, double initialVelocity) const;

protected:
 double mass;
 double springConstant;
};

} // namespace mySystem

#endif
//
// File trailer for simpleOscillator.h
//
// [EOF]
//

If you have Embedded Coder®, you can set the VerificationMode property of the configuration
object to 'SIL' and generate a SIL MEX function effectOfDamping_sil. This SIL interface allows

 Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators

40-23

you to verify the production ready source code inside the MATLAB environment. See “Software-in-
the-Loop Execution From Command Line” (Embedded Coder).

Generate and Run Executable

In the previous part of this example, when you generate library code, the code generator also
produces example main files main.h and main.cpp in the examples subfolder of the build folder.
The supporting C++ files main_damped_oscillator.h and main_damped_oscillator.cpp are
modified versions of these example files.

• In main_damped_oscillator.cpp, the main function uses the interface class myOscillators
to interact with the generated code. This function uses the C++ new operator to allocate memory
for an instance of myOscillators, invokes the main_effectOfDamping function, and finally
frees the memory by using the C++ delete operator.

• The main_effectOfDamping function performs the same computation that the MATLAB script in
the first part of this example does. It uses the coder::array API to interact with the dynamic
arrays that the generated effectOfDamping function return. At the end of its execution, the
main_effectOfDamping function prints the final positions of the two oscillators.

Create a code configuration object for generating a C++ executable. Use the same settings as in the
previous part of this example.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';
cfg.CppInterfaceStyle = 'Methods';
cfg.CppInterfaceClassName = 'myOscillators';

cfg.InlineBetweenUserFunctions = 'Readability';
cfg.InlineBetweenUserAndMathWorksFunctions = 'Readability';
cfg.InlineBetweenMathWorksFunctions = 'Speed';

Specify the custom C++ source file and the custom include folder.

cfg.CustomSource = 'main_damped_oscillator.cpp';
cfg.CustomInclude = pwd;

Generate an executable by using the codegen command.

codegen -config cfg main_damped_oscillator.cpp main_damped_oscillator.h effectOfDamping -args {params,0,0,0,0} -report

Code generation successful: To view the report, open('codegen\exe\effectOfDamping\html\report.mldatx')

Run the generated executable. Observe that the final positions of the two oscillators that this
execution returns match the outputs of the original MATLAB code.

if isunix
 system('./effectOfDamping')
elseif ispc
 system('effectOfDamping.exe')
else
 disp('Platform is not supported')
end

0.862319
0.00563263

40 Generating Code for C++

40-24

ans = 0

See Also
codegen | coder.config

More About
• “C++ Code Generation” on page 40-2

 Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators

40-25

Simulation Data Inspector

• “View Data in the Simulation Data Inspector” on page 41-2
• “Import Data from a CSV File into the Simulation Data Inspector” on page 41-11
• “Microsoft Excel Import, Export, and Logging Format” on page 41-16
• “Configure the Simulation Data Inspector” on page 41-24
• “How the Simulation Data Inspector Compares Data” on page 41-32
• “Save and Share Simulation Data Inspector Data and Views” on page 41-37
• “Inspect and Compare Data Programmatically” on page 41-43
• “Limit the Size of Logged Data” on page 41-48

41

View Data in the Simulation Data Inspector
You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data
Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, open the Configuration Parameters dialog box and, in the Data Import/Export pane,
select the Record logged workspace data in Simulation Data Inspector parameter.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector” (Simulink).

41 Simulation Data Inspector

41-2

The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File
You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

• MAT file
• CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data

Inspector” (Simulink).
• Microsoft Excel® file — Format data as described in “Microsoft Excel Import, Export, and Logging

Format” (Simulink).
• MDF file — MDF file import is supported for Linux and Windows operating systems. The MDF file

must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only integer
and floating data types.

 View Data in the Simulation Data Inspector

41-3

• ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

• “Import Data Using a Custom File Reader” (Simulink)
• “Import Workspace Variables Using a Custom Data Reader” (Simulink)

To import data, select the Import button in the Simulation Data Inspector.

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run.

41 Simulation Data Inspector

41-4

When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data
To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the
Rectangular QAM Modular Baseband signal on the lower graph displays the real component of

 View Data in the Simulation Data Inspector

41-5

the signal in light blue, matching the Line Color parameter, and the imaginary component is shown
in a darker shade of blue.

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,
consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.

41 Simulation Data Inspector

41-6

The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

You can use cursors to inspect how the string signal values correspond with the sine signal's values.

 View Data in the Simulation Data Inspector

41-7

When you plot multiple string signals on a plot, the signals stack in the order they were simulated or
imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.

41 Simulation Data Inspector

41-8

View Frame-Based Data
Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based
data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.

 View Data in the Simulation Data Inspector

41-9

See Also

More About
• Inspect Simulation Data (Simulink)
• Compare Simulation Data (Simulink)
• Share Simulation Data Inspector Data and Views on page 41-37
• Decide How to Visualize Data (Simulink)
• Dataset Conversion for Logged Data (Simulink)

41 Simulation Data Inspector

41-10

Import Data from a CSV File into the Simulation Data Inspector
To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the io.reader class.

Basic File Format
In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

 Import Data from a CSV File into the Simulation Data Inspector

41-11

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.

41 Simulation Data Inspector

41-12

Import Data from a CSV File
You can import data from a CSV file using the Simulation Data Inspector UI or using the
Simulink.sdi.createRun function.

To import data using the UI, open the Simulation Data Inspector using the Simulink.sdi.view
function or the Data Inspector button in the Simulink™ toolstrip. Then, click the Import button.

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. After selecting the options, click the Import button.

 Import Data from a CSV File into the Simulation Data Inspector

41-13

When you import data into a new run using the UI, the new run name includes the run number
followed by Imported_Data.

When you import data programmatically, you can specify the name of the imported run.

csvRunID = Simulink.sdi.createRun('CSV File Run','file','csvExampleData.csv');

See Also
Functions
Simulink.sdi.createRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)

41 Simulation Data Inspector

41-14

• “Microsoft Excel Import, Export, and Logging Format” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)

 Import Data from a CSV File into the Simulation Data Inspector

41-15

Microsoft Excel Import, Export, and Logging Format
Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io.reader class.

Basic File Format
In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

41 Simulation Data Inspector

41-16

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
The file can include metadata for signals such as data type, units, and interpolation method. The
metadata is used to determine how to plot the data, how to apply unit and data conversions, and how
to compute comparison results. For more information about how metadata is used in comparisons,
see “How the Simulation Data Inspector Compares Data” (Simulink).

Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata. When an imported file does not specify signal metadata,
double data type, linear interpolation, and union synchronization are used.

 Microsoft Excel Import, Export, and Logging Format

41-17

Property Descriptions

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Data type Type: Built-in data
type.

Supported Supported Supported

Units Unit: Supported unit.
For example,
Unit: m/s
specifies units
of meters per
second.

For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.

Supported Supported Supported

Interpolation
method

Interp: linear, zoh
for zero order
hold, or none.

Supported Supported Supported

Synchronization
method

Sync: union or
intersection
.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Relative
tolerance

RelTol: Percentage,
represented as
a decimal. For
example,
RelTol: 0.1
specifies a 10%
relative
tolerance.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Absolute
tolerance

AbsTol: Numeric value. Supported Not Supported

Metadata not
included in
exported file.

Supported

Time tolerance TimeTol: Numeric value,
in seconds.

Supported Not Supported

Metadata not
included in
exported file.

Supported

41 Simulation Data Inspector

41-18

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Leading
tolerance

LeadingTol: Numeric value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Lagging
tolerance

LaggingTol: Numeric Value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Block Path BlockPath: Path to the
block that
generated the
signal.

Supported Supported Supported

Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported

Metadata not
included in
exported file.

Supported

User-Defined Data Types
In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.

 Microsoft Excel Import, Export, and Logging Format

41-19

Property Descriptions

Data Type Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Enumeration Enum: Name of the
enumeration
class.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Alias Alias: Name of a
Simulink.Ali
asType object
in the MATLAB
workspace.

Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Not Supported Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Fixed-point Fixdt: • fixdt
constructor.

• Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.

• Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink”
(Fixed-Point
Designer).

Supported Not Supported Supported

Bus Bus: Name of a
Simulink.Bus
object in the
MATLAB
workspace.

Supported Not Supported Supported

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.

41 Simulation Data Inspector

41-20

Complex, Multidimensional, and Bus Signals
You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signal1(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signal1(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

• bus.y.a
• bus.y.b
• bus.x

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

Function-Call Signals
Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.

 Microsoft Excel Import, Export, and Logging Format

41-21

When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters
You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

Multiple Runs
You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source
until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

• Run 1 contains signal1 and signal2.
• Run 2 contains signal3, X, and Y.
• Run 3 contains signal4.

41 Simulation Data Inspector

41-22

• Run 4 contains signal5.

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)
• “Import Data from a CSV File into the Simulation Data Inspector” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)

 Microsoft Excel Import, Export, and Logging Format

41-23

Configure the Simulation Data Inspector
The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

• How signals and metadata are displayed.
• Which data automatically imports from parallel simulations.
• Where prior run data is retained and how much prior data to store.
• How much memory is used during save operations.
• The system of units used to display signals.

To open the Simulation Data Inspector preferences, click Preferences.

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the Preferences menu or by using the Simulink.sdi.clearPreferences
function.

Logged Data Size and Location
By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation” (Simulink).

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and
record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” (Simulink).

41 Simulation Data Inspector

41-24

The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions
Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData
Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace
Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage
When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace
Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode
Storage Location Simulink.sdi.setStorageLocation

Simulink.sdi.getStorageLocation

Archive Behavior and Run Limit
When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage runs in the user interface and control the number of runs the Simulation
Data Inspector retains.

You can configure a limit for the number of runs to retain in the archive and whether the Simulation
Data Inspector automatically moves prior runs into the archive.

Manage Runs Using the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can

 Configure the Simulation Data Inspector

41-25

drag runs of interest from the archive to the work area and vice versa whether Automatically
Archive is selected or disabled.

To prevent the Simulation Data Inspector from automatically moving prior simulations runs to the
archive, clear the Automatically archive setting. With automatic archiving disabled, the Simulation
Data Inspector does not move prior runs into the Archive pane or automatically update plots to
display data from the current simulation.

Tip To manually delete the contents of the archive, click Delete archived runs .

Control Number of Runs Retained in Simulation Data Inspector

You can specify a limit for the number of runs to retain in the archive. When the number of runs in
the archive reaches the limit, the Simulation Data Inspector deletes runs in the archive on a first-in,
first-out basis.

The run limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the limit. A warning occurs if you specify a limit that would delete runs already in
the archive.

Programmatic Use

To configure the Automatically archive option, use the Simulink.sdi.setAutoArchiveMode
function.

To specify the archive run limit, use the Simulink.sdi.setArchiveRunLimit function.

Incoming Run Names and Location
You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model_name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.

41 Simulation Data Inspector

41-26

Programmatic Use

You can programmatically check and modify the naming rule using the
Simulink.sdi.getRunNamingRule and Simulink.sdi.setRunNamingRule functions. Restore
the naming rule to its default programmatically using the Simulink.sdi.resetRunNamingRule
function.

Signal Metadata to Display
You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane
You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector” (Simulink).

For more information about using Browse Mode, see “Visualize Many Logged Signals” (Simulink).

Note To use Browse Mode, your layout must include only Time Plot visualizations.

 Configure the Simulation Data Inspector

41-27

How Signals Are Aligned for Comparison
When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data” (Simulink).

Colors Used to Display Comparison Results
You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.

41 Simulation Data Inspector

41-28

Signal Grouping
You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes and comparison reports. You can group signals by:

• Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Outports.

• Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

• Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

• Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations
When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use

You can configure Simulation Data Inspector support for parallel worker data programmatically using
the Simulink.sdi.enablePCTSupport function.

 Configure the Simulation Data Inspector

41-29

Options for Saving and Loading Session Files
You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

• None — Do not compress saved data.
• Normal — Compress the saved file as much as possible.
• Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units
Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector” (Simulink).

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also
Functions
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode

41 Simulation Data Inspector

41-30

More About
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)
• “Modify Signal Properties in the Simulation Data Inspector” (Simulink)

 Configure the Simulation Data Inspector

41-31

How the Simulation Data Inspector Compares Data
You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.

Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.

3 Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation
pane.

Status Comparison Result
Difference falls within the specified tolerance.

Difference violates specified tolerance.

The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment
In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.

41 Simulation Data Inspector

41-32

You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization
Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.

 How the Simulation Data Inspector Compares Data

41-33

The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation
The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification
The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.

41 Simulation Data Inspector

41-34

Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tsamp-tol), (tsamp+tol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.

 How the Simulation Data Inspector Compares Data

41-35

upperTolerance = max + max(absoluteTolerance,relativeTolerance*max)

lowerTolerance = min - max(absoluteTolerance,relativeTolerance*min)

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also

Related Examples
• “Compare Simulation Data” (Simulink)

41 Simulation Data Inspector

41-36

Save and Share Simulation Data Inspector Data and Views
After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

• Save your data and layout modifications in a Simulation Data Inspector session.
• Share your layout modifications in a Simulation Data Inspector view.
• Share images and figures of plots you create in the Simulation Data Inspector.
• Create a Simulation Data Inspector report.
• Export data to the workspace.
• Export data to a file.

Save and Load Simulation Data Inspector Sessions
If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

• All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

• Plot display selection for signals in the Inspect pane.
• Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

2 Name the file.
3 Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

• None, the default, applies no compression during the save operation.
• Normal creates the smallest file size.

 Save and Share Simulation Data Inspector Data and Views

41-37

• Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to reflect show plotted signals from the session
file. You can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views
When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

• Plot layout, axis ranges, linking characteristics, and normalized axes.
• Location of signals in the plots, including plotted signals in the archive.
• Signal grouping and columns on display in the Inspect pane.
• Signal color and line styling.

To save a view:

1
Click the layout button .

2 Click Save current view.
3 In the dialog box, specify a name for the view and browse to the location where you want to save

the MLDATX-file.
4 Click Save.

To load a view:

1
Click the layout button .

2 Click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots
Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.

41 Simulation Data Inspector

41-38

You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create a Simulation Data Inspector Report
To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata” (Simulink).

To generate a Simulation Data Inspector Report:

1

Click the create report icon on the left side bar.
2 Under Include in report, specify the type of report you want to create.

 Save and Share Simulation Data Inspector Data and Views

41-39

• Select Inspect Signals to include the plots and signals from the Inspect pane.
• Select Compare Runs to include the data and plots from the Compare pane. When you

generate a Compare Runs report, you can choose to Report only mismatched signals or
to Report all signals. If you select Report only mismatched signals, the report shows only
signal comparisons that are not within the specified tolerances.

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File
You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking

the export button.

41 Simulation Data Inspector

41-40

Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”
(Simulink).

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File
You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

1 Select the signal you want to export.
2 Click Export in the toolbar on the left or right-click the signal and select Export.
3 In the Export dialog box, choose to export Selected runs and signals to a file.
4 Specify a file name and the path to the location where you want to save the file.
5 Select MP4 video file from the list and click Export.

 Save and Share Simulation Data Inspector Data and Views

41-41

For the option to export to an MP4 file to be available:

• You must export only one signal at a time.
• The selected signal must be 2D or 3D and contain RGB or monochrome video data.
• The selected signal must be represented in the Simulation Data Inspector as a single signal with

multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data” (Simulink).

• The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Related Examples
• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)

41 Simulation Data Inspector

41-42

Inspect and Compare Data Programmatically
You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data
This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

 Inspect and Compare Data Programmatically

41-43

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Compare Two Signals in the Same Run
You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

41 Simulation Data Inspector

41-44

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance
You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

 Inspect and Compare Data Programmatically

41-45

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances
You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that

41 Simulation Data Inspector

41-46

correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

See Also
Simulation Data Inspector

Related Examples
• “Compare Simulation Data” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)

 Inspect and Compare Data Programmatically

41-47

Limit the Size of Logged Data
In this section...
“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 41-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 41-48
“View Data Only During Simulation” on page 41-49
“Reduce the Number of Data Points Logged from Simulation” on page 41-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

• Limit the number of runs retained in the Simulation Data Inspector archive.
• Reduce the number of data points logged in each simulation.
• Specify a minimum disk space requirement or maximum size for logged data.
• Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive
When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data
You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes

41 Simulation Data Inspector

41-48

retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation
In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

• Logged data is not available in the Simulation Data Inspector or workspace after simulation.
• You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots

clear when you pan or zoom.
• You cannot access logged data during simulation using the Simulation Data Inspector

programmatic interface.

Reduce the Number of Data Points Logged from Simulation
Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

• Decimation — Log every nth signal value.
• Limit data points to last — Only log the last n signal values.
• Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log” (Simulink).

See Also
Tools
Simulation Data Inspector

Related Examples
• “Specify Signal Values to Log” (Simulink)
• “Configure the Simulation Data Inspector” (Simulink)

 Limit the Size of Logged Data

41-49

	About MATLAB Coder
	MATLAB Coder Product Description
	Product Overview
	When to Use MATLAB Coder
	Code Generation for Embedded Software Applications
	Code Generation for Fixed-Point Algorithms

	Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
	When Not to Generate Code from MATLAB Algorithms

	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
	See Also

	Differences Between Generated Code and MATLAB Code
	Functions that have Multiple Possible Outputs
	Writing to ans Variable
	Logical Short-Circuiting
	Loop Index Overflow
	Indexing for Loops by Using Single Precision Operands
	Index of an Unentered for Loop
	Character Size
	Order of Evaluation in Expressions
	Name Resolution While Constructing Function Handles
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Size of Empty Arrays
	Size of Empty Array That Results from Deleting Elements of an Array
	Binary Element-Wise Operations with Single and Double Operands
	Floating-Point Numerical Results
	NaN and Infinity
	Negative Zero
	Code Generation Target
	MATLAB Class Property Initialization
	MATLAB Classes in Nested Property Assignments That Have Set Methods
	MATLAB Handle Class Destructors
	Variable-Size Data
	Complex Numbers
	Converting Strings with Consecutive Unary Operators to double

	Potential Differences Reporting
	Addressing Potential Differences Messages
	Disabling and Enabling Potential Differences Reporting

	Potential Differences Messages
	Automatic Dimension Incompatibility
	mtimes No Dynamic Scalar Expansion
	Matrix-Matrix Indexing
	Vector-Vector Indexing
	Loop Index Overflow

	MATLAB Language Features Supported for C/C++ Code Generation
	MATLAB Features That Code Generation Supports
	MATLAB Language Features That Code Generation Does Not Support

	Functions, Classes, and System Objects Supported for Code Generation
	Functions and Objects Supported for C/C++ Code Generation

	Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables
	Index Arrays by Using Constant Value Vectors

	Eliminate Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Variables
	Defining Uninitialized Variables

	Reassignment of Variable Properties
	Reuse the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Limitations of Variable Reuse

	Supported Variable Types
	Edit and Represent Coder Type Objects and Properties
	Object Properties
	Legacy Representation of Coder Type Objects

	Defining Data for Code Generation
	Data Definition Considerations for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Code Generation for Complex Data with Zero-Valued Imaginary Parts
	Results of Expressions That Have Complex Operands
	Results of Complex Multiplication with Nonfinite Values

	Encoding of Characters in Code Generation
	Array Size Restrictions for Code Generation
	Code Generation for Constants in Structures and Arrays
	Code Generation for Strings
	Limitations
	Differences Between Generated Code and MATLAB Code

	Define String Scalar Inputs
	Define String Scalar Types at the Command Line
	Define String Scalar Inputs in the MATLAB Coder App

	Code Generation for Sparse Matrices
	Sparse Data Types in Generated Code
	Input Definition
	Code Generation Guidelines
	Code Generation Limitations

	Specify Array Layout in Functions and Classes
	Specify Array Layout in a Function
	Query Array Layout of a Function
	Specify Array Layout in a Class

	Code Design for Row-Major Array Layout
	Understand Potential Inefficiencies Caused by Array Layout
	Linear Indexing Uses Column-Major Array Layout

	Code Generation for Variable-Size Data
	Code Generation for Variable-Size Arrays
	Memory Allocation for Variable-Size Arrays
	Enabling and Disabling Support for Variable-Size Arrays
	Variable-Size Arrays in a Code Generation Report

	Control Memory Allocation for Variable-Size Arrays
	Provide Upper Bounds for Variable-Size Arrays
	Disable Dynamic Memory Allocation
	Configure Code Generator to Use Dynamic Memory Allocation for Arrays Bigger Than a Threshold

	Specify Upper Bounds for Variable-Size Arrays
	Specify Upper Bounds for Variable-Size Inputs
	Specify Upper Bounds for Local Variables

	Define Variable-Size Data for Code Generation
	Use a Matrix Constructor with Nonconstant Dimensions
	Assign Multiple Sizes to the Same Variable
	Define Variable-Size Data Explicitly by Using coder.varsize

	Diagnose and Fix Variable-Size Data Errors
	Diagnosing and Fixing Size Mismatch Errors
	Diagnosing and Fixing Errors in Detecting Upper Bounds

	Incompatibilities with MATLAB in Variable-Size Support for Code Generation
	Incompatibility with MATLAB for Scalar Expansion
	Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays
	Incompatibility with MATLAB in Determining Size of Empty Arrays
	Incompatibility with MATLAB in Determining Class of Empty Arrays
	Incompatibility with MATLAB in Matrix-Matrix Indexing
	Incompatibility with MATLAB in Vector-Vector Indexing
	Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation
	Incompatibility with MATLAB in Concatenating Variable-Size Matrices
	Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation Returns No Elements

	Variable-Sizing Restrictions for Code Generation of Toolbox Functions
	Common Restrictions
	Toolbox Functions with Restrictions for Variable-Size Data

	Generate Code With Implicit Expansion Enabled
	Output Size
	Additional Code Generation
	Performance Variation

	Optimize Implicit Expansion in Generated Code
	Disable Implicit Expansion in Specified Function by Using coder.noImplicitExpansionInFunction
	Disable Implicit Expansion for Specific Binary Operation by Using coder.sameSizeBinaryOp
	Disable Implicit Expansion in your Project

	Representation of Arrays in Generated Code
	Customize Interface Generation

	Control Memory Allocation for Fixed-Size Arrays
	Enable Dynamic Memory Allocation for All Fixed-Size Arrays
	Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold

	Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Define Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Field Properties
	Defining an Array of Structures by Using struct
	Defining an Array of Structures Using Concatenation

	Index Substructures and Fields
	Assign Values to Structures and Fields

	Code Generation for Categorical Arrays
	Code Generation for Categorical Arrays
	Define Categorical Arrays for Code Generation
	Allowed Operations on Categorical Arrays
	MATLAB Toolbox Functions That Support Categorical Arrays

	Define Categorical Array Inputs
	Define Categorical Array Inputs at the Command Line
	Define Categorical Array Inputs in the MATLAB Coder App
	Representation of Categorical Arrays

	Categorical Array Limitations for Code Generation

	Code Generation for Cell Arrays
	Code Generation for Cell Arrays
	Homogeneous vs. Heterogeneous Cell Arrays
	Controlling Whether a Cell Array Is Homogeneous or Heterogeneous
	Naming the Structure Type That Represents a Heterogeneous Cell Array in the Generated Code
	Cell Arrays in Reports

	Control Whether a Cell Array Is Variable-Size
	Define Cell Array Inputs
	Cell Array Limitations for Code Generation
	Cell Array Element Assignment
	Variable-Size Cell Arrays
	Definition of Variable-Size Cell Array by Using cell
	Cell Array Indexing
	Growing a Cell Array by Using {end + 1}
	Cell Array Contents
	Passing Cell Arrays to External C/C++ Functions

	Code Generation for Datetime Arrays
	Code Generation for Datetime Arrays
	Define Datetime Arrays for Code Generation
	Allowed Operations on Datetime Arrays
	MATLAB Toolbox Functions That Support Datetime Arrays

	Define Datetime Array Inputs
	Define Datetime Array Inputs at the Command Line
	Define Datetime Array Inputs in the MATLAB Coder App
	Representation of Datetime Arrays

	Datetime Array Limitations for Code Generation

	Code Generation for Duration Arrays
	Code Generation for Duration Arrays
	Define Duration Arrays for Code Generation
	Allowed Operations on Duration Arrays
	MATLAB Toolbox Functions That Support Duration Arrays

	Define Duration Array Inputs
	Define Duration Array Inputs at the Command Line
	Define Duration Array Inputs in the MATLAB Coder App
	Representation of Duration Arrays

	Duration Array Limitations for Code Generation

	Code Generation for Tables
	Code Generation for Tables
	Define Tables for Code Generation
	Allowed Operations on Tables
	MATLAB Toolbox Functions That Support Tables

	Define Table Inputs
	Define Table Inputs at the Command Line
	Define Table Inputs in the MATLAB Coder App
	Representation of Tables

	Table Limitations for Code Generation
	Creating Tables Limitations
	Modifying Tables Limitations
	Using Table Functions Limitations

	Code Generation for Timetables
	Code Generation for Timetables
	Define Timetables for Code Generation
	Allowed Operations on Timetables
	MATLAB Toolbox Functions That Support Timetables

	Define Timetable Inputs
	Define Timetable Inputs at the Command Line
	Define Timetable Inputs in the MATLAB Coder App
	Representation of Timetables

	Timetable Limitations for Code Generation
	Creating Timetables Limitations
	Modifying Timetables Limitations
	Using Timetable Functions Limitations

	Code Generation for Enumerated Data
	Code Generation for Enumerations
	Define Enumerations for Code Generation
	Allowed Operations on Enumerations
	MATLAB Toolbox Functions That Support Enumerations

	Customize Enumerated Types in Generated Code
	Specify a Default Enumeration Value
	Specify a Header File
	Include Class Name Prefix in Generated Enumerated Type Value Names
	Generate C++11 Code Containing Ordinary C Enumeration

	Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
	Language Limitations
	Code Generation Features Not Compatible with Classes
	Defining Class Properties for Code Generation
	Inheritance from Built-In MATLAB Classes Not Supported

	Classes That Support Code Generation
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	Code Generation for Handle Class Destructors
	Guidelines and Restrictions
	Behavioral Differences of Objects in Generated Code and in MATLAB

	Class Does Not Have Property
	Solution

	Passing By Reference Not Supported for Some Properties
	Handle Object Limitations for Code Generation
	A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside a Loop
	A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object
	References to Handle Objects Can Appear Undefined

	System Objects in MATLAB Code Generation
	Usage Rules and Limitations for System Objects for Generating Code
	System Objects in codegen
	System Objects in the MATLAB Function Block
	System Objects in the MATLAB System Block
	System Objects and MATLAB Compiler Software

	Specify Objects as Inputs at the Command Line
	Consistency Between coder.ClassType Object and Class Definition File
	Limitations for Using Objects as Entry-Point Function Inputs

	Specify Objects as Inputs in the MATLAB Coder App
	Automatically Define an Object Input Type
	Provide an Example
	Consistency Between the Type Definition and Class Definition File
	Limitations for Using Objects as Entry-Point Function Inputs

	Work Around Language Limitation: Code Generation Does Not Support Object Arrays
	Issue
	Possible Solutions

	Generating C++ Classes
	Generate C++ Classes for MATLAB Classes
	Example: Generate Code for a Handle Class That Has Private and Public Members
	Additional Usage Notes and Limitations

	Code Generation for Function Handles
	Function Handle Limitations for Code Generation

	Code Generation for Deep Learning Arrays
	Code Generation for dlarray
	Define dlarray for Code Generation
	dlarray Object Functions with Code Generation Support
	Deep Learning Toolbox Functions with dlarray Code Generation Support
	MATLAB Functions with dlarray Code Generation Support

	dlarray Limitations for Code Generation
	Recommended Usage
	Limitations

	Defining Functions for Code Generation
	Code Generation for Variable Length Argument Lists
	Specify Number of Entry-Point Function Input or Output Arguments to Generate
	Control Number of Input Arguments
	Control the Number of Output Arguments

	Code Generation for Anonymous Functions
	Anonymous Function Limitations for Code Generation

	Code Generation for Nested Functions
	Nested Function Limitations for Code Generation

	Calling Functions for Code Generation
	Resolution of Function Calls for Code Generation
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	Resolution of File Types on Code Generation Path
	Compilation Directive %#codegen
	Use MATLAB Engine to Execute a Function Call in Generated Code
	When To Declare a Function as Extrinsic
	Use the coder.extrinsic Construct
	Call MATLAB Functions Using feval
	Working with mxArrays
	Restrictions on Using Extrinsic Functions

	Code Generation for Recursive Functions
	Compile-Time Recursion
	Run-Time Recursion
	Disallow Recursion
	Disable Run-Time Recursion
	Recursive Function Limitations for Code Generation

	Force Code Generator to Use Run-Time Recursion
	Treat the Input to the Recursive Function as a Nonconstant
	Make the Input to the Recursive Function Variable-Size
	Assign Output Variable Before the Recursive Call

	Avoid Duplicate Functions in Generated Code
	Issue
	Cause
	Solution

	Fixed-Point Conversion
	Detect Unexecuted and Constant-Folded Code
	What Is Unexecuted Code?
	Detect Unexecuted Code
	Fix Unexecuted Code

	Convert MATLAB Code to Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Simulation Ranges
	Propose Fixed-Point Data Types Based on Derived Ranges
	Specify Type Proposal Options
	Detect Overflows
	Replace the exp Function with a Lookup Table
	Replace a Custom Function with a Lookup Table
	Enable Plotting Using the Simulation Data Inspector
	Visualize Differences Between Floating-Point and Fixed-Point Results
	View and Modify Variable Information
	View Variable Information
	Modify Variable Information
	Revert Changes
	Promote Sim Min and Sim Max Values

	Automated Fixed-Point Conversion
	Automated Fixed-Point Conversion Capabilities
	Code Coverage
	Proposing Data Types
	Locking Proposed Data Types
	Viewing Functions
	Viewing Variables
	Log Data for Histogram
	Function Replacements
	Validating Types
	Testing Numerics
	Detecting Overflows

	Convert Fixed-Point Conversion Project to MATLAB Scripts
	Generated Fixed-Point Code
	Location of Generated Fixed-Point Files
	Minimizing fi-casts to Improve Code Readability
	Avoiding Overflows in the Generated Fixed-Point Code
	Controlling Bit Growth
	Avoiding Loss of Range or Precision
	Handling Non-Constant mpower Exponents

	Fixed-Point Code for MATLAB Classes
	Automated Conversion Support for MATLAB Classes
	Unsupported Constructs
	Coding Style Best Practices

	Automated Fixed-Point Conversion Best Practices
	Create a Test File
	Prepare Your Algorithm for Code Acceleration or Code Generation
	Check for Fixed-Point Support for Functions Used in Your Algorithm
	Manage Data Types and Control Bit Growth
	Convert to Fixed Point
	Use the Histogram to Fine-Tune Data Type Settings
	Optimize Your Algorithm
	Avoid Explicit Double and Single Casts

	Replacing Functions Using Lookup Table Approximations
	MATLAB Language Features Supported for Automated Fixed-Point Conversion
	MATLAB Language Features Supported for Automated Fixed-Point Conversion
	MATLAB Language Features Not Supported for Automated Fixed-Point Conversion

	Inspecting Data Using the Simulation Data Inspector
	What Is the Simulation Data Inspector?
	Import Logged Data
	Export Logged Data
	Group Signals
	Run Options
	Create Report
	Comparison Options
	Enabling Plotting Using the Simulation Data Inspector
	Save and Load Simulation Data Inspector Sessions

	Custom Plot Functions
	Data Type Issues in Generated Code
	Enable the Highlight Option in the MATLAB Coder App
	Enable the Highlight Option at the Command Line
	Stowaway Doubles
	Stowaway Singles
	Expensive Fixed-Point Operations

	Automated Fixed-Point Conversion Using Programmatic Workflow
	Convert MATLAB Code to Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Simulation Ranges
	Propose Fixed-Point Data Types Based on Derived Ranges
	Detect Overflows
	Replace the exp Function with a Lookup Table
	Replace a Custom Function with a Lookup Table
	Enable Plotting Using the Simulation Data Inspector
	Visualize Differences Between Floating-Point and Fixed-Point Results

	Single-Precision Conversion
	Generate Single-Precision C Code at the Command Line
	Prerequisites
	Create a Folder and Copy Relevant Files
	Determine the Type of the Input Argument
	Generate and Run Single-Precision MEX to Verify Numerical Behavior
	Generate Single-Precision C Code
	View the Generated Single-Precision C Code
	View Potential Data Type Issues

	Generate Single-Precision C Code Using the MATLAB Coder App
	Prerequisites
	Create a Folder and Copy Relevant Files
	Open the MATLAB Coder App
	Select the Source Files
	Enable Single-Precision Conversion
	Define Input Types
	Check for Run-Time Issues
	Generate Single-Precision C Code
	View the Generated C Code
	View Potential Data Type Issues

	Generate Single-Precision MATLAB Code
	Prerequisites
	Create a Folder and Copy Relevant Files
	Set Up the Single-Precision Configuration Object
	Generate Single-Precision MATLAB Code
	View the Type Proposal Report
	View Generated Single-Precision MATLAB Code
	View Potential Data Type Issues
	Compare the Double-Precision and Single-Precision Variables
	Optionally Generate Single-Precision C Code

	Choose a Single-Precision Conversion Workflow
	Single-Precision Conversion Best Practices
	Use Integers for Index Variables
	Limit Use of assert Statements
	Initialize MATLAB Class Properties in Constructor
	Provide a Test File That Calls Your MATLAB Function
	Prepare Your Code for Code Generation
	Verify Double-Precision Code Before Single-Precision Conversion
	Best Practices for Generation of Single-Precision C/C++ Code
	Best Practices for Generation of Single-Precision MATLAB Code

	Warnings from Conversion to Single-Precision C/C++ Code
	Function Uses Double-Precision in the C89/C90 Standard
	Built-In Function Is Implemented in Double-Precision
	Built-In Function Returns Double-Precision

	Combining Integers and Double-Precision Numbers
	MATLAB Language Features Supported for Single-Precision Conversion
	MATLAB Language Features Supported for Single-Precision Conversion
	MATLAB Language Features Not Supported for Single-Precision Conversion

	Setting Up a MATLAB Coder Project
	Set Up a MATLAB Coder Project
	Create a Project
	Open an Existing Project

	Specify Properties of Entry-Point Function Inputs Using the App
	Why Specify Input Properties?
	Specify an Input Definition Using the App

	Automatically Define Input Types by Using the App
	Make Dimensions Variable-Size When They Meet Size Threshold
	Define Input Parameter by Example by Using the App
	Define an Input Parameter by Example
	Specify Input Parameters by Example
	Specify a String Scalar Input Parameter by Example
	Specify a Structure Type Input Parameter by Example
	Specify a Cell Array Type Input Parameter by Example
	Specify an Enumerated Type Input Parameter by Example
	Specify an Object Input Type Parameter by Example
	Specify a Fixed-Point Input Parameter by Example
	Specify an Input from an Entry-Point Function Output Type

	Define or Edit Input Parameter Type by Using the App
	Define or Edit an Input Parameter Type
	Specify a String Scalar Input Parameter
	Specify an Enumerated Type Input Parameter
	Specify a Fixed-Point Input Parameter
	Specify a Structure Input Parameter
	Specify a Cell Array Input Parameter

	Define Constant Input Parameters Using the App
	Define Inputs Programmatically in the MATLAB File
	Add Global Variables by Using the App
	Specify Global Variable Type and Initial Value Using the App
	Why Specify a Type Definition for Global Variables?
	Specify a Global Variable Type
	Define a Global Variable by Example
	Define or Edit Global Variable Type
	Define Global Variable Initial Value
	Define Global Variable Constant Value
	Remove Global Variables

	Undo and Redo Changes to Type Definitions in the App
	Code Generation Readiness Screening in the MATLAB Coder App
	Slow Operations in MATLAB Coder App
	Unable to Open a MATLAB Coder Project

	Preparing MATLAB Code for C/C++ Code Generation
	Workflow for Preparing MATLAB Code for Code Generation
	See Also

	Fixing Errors Detected at Design Time
	See Also

	Using the Code Analyzer
	Check Code with the Code Analyzer
	Check Code by Using the Code Generation Readiness Tool
	Run Code Generation Readiness Tool at the Command Line
	Run Code Generation Readiness Tool from the Current Folder Browser
	Run the Code Generation Readiness Tool Using the MATLAB Coder App

	Code Generation Readiness Tool
	Issues Tab
	Files Tab

	Unable to Determine Code Generation Readiness
	Generate MEX Functions by Using the MATLAB Coder App
	Workflow for Generating MEX Functions Using the MATLAB Coder App
	Generate a MEX Function Using the MATLAB Coder App
	Configure Project Settings
	Build a MATLAB Coder Project
	See Also

	Generate MEX Functions at the Command Line
	Command-line Workflow for Generating MEX Functions
	Generate a MEX Function at the Command Line

	Fix Errors Detected at Code Generation Time
	See Also

	Running and Debugging MEX Functions
	Debug MEX Functions
	Debug MEX Functions by Using a C/C++ Debugger

	Debugging Strategies
	Collect and View Line Execution Counts for Your MATLAB Code
	Resolve Error: Function Is Not Supported for Code Generation
	Issue
	Possible Solutions

	Debug Generated C/C++ Code

	Testing MEX Functions in MATLAB
	Why Test MEX Functions in MATLAB?
	Workflow for Testing MEX Functions in MATLAB
	See Also

	Running MEX Functions
	Debug MEX Functions
	Debug MEX Functions by Using a C/C++ Debugger

	Check for Run-Time Issues by Using the App
	Collect MATLAB Line Execution Counts
	Disable JIT Compilation for Parallel Loops

	Verify MEX Functions in the MATLAB Coder App
	Verify MEX Functions at the Command Line
	Debug Run-Time Errors
	Viewing Errors in the Run-Time Stack
	Handling Run-Time Errors

	Using MEX Functions That MATLAB Coder Generates

	Generating C/C++ Code from MATLAB Code
	Code Generation Workflow
	See Also

	Generating Standalone C/C++ Executables from MATLAB Code
	Generate a C Executable Using the MATLAB Coder App
	Generate a C Executable at the Command Line
	Specifying main Functions for C/C++ Executables
	Specify main Functions

	Configure Build Settings
	Specify Build Type
	Specify a Language for Code Generation
	Specify Output File Name
	Specify Output File Locations
	Parameter Specification Methods
	Specify Build Configuration Parameters

	Specify Configuration Parameters in Command-Line Workflow Interactively
	Create and Modify Configuration Objects by Using the Dialog Box
	Additional Functionalities in the Dialog Box

	Specify Data Types Used in Generated Code
	Specify Data Type Using the MATLAB Coder App
	Specify Data Type at the Command Line

	Use Generated Initialize and Terminate Functions
	Initialize Function
	Terminate Function

	Change the Language Standard
	Convert codegen Command to Equivalent MATLAB Coder Project
	Example: Convert a Complete codegen Command to a Project File
	Example: Convert an Incomplete codegen Command to a Template Project File
	Limitations

	Share Build Configuration Settings
	Export Settings
	Import Settings

	Convert MATLAB Coder Project to MATLAB Script
	Convert a Project Using the MATLAB Coder App
	Convert a Project Using the Command-Line Interface
	Run the Script
	Special Cases That Generate Additional MAT-File

	Preserve Variable Names in Generated Code
	Reserved Keywords
	C Reserved Keywords
	C++ Reserved Keywords
	Keywords Reserved for Code Generation
	Reserved Prefixes
	MATLAB Coder Code Replacement Library Keywords

	Specify Properties of Entry-Point Function Inputs
	Why You Must Specify Input Properties
	Properties to Specify
	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Define Input Properties by Example at the Command Line
	Specify Constant Inputs at the Command Line
	Specify Variable-Size Inputs at the Command Line

	Specify Cell Array Inputs at the Command Line
	Specify Cell Array Inputs by Example
	Specify the Type of the Cell Array Input
	Make a Homogeneous Copy of a Type
	Make a Heterogeneous Copy of a Type
	Specify Variable-Size Cell Array Inputs
	Specify Type Name for Heterogeneous Cell Array Inputs
	Specify Constant Cell Array Inputs

	Constant Input Checking in MEX Functions
	Control Whether a MEX Function Checks the Value of a Constant Input

	Define Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Rules for Using assert Function
	Specifying General Properties of Primary Inputs
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Properties of Cell Arrays
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	Create and Edit Input Types by Using the Coder Type Editor
	Open the Coder Type Editor
	Common Editor Actions
	Type Browser Pane
	Type Properties Pane
	MATLAB Code Pane

	Speed Up Compilation by Generating Only Code
	Disable Creation of the Code Generation Report
	Paths and File Infrastructure Setup
	Compile Path Search Order
	Specify Folders to Search for Custom Code
	Naming Conventions

	Generate Code for Multiple Entry-Point Functions
	Generating Code for Multiple Entry-Point Functions
	Call a Single Entry-Point Function from a MEX Function
	Generate Code for More Than One Entry-Point Function Using the MATLAB Coder App

	Generate One MEX Function for Multiple Signatures
	Generate Multisignature MEX Function for a Single Entry-Point Function
	Generate Multisignature MEX Function for Multiple Entry-Point Functions

	Pass an Entry-Point Function Output as an Input
	Pass an Entry-Point Function Output as an Input to Another Entry-Point Function
	Use coder.OutputType to Facilitate Code Componentization

	Generate Code for Global Data
	Workflow
	Declare Global Variables
	Define Global Data
	Synchronizing Global Data with MATLAB
	Define Constant Global Data
	Global Data Limitations for Generated Code

	Specify Global Cell Arrays at the Command Line
	Generate Code for Enumerations
	Generate Code for Variable-Size Data
	Disable Support for Variable-Size Data
	Control Dynamic Memory Allocation
	Generating Code for MATLAB Functions with Variable-Size Data
	Generate Code for a MATLAB Function That Expands a Vector in a Loop

	How MATLAB Coder Partitions Generated Code
	Partitioning Generated Files
	How to Select the File Partitioning Method
	Partitioning Generated Files with One C/C++ File Per MATLAB File
	Generated Files and Locations
	File Partitioning and Inlining

	Requirements for Signed Integer Representation
	Build Process Customization
	RTW.BuildInfo Methods
	coder.updateBuildInfo Function
	coder.ExternalDependency Class
	Post-Code-Generation Command

	Run-time Stack Overflow
	Compiler and Linker Errors
	Failure to Specify a Main Function
	Failure to Specify External Code Files
	Errors Caused by External Code

	Pass Structure Arguments by Reference or by Value in Generated Code
	Name the C Structure Type to Use With a Global Structure Variable
	Generate Code for an LED Control Function That Uses Enumerated Types
	Generate Code That Uses N-Dimensional Indexing
	Improve Readability with N-Dimensional Indexing and Row-Major Layout
	Column-Major Layout and N-Dimensional Indexing
	Other Code Generation Considerations

	Install OpenMP Library on macOS Platform
	Generate Code to Detect Edges on Images
	C Code Generation for a MATLAB Kalman Filtering Algorithm
	Generate Code to Optimize Portfolio by Using Black Litterman Approach
	Generate Code for Persistent Variables
	Generate Code for Structure Arrays
	Add Custom Toolchains to MATLAB® Coder™ Build Process
	Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type
	Half Precision in MATLAB
	Half Precision Code Generation Support
	Generate Native Half-Precision C Code Using MATLAB Coder
	Generate Native Half-Precision C Code for ARM® Cortex®-A with GCC Compiler
	Generate Native Half-Precision C Code for ARM Cortex-A with Armclang Compiler
	Register ARM Target Hardware with Custom Language Implementation

	What is Half Precision?
	Half Precision Applications
	Benefits of Using Half Precision in Embedded Applications
	Half Precision in MATLAB
	Half Precision in Simulink
	Code Generation with Half Precision

	Build Process Support for Folder Names
	Folder Names with Spaces
	Troubleshooting Errors When Folder Names Have Spaces
	Folder Names with Special Characters
	Very Long Folder Paths

	Generate Code That Reads Data from a File

	Verify Generated C/C++ Code
	Tracing Generated C/C++ Code to MATLAB Source Code
	Generate Traceability Tags
	Format of Traceability Tags
	Location of Comments in Generated Code
	Traceability Tag Limitations

	Code Generation Reports
	Report Generation
	Report Location
	Errors and Warnings
	Files and Functions
	MATLAB Source
	MATLAB Variables
	Tracing Code
	Code Insights
	Additional Reports
	Report Limitations

	Access Code Generation Report Information Programmatically
	Create Report Information Object
	Example: Create Report Information Object for Successful Code Generation
	Example: Create Report Information Object for Successful Code Generation That Checks Out Toolbox Licenses
	Example: Create Report Information Object for Failed Code Generation
	Inspect Code Manually
	Transferring Code Configuration Objects to a New MATLAB Session

	Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors
	Generated C Code vs. Generated C++ Code
	Example: Compare Generated C and C++ Code That Include Run-Time Checks
	Limitations

	Example: Generate Standalone C Code That Detects and Reports Run-Time Errors
	Testing Code Generated from MATLAB Code
	Unit Test Generated Code with MATLAB Coder
	Unit Test External C Code with MATLAB Coder
	Calculate Number of Lines of Code by Using Report Information Object

	Code Replacement for MATLAB Code
	What Is Code Replacement?
	Code Replacement Libraries
	Code Replacement Terminology
	Code Replacement Limitations

	Choose a Code Replacement Library
	About Choosing a Code Replacement Library
	Explore Available Code Replacement Libraries
	Explore Code Replacement Library Contents

	Replace Code Generated from MATLAB Code
	Generate SIMD Code for MATLAB Functions
	MATLAB Functions That Support SIMD Code
	Generate SIMD Code Versus Plain C Code
	Limitations

	Custom Toolchain Registration
	Custom Toolchain Registration
	What Is a Custom Toolchain?
	What Is a Factory Toolchain?
	What is a Toolchain Definition?
	Key Terms
	Typical Workflow

	About coder.make.ToolchainInfo
	Create and Edit Toolchain Definition File
	Toolchain Definition File with Commentary
	Steps Involved in Writing a Toolchain Definition File
	Write a Function That Creates a ToolchainInfo Object
	Setup
	Macros
	C Compiler
	C++ Compiler
	Linker
	Archiver
	Builder
	Build Configurations

	Create and Validate ToolchainInfo Object
	Register the Custom Toolchain
	Use the Custom Toolchain
	Troubleshooting Custom Toolchain Validation
	Build Tool Command Path Incorrect
	Build Tool Not in System Path
	Tool Path Does Not Exist
	Path Incompatible with Builder or Build Tool
	Unsupported Platform
	Toolchain is Not installed
	Project or Configuration Is Using the Template Makefile

	Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers
	Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

	Deploying Generated Code
	C Compiler Considerations for Signed Integer Overflows
	Use C Arrays in the Generated Function Interfaces
	Implementation of Arrays in the Generated C/C++ Code
	The emxArray Dynamic Data Structure Definition
	Utility Functions for Interacting with emxArray Data
	Examples

	Use Dynamically Allocated C++ Arrays in Generated Function Interfaces
	Using the coder::array Class Template
	Examples
	Change Interface Generation

	Use a Dynamic Library in a Microsoft Visual Studio Project
	Incorporate Generated Code Using an Example Main Function
	Workflow for Using an Example Main Function
	Control Example Main Generation Using the MATLAB Coder App
	Control Example Main Generation Using the Command-Line Interface

	Use an Example C Main in an Application
	Prerequisites
	Create a Folder and Copy Relevant Files
	Run the Sobel Filter on the Image
	Generate and Test a MEX Function
	Generate an Example Main Function for sobel.m
	Copy the Example Main Files
	Modify the Generated Example Main Function
	Generate the Sobel Filter Application
	Run the Sobel Filter Application
	Display the Resulting Image

	Package Code for Other Development Environments
	When to Package Code
	Package Generated Code Using the MATLAB Coder App
	Package Generated Code at the Command Line
	Specify packNGo Options

	Structure of Generated Example C/C++ Main Function
	Contents of the File main.c or main.cpp
	Contents of the File main.h

	Troubleshoot Failures in Deployed Code
	Using Dynamic Memory Allocation for an Atoms Simulation
	Register New Hardware Devices
	Specify Hardware Implementation for New Device
	Specify Hardware Implementation That Persists Over MATLAB Sessions
	Create Hardware Implementation by Modifying Existing Implementation
	Create Hardware Implementation by Reusing Existing Implementation
	Validate Hardware Device Data
	Export Hardware Device Data
	Create Alternative Identifier for Target Object
	Upgrade Data Definitions for Hardware Devices

	Deploy Generated C Code to External Hardware: Raspberry Pi Examples
	Prerequisites
	Hardware Implementation Parameters
	Hello World Example
	Spring Mass Damper System Example

	Deploy Generated Code
	Main Function
	Generated Function Interfaces
	Executable Applications
	Static and Dynamic Libraries
	Generated File Structure
	Code Verification
	Custom Hardware Considerations
	Other Deployment Strategies

	Approaches for Building Code Generated from MATLAB Code

	Accelerating MATLAB Algorithms
	Workflow for Accelerating MATLAB Algorithms
	See Also

	Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms
	Accelerate Code That Dominates Execution Time
	Include Loops Inside MEX Function
	Avoid Generating MEX Functions from Unsupported Functions
	Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate Run Time
	Minimize MEX Function Calls

	Accelerate MATLAB Algorithms
	Modifying MATLAB Code for Acceleration
	How to Modify Your MATLAB Code for Acceleration

	Profile MEX Functions by Using MATLAB Profiler
	MEX Profile Generation
	Example
	Effect of Folding Expressions on MEX Code Coverage

	Control Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks

	Algorithm Acceleration Using Parallel for-Loops (parfor)
	Parallel for-Loops (parfor) in Generated Code
	How parfor-Loops Improve Execution Speed
	When to Use parfor-Loops
	When Not to Use parfor-Loops
	parfor-Loop Syntax
	parfor Restrictions

	Control Compilation of parfor-Loops
	When to Disable parfor

	Reduction Assignments in parfor-Loops
	What are Reduction Assignments?
	Multiple Reductions in a parfor-Loop

	Classification of Variables in parfor-Loops
	Overview
	Sliced Variables
	Broadcast Variables
	Reduction Variables
	Temporary Variables

	Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)
	Specify Maximum Number of Threads in parfor-Loops
	Troubleshooting parfor-Loops
	Global or Persistent Declarations in parfor-Loop
	Compiler Does Not Support OpenMP

	Generate MEX Code to Accelerate Simulation of Bouncing Balls
	Generate MEX Code to Calculate Geodesics in Curved Space-Time
	Generate Accelerated MEX Code for Reverberation Using MATLAB Classes
	Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm
	Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

	External Code Integration
	Call Custom C/C++ Code from the Generated Code
	Call C Code
	Return Multiple Values from a C Function
	Pass Data by Reference
	Integrate External Code that Uses Custom Data Types
	Integrate External Code that Uses Pointers, Structures, and Arrays

	Configure Build for External C/C++ Code
	Provide External Files for Code Generation
	Configure Build from Within a Function
	Configure Build by Using the Configuration Object
	Configure Build by Using the MATLAB Coder App

	Develop Interface for External C/C++ Code
	Create a class from coder.ExternalDependency
	Best Practices for Using coder.ExternalDependency

	Mapping MATLAB Types to Types in Generated Code
	Complex Types
	Structure Types
	Fixed-Point Types
	Character Vectors
	Multiword Types

	Generate Code to Read a Text File
	Generate C/C++ Strings from MATLAB Strings and Character Row Vectors
	Add New Line to Strings in Generated Code
	Limitations

	Generate Efficient and Reusable Code
	Optimization Strategies
	Modularize MATLAB Code
	Avoid Data Copies of Function Inputs in Generated Code
	Inline Code
	Control Inlining to Fine-Tune Performance and Readability of Generated Code
	Control Inlining of a Specific MATLAB Function
	Control Inlining by Using Code Generation Settings
	Interaction Between Different Inlining Controls
	Example: Control Inlining at the Boundary Between Your Functions and MathWorks® Functions

	Fold Function Calls into Constants
	Control Stack Space Usage
	Stack Allocation and Performance
	Allocate Heap Space from Command Line
	Allocate Heap Space Using the MATLAB Coder App

	Dynamic Memory Allocation and Performance
	When Dynamic Memory Allocation Occurs

	Minimize Dynamic Memory Allocation
	Provide Maximum Size for Variable-Size Arrays
	Disable Dynamic Memory Allocation During Code Generation
	Set Dynamic Memory Allocation Threshold
	Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App
	Set Dynamic Memory Allocation Threshold at the Command Line

	Optimize Dynamic Array Access
	Disable Cache Dynamic Array Data Pointer Property
	Compare Generated C Code

	Excluding Unused Paths from Generated Code
	Prevent Code Generation for Unused Execution Paths
	Prevent Code Generation When Local Variable Controls Flow
	Prevent Code Generation When Input Variable Controls Flow

	Generate Code with Parallel for-Loops (parfor)
	Minimize Redundant Operations in Loops
	Unroll for-Loops and parfor-Loops
	Force for-Loop Unrolling by Using coder.unroll
	Set Loop Unrolling Threshold for All for-Loops and parfor-Loops in the MATLAB Code

	Disable Support for Integer Overflow or Nonfinites
	Disable Support for Integer Overflow
	Disable Support for Nonfinite Numbers

	Integrate External/Custom Code
	MATLAB Coder Optimizations in Generated Code
	Constant Folding
	Loop Fusion
	Successive Matrix Operations Combined
	Unreachable Code Elimination
	memcpy Calls
	memset Calls

	Use coder.const with Extrinsic Function Calls
	Reduce Code Generation Time by Using coder.const with feval
	Force Constant-Folding by Using coder.const with feval

	memcpy Optimization
	memset Optimization
	Reuse Large Arrays and Structures
	LAPACK Calls in Generated Code
	Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls
	Specify LAPACK Library
	Write LAPACK Callback Class
	Generate LAPACK Calls by Specifying a LAPACK Callback Class
	Locate LAPACK Library in Execution Environment

	BLAS Calls in Generated Code
	Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls
	Specify BLAS Library
	Write BLAS Callback Class
	Generate BLAS Calls by Specifying a BLAS Callback Class
	Locate BLAS Library in Execution Environment
	Usage Notes and Limitations for OpenBLAS Library

	Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls
	FFTW Planning Considerations
	Install FFTW Library
	Write an FFT Callback Class
	Generate FFTW Library Calls by Specifying an FFT Library Callback Class

	Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code
	Prerequisites
	Create a MATLAB Function
	Write Supporting C Code
	Write an FFT Library Callback Class
	Generate a Dynamically Linked Library
	Specify Configuration Parameters in the MATLAB Coder App

	Speed Up MEX Generation by Using JIT Compilation
	Specify Use of JIT Compilation in the MATLAB Coder App
	Specify Use of JIT Compilation at the Command Line
	JIT Compilation Incompatibilities

	Automatically Parallelize for Loops in Generated Code
	Parallelize for Loops by Using MATLAB Coder App
	Parallelize for Loops at Command Line
	Inspect Generated Code and Code Insights
	Disable Automatic Parallelization of a for Loop
	Parallelize Implicit for Loops
	Parallelize for Loops Performing Reduction Operations
	Usage Notes and Limitations

	Specify Maximum Number of Threads to Run Parallel for-Loops in the Generated Code
	Specify Number of Threads by Using MATLAB Coder App
	Specify Number of Threads at the Command Line
	Create Custom Hardware Processor

	Optimize Generated Code for Fast Fourier Transform Functions
	Intel Target Support
	ARM Target Support
	MEX Target Support

	Generating Reentrant C Code from MATLAB Code
	Generate Reentrant C Code from MATLAB Code
	About This Tutorial
	Copying Files Locally
	About the Example
	Providing a C main Function
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Running the Code
	Key Points to Remember
	Learn More

	Reentrant Code
	Specify Generation of Reentrant Code
	Specify Generation of Reentrant Code Using the MATLAB Coder App
	Specify Generation of Reentrant Code Using the Command-Line Interface

	API for Generated Reusable Code
	Call Reentrant Code in a Single-Threaded Environment
	Call Reentrant Code in a Multithreaded Environment
	Multithreaded Examples

	Call Reentrant Code with No Persistent or Global Data (UNIX Only)
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)
	MATLAB Code for This Example
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)
	MATLAB Code for This Example
	Provide a Main Function
	Generate Reentrant C Code
	Examine the Generated Code
	Run the Code

	Troubleshooting Code Generation Problems
	JIT MEX Incompatibility Warning
	Issue
	Cause
	Solution

	JIT Compilation Does Not Support OpenMP
	Issue
	Cause
	Solution

	Output Variable Must Be Assigned Before Run-Time Recursive Call
	Issue
	Cause
	Solution

	Compile-Time Recursion Limit Reached
	Issue
	Cause
	Solutions
	Force Run-Time Recursion
	Increase the Compile-Time Recursion Limit

	Unable to Determine That Every Element of Cell Array Is Assigned
	Issue
	Cause
	Solution

	Nonconstant Index into varargin or varargout in a for-Loop
	Issue
	Cause
	Solution

	Unknown Output Type for coder.ceval
	Issue
	Cause
	Solution

	MEX Generated on macOS Platform Stays Loaded in Memory
	Issue
	Cause
	Solution

	Resolve Error: Code Generator Failed to Produce C++ Destructor for MATLAB Class
	Issue
	Possible Solutions

	Row-Major Array Layout
	Row-Major and Column-Major Array Layouts
	Array Storage in Computer Memory
	Conversions Between Different Array Layouts

	Generate Code That Uses Row-Major Array Layout
	Specify Row-Major Layout
	Array Layout and Algorithmic Efficiency
	Row-Major Layout for N-Dimensional Arrays
	Specify Array Layout in External Function Calls

	Deep Learning with MATLAB Coder
	Prerequisites for Deep Learning with MATLAB Coder
	MathWorks Products
	Third-Party Hardware and Software
	Environment Variables

	Workflow for Deep Learning Code Generation with MATLAB Coder
	Networks and Layers Supported for Code Generation
	Supported Pretrained Networks
	Supported Layers
	Supported Classes
	Code Generation for Quantized Networks

	Load Pretrained Networks for Code Generation
	Load a Network by Using coder.loadDeepLearningNetwork
	Specify a Network Object for Code Generation
	Specify a dlnetwork Object for Code Generation

	Generate Generic C/C++ Code for Deep Learning Networks
	Requirements
	Code Generation by Using codegen
	Code Generation by Using the MATLAB Coder App

	Code Generation for Deep Learning Networks with MKL-DNN
	Requirements
	Code Generation by Using codegen
	Code Generation by Using the MATLAB Coder App

	Code Generation for Deep Learning Networks with ARM Compute Library
	Requirements
	Code Generation by Using codegen
	Code Generation by Using the MATLAB Coder App

	Cross-Compile Deep Learning Code That Uses ARM Compute Library
	Prerequisites
	Generate and Deploy Deep Learning Code

	Code Generation for Quantized Deep Learning Networks
	ARM Cortex-A Processors
	ARM Cortex-M Processors

	Update Network Parameters After Code Generation
	Create an Entry-Point Function
	Create a Network
	Code Generation by Using codegen
	Run the Generated MEX
	Update Network with Different Learnable Parameters
	Run the Generated MEX with Updated Learnables
	Limitations

	Deep Learning Code Generation on Intel Targets for Different Batch Sizes
	Deep Learning Prediction with ARM Compute Using codegen
	Code Generation for Deep Learning on ARM Targets
	Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN
	Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi
	Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net
	Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net
	Code Generation for LSTM Network on Raspberry Pi
	Code Generation for LSTM Network That Uses Intel MKL-DNN
	Code Generation for Convolutional LSTM Network That Uses Intel MKL-DNN
	Cross Compile Deep Learning Code for ARM Neon Targets
	Code Generation for Quantized Deep Learning Network on Raspberry Pi
	Generate Code for Quantized LSTM Network and Deploy on Cortex-M Target
	Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning
	Generate Digit Images Using Variational Autoencoder on Intel CPUs
	Post-Code-Generation Update of Deep Learning Network Parameters
	Generate Code for LSTM Network and Deploy on Cortex-M Target
	Prune Filters in a Detection Network Using Taylor Scores

	Generating Code for C++
	C++ Code Generation
	Generate C++ Code
	C++ Language Features Supported in Generated Code
	Additional Differences Between Generated C Code and C++ Code

	Generate C++ Code with Class Interface
	Generate C++ Code with a Class Interface
	Globals and Persistents in a Generated C++ Class
	Put Multiple Entry-Point Functions in the Same Class

	Organize Generated C++ Code into Namespaces
	Settings That Control Namespace Structure
	Example: Generate C++ Code with Namespaces

	Integrate Multiple Generated C++ Code Projects
	Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators

	Simulation Data Inspector
	View Data in the Simulation Data Inspector
	View Logged Data
	Import Data from the Workspace or a File
	View Complex Data
	View String Data
	View Frame-Based Data
	View Event-Based Data

	Import Data from a CSV File into the Simulation Data Inspector
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	Import Data from a CSV File

	Microsoft Excel Import, Export, and Logging Format
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	User-Defined Data Types
	Complex, Multidimensional, and Bus Signals
	Function-Call Signals
	Simulation Parameters
	Multiple Runs

	Configure the Simulation Data Inspector
	Logged Data Size and Location
	Archive Behavior and Run Limit
	Incoming Run Names and Location
	Signal Metadata to Display
	Signal Selection on the Inspect Pane
	How Signals Are Aligned for Comparison
	Colors Used to Display Comparison Results
	Signal Grouping
	Data to Stream from Parallel Simulations
	Options for Saving and Loading Session Files
	Signal Display Units

	How the Simulation Data Inspector Compares Data
	Signal Alignment
	Synchronization
	Interpolation
	Tolerance Specification
	Limitations

	Save and Share Simulation Data Inspector Data and Views
	Save and Load Simulation Data Inspector Sessions
	Share Simulation Data Inspector Views
	Share Simulation Data Inspector Plots
	Create a Simulation Data Inspector Report
	Export Data to the Workspace or a File
	Export Video Signal to an MP4 File

	Inspect and Compare Data Programmatically
	Create a Run and View the Data
	Compare Two Signals in the Same Run
	Compare Runs with Global Tolerance
	Analyze Simulation Data Using Signal Tolerances

	Limit the Size of Logged Data
	Limit the Number of Runs Retained in the Simulation Data Inspector Archive
	Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
	View Data Only During Simulation
	Reduce the Number of Data Points Logged from Simulation

